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With the rapid development of deep learning, automatic lesion detection is used widely in clinical screening. To solve the problem
that existing deep learning-based cervical precancerous lesion detection algorithms cannot meet high classification accuracy and
fast running speed at the same time, a ShuffleNet-based cervical precancerous lesion classification method is proposed. By adding
channel attention to the ShuffleNet, the network performance is improved. In this study, the image dataset is classified into five
categories: normal, cervical cancer, LSIL (CIN1), HSIL (CIN2/CIN3), and cervical neoplasm.*e colposcopy images are expanded
to solve the problems of the lack of colposcopy images and the uneven distribution of images from each category. For the test
dataset, the accuracy of the proposed CNN models is 81.23% and 81.38%. Our classifier achieved an AUC score of 0.99. *e
experimental results show that the colposcopy image classification network based on artificial intelligence has good performance
in classification accuracy and model size, and it has high clinical applicability.

1. Introduction

Cervical cancer is the fourth most common female cancer.
*e statistics of WHO show roughly 604,000 new cases
worldwide in 2020, accounting for 6.5% of all new cancer
cases in women [1]. *e early cure rate of cervical cancer is
high, but the lack of signs and symptoms at this stage hinders
the early diagnosis. A successful screening program can
avoid cervical cancer death and reduce the incidence and
persistence of the disease [2]. According to statistics, more
than 311,000 cervical cancer deaths occur every year. Due to
the lack of experienced health care staff and insufficient
funds for the screening system, cervical cancer screening
facilities are very scarce in developing countries [3].
*erefore, it is necessary to use automated and effective
screening methods, to reduce the cost of early detection of
cervical cancer. Cervical cancer screening follows the fol-
lowing workflow: HPV test, cytology or PAP smear test,
colposcopy, and biopsy [4]. *e PAP smear image screening
is to take a small number of cell samples from the cervix of
the uterus, placing them on glass slides, and then study

whether they are abnormal under a microscope. *is
method is time-consuming and depends on the experience
of pathologists. Different pathologists will see different re-
sults in the same film. *e HPV test is a DNA test. PAP
smear and HPV test are very expensive treatments with low
sensitivity. *erefore, colposcopy is widely used in devel-
oping countries. Colposcopy identifies cervical lesions by
using a low magnification microscope under a strong light
source [5]. Its accuracy highly depends on the skills of
physicians. *ere are significant differences in the detection
rate of lesions among different colposcopy physicians. *is
has aroused people’s attention to the insufficient diagnosis of
lesions (including missed diagnosis of cervical cancer) and
excessive diagnosis of lesions [6–9]. Excessive diagnosis of
lesions may lead to the excessive treatment of low-grade
cervical lesions, increasing the risk of infection and eco-
nomic burden [10].

In recent years, deep learning has gradually become
popular in the field of medicine. *e purpose of medical
image processing is to restore the original unclear image, to
highlight some characteristic information in the image, or to
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classify the image. Medical images include MRI, CT, ul-
trasound images, and blood smear images [11, 12]. Con-
volutional neural network (CNN) is an important end-to-
end deep learning model [13], which is mainly used in image
recognition, segmentation, and target detection in medical
image processing. Ai-assisted colposcopy can help colpo-
scopy specialists improve their diagnostic performance,
optimize clinical workflow, and relieve pressure on colpo-
scopy physicians and hospitals, which has great potential to
improve cervical cancer screening performance.

We propose a method for the classification of cervical
precancerous lesions based on deep learning. *e main
contributions of this paper are as follows:

(i) Different grades of cervical precancerous lesions,
cervical neoplasm, and cervical cancer were
classified.

(ii) A deep inverted residual network based on the
improved additional channel attention of Shuf-
fleNet is proposed.

(iii) Compared with the traditional residual network, the
inverted residual network can not only ensure the
automatic extraction of features in the image but
also reduce the amount of calculation and improve
the calculation speed of the model.

*e structure of this paper is as follows: Section 2 in-
troduces the proposed deep learning model. Section 3 de-
scribes data sources and processing. Section 4 is experiment
and analysis. Section 5 concludes this work.

2. Materials and Methods

2.1. Depthwise Separable Convolution. Deep CNN networks
such as ResNet [14] and DenseNet [15] have greatly im-
proved the accuracy of image classification. However, in
addition to accuracy, computational complexity is also an
important index to be considered by the CNN network.
Complex networks may run slowly. Some specific scenes,
such as an unmanned vehicle, need low latency, and edge
computing devices also need small models that are both
accurate and fast. To meet this demand, lightweight deep
learning networks such as MobileNet [16] and ShuffleNet
[17] have been proposed, which achieve a good balance
between speed and accuracy.

To speed up the calculation speed of the network and
reduce the amount of calculation, MobileNet proposes
depthwise separable convolution. For the traditional con-
volution, an input feature graph with a size of (W, H, Cin) is
used to obtain an output feature graph with a size of (W, H,
Cout) through convolution operation using an N×N con-
volution kernel. At this point, the computational quantity is

W × H × Cin × Cout × N × N. (1)

Depthwise separable convolutions are divided into
depthwise convolutions and pointwise convolutions. Depth-
wise convolutions are equivalent to using the convolution
kernel with the number of channels of 1 to perform separate
convolution operations on each channel of the input feature

map. *e feature map with the same number of output and
input channels needs to be multiplied W×H×Cin×N×N
times. Pointwise convolution, a simple 1× 1 convolution,
needs W×H×Cin ×Cout times of multiplication calculation.
Compared to ordinary convolution, the calculation amount of
depthwise separable convolution can be reduced:

W × H × Cin × N × N + W × H × Cin × Cout

W × H × Cin × Cout × N × N
�

1
Cout

+
1

N × N
. (2)

2.2. Inverted Residual Network with Additional Channel
Attention. ShuffleNet has similar ideas with MobileNet,
Xception [18], and ResNet. It uses channel shuffle and
depthwise separable convolution to optimize the residual
structure of ResNet, which not only ensures the network
accuracy but also improves the operational efficiency of the
model. Unlike the traditional residual module, which di-
rectly integrates the features of the deep networks and
nondeep networks obtained through multiple convolu-
tions, the inverted residual module divides the input fea-
ture map into two batches X1 and X2, X2 through
depthwise separable convolution and twice 1× 1 con-
volution + batch standardization + activation function, X1
and X2 are fused with deep and nondeep features, and
finally, channel shuffle is used to mix deep and nondeep
features. Suppose that the input layer is divided into G
groups, and the total number of channels is G× n. First,
divide the channel into two dimensions (G, n), then
transpose these two dimensions into (n, G), and finally
reshape them into one dimension G× n. *e ShuffleNet
structure model is shown in Figure 1. *e channel shuffle
process is shown in Figure 2.

To make the classification more accurate, we add the
Squeeze-and-Excitation Networks (SE) [19] and the Selec-
tive Kernel Networks (SK) [20] to the model, respectively.
*e SE model is shown in Figure 3. Firstly, a feature map U
with a total number of channels C and a size of H×W is
flattened into a feature vector of (1, 1, C) by a global pooled
Fsq shown as follows:

Zc � Fsq Uc(  �
1

H × W


H

i�1


W

j�1
Uc(I, j). (3)

*e activation function and linear mapping are added to
the feature vector to add more nonlinear conditions, which
can better fit the complex correlation between channels.
Finally, the calculated channel features are multiplied by the
original feature map to obtain the output of channel at-
tention. *e SE model strengthens the important features
and weakens the unimportant features by controlling the
size of the channel proportion, to make the extracted fea-
tures more directional.

Channel attention is allowed to be inserted between each
feature map. After the SE channel attention is inserted into
the depth-separable convolution, feature extraction of
channel dimension is carried out on the depthwise separable
convolution output. *e inverted residual network structure
model fusing the SE module is shown in Figure 4.
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SK is mainly the same as SE. *e difference is that SENet
performs attention on the channel, while SKNet performs
attention on the convolution kernel. SKNet uses convolution
check feature maps of different sizes in the network to
extract features of different scales and then extracts channel
attention after fusion of features of different scales. Its
network model is shown in Figure 5.

To compare with SE, SK is also used in depthwise
separable convolution. *e inverted residual network
structure model fusing the SK module is shown in Figure 6.

First, the input feature maps are computed by a
depthwise separable convolution conv_1 with a convo-
lution kernel size of 3 × 3, and a depthwise separable
convolution with a convolution kernel size of 3 × 3 and a
dilation factor of 2 in different scales; then the two output
feature maps are summed for global pooling, and the
pooling layer is computed similar to the SE channel at-
tention; subsequently, the output of two-channel features
are multiplied with conv_1 and conv_2 in the channel
dimension to obtain two feature maps of mixed channel
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Figure 1: ShuffleNet structure model.

Figure 2: Channel shuffle process.
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attention at different scales, and then the two feature
maps are summed to obtain the SK attention output
features.

3. Data Source and Processing

3.1. Cervigram Dataset. *e cervical cancer screening
dataset was provided by the Department of Gynecology,
Affiliated Hospital of Hebei University (as show in Table 1).
*e dataset consisted of colposcopy images of different
grades of precancerous lesions (normal, CIN1, and CIN2/3),
cervical neoplasm, and cervical cancer. *ere are 1,189
patients, totaling 6,996 images.

3.2. Dataset Making Principle. In this study, data split into
training and validation subsets using a 90% to 10% ratio.

Since the uneven distribution of the provided dataset in
each category and the number of samples is small, data
augmentation is used to add images for five categories
(normal, cervical cancer, HSIL, LSIL, and cervical neo-
plasm). Data augmentation is used to improve the overall
structural security of the trained model. *ere are two ways
to enhance the data: one is to get new images; another
method is to augment the data, i.e., to create more available
data using already available data such as flips, translations, or
rotations to make the neural network more generalizable.
*ree data augmentation methods used in this paper are as
follows:

(i) Randomly cropping the image size to 224× 224
(ii) Image standardization processing
(iii) Random horizontal and vertical image flipping

4. Experiments and Performance Analysis

4.1. Experimental Conditions. To ensure the iterative effi-
ciency and improve the model stability and generalization
ability, in this study, the network parameters are optimized
by stochastic gradient descent (SGD) algorithm using nes-
terov gradient descent with weight decay of 1e – 4, learning
momentum of 0.9, and several single batch treatments of 32.
Each model is trained for 100 cycles, and the initial learning
rate is set to 0.05. *e CNN algorithm is implemented in
PyTorch coding framework. Model training and evaluation
are conducted using Intel (R) Xeon (R) Gold 6240 CPU@
2.60GHz and NVIDIA RTX 2080ti GPU. All programs run
on Ubuntu 18.04.5 LTS.

4.2. Evaluation Metrics. To evaluate the algorithm effec-
tively, this paper uses training loss and model accuracy for
measurement in the training phase. In the test phase, this
paper introduces the confusion matrix as the basic evalu-
ation criterion, and the confusion matrix contains four parts
of information:

(i) TN, which is the true negative, can represent the
number of negative samples predicted as negative

(ii) TP, which is the true positive, can represent the
number of positive samples predicted as positive

(iii) FN, which is the false negative, can represent the
number of positive samples predicted as negative

(iv) FP, which is the false positive, can represent the
number of negative samples predicted as positive

Since the proposed model is a multiclassification model,
accuracy, precision, recall, and F1-scores can be calculated
according to the above four indicators. *e area-under-the-
curve (AUC) score and the confusion matrix are also used to
evaluate the performance of the model. *e classification
accuracy, precision, recall, and F1 score can be obtained by
(4)–(7).

Accuracy(%) �
TP + TN

TP + FP + TN + FN
× 100, (4)

Precision(%) �
TP

TP + FP
× 100, (5)

Recall(%) �
TP

TP + FN
× 100, (6)

F1 − score(%) �
2 × Recall × Precision
Recall + Precision

× 100. (7)

*e receiver operating characteristic (ROC) curve is a
comprehensive index that shows continuous changes in
sensitivity and specificity. According to the position of the
curve, the whole graph is divided into two parts. *e area
under the curve is called AUC. *e higher the AUC score,
the better the performance of the classification model. *e
confusion matrix reflects the confusion caused by the
classifiers when dealing with multiclassification problems.
*e value on the diagonal represents the number of correctly
classified images of each class.*e darker the diagonal color,
the better performance of the classifiers. In this paper, the
prediction results are normalized.

4.3. Contrasting Experimental Results and Analysis. To
evaluate the effectiveness of the classification network
proposed in this paper, we compare the proposed neural
network model with VGG-16 [21], ResNet34, GoogleNet
[22], DenseNet121, MobileNet, ShuffleNet, ShuffleNet_SK,
and ShuffleNet_SE. To compare the results more confi-
dently, all models use the dataset in this paper and are
trained in the same training environment. As shown in
Table 2, this study compares the accuracy, precision, recall,

Table 1: Cervix types in cervigram dataset.

Type Label Number of images
Normal 0 2352
LSIL 1 780
HSIL 2 2532
Cervical cancer 3 408
Cervical neoplasm 4 924
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and F1-scores of the above networks. *e mean and stan-
dard deviation were used to summarize the results. *e
results show that the classification ability of the improved
network is significantly improved.

Figures 7 and 8 show that the model size of the improved
network is greatly reduced compared with the traditional
classification network and also greatly reduced compared
with the lightweight network MobileNet. In terms of clas-
sification accuracy, the improved network maintains high
recognition accuracy, and the classification performance is

improved compared with the unimproved ShuffleNet and
significantly improved compared with MobileNet. Our
model can improve computational efficiency significantly
while achieving good performance in terms of classification
accuracy, thus representing a reasonable balance between
model size and performance.

As shown in Figure 9, the improved network may not be
as effective as the network before improvement in one index,
the prediction accuracy of the network model with SENet
added is better.
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Figure 7: Accuracy comparison.
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Table 2: Network comparison experimental data.

Method Accuracy (%) Precision (%) Recall (%) F1-score (%)
VGG-16 50.72± 2.12 45.63± 3.25 45.67± 1.02 45.07± 1.59
ResNet34 83.95± 4.02 84.88± 3.18 81.28± 4.51 82.81± 3.44
GoogleNet 53.72± 5.42 47.43± 4.77 51.73± 4.82 45.09± 5.03
DenseNet121 86.39± 1.45 87.00± 1.91 83.95± 2.62 85.17± 1.98
MobileNet 54.30± 1.57 65.12± 2.18 44.60± 1.69 43.45± 2.03
ShuffleNet 80.37± 2.06 79.90± 1.89 79.42± 1.58 79.60± 1.95
ShuffleNet_SK 81.23± 2.03 81.65± 1.64 79.88± 2.25 80.67± 1.83
ShuffleNet_SE 81.38± 1.95 81.76± 2.32 80.74± 1.87 81.16± 2.26
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5. Conclusions

*is paper has proposed a dataset of colposcopic images using
colposcopic images of cervical precancerous lesions and cer-
vical cancer patients of different grades. We have also used six
neural network models for comparative experiments and
proposed two new deep learning-based lightweight network
models ShuffleNet_SK and ShuffleNet_SE for multi-
classification of cervical diseases. *e classification perfor-
mance is improved by adding attention on the inverted residual
network. As a result, ShuffleNet_SK and ShuffleNet_SE
achieved classification accuracy of 81.23% and 81.38%, re-
spectively. *e proposed networks are suitable for the mobile
terminal with limited computing resources, which can classify
cervical diseases more accurately and faster, so as to meet the
demand of real-time, and has more practical clinical appli-
cation value. Additionally, they can also be applied to prescreen
for other types of cancer, reducing missed detection by
physicians.

Data Availability
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