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Abstract
The endogenous mu-opioid receptor (MOR) system modulates a multitude of social and reward-related functions, and exogenous 
opiates also influence sex drive in humans and animals. Sex drive shows substantial variation across humans, and it is possible 
that individual differences in MOR availability underlie interindividual of variation in human sex drive. We measured healthy 
male subjects’ (n = 52) brain’s MOR availability with positron emission tomography (PET) using an agonist radioligand,  [11C]
carfentanil, that has high affinity for MORs. Sex drive was measured using self-reports of engaging in sexual behaviour (sex with 
partner and masturbating). Bayesian hierarchical regression analysis revealed that sex drive was positively associated with MOR 
availability in cortical and subcortical areas, notably in caudate nucleus, hippocampus, and cingulate cortices. These results 
were replicated in full-volume GLM analysis. These widespread effects are in line with high spatial autocorrelation in MOR 
expression in human brain. Complementary voxel-based morphometry analysis (n = 108) of anatomical MR images provided 
limited evidence for positive association between sex drive and cortical density in the midcingulate cortex. We conclude that 
endogenous MOR tone is associated with individual differences in sex drive in human males.
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Introduction

Endogenous opioids modulate behaviors ranging from 
analgesia to socioemotional processes and pleasure 
(Nummenmaa & Tuominen, 2018). Although dopamine 
is the principal neurotransmitter responsible for reward 
processing, murine models show that opioids also produce 
reward independent of dopamine (Hnasko et  al., 2005). 
In animals, μ-opioid receptor (MOR) stimulation of the 

nucleus accumbens increases both incentive motivation and 
consummatory rewards (Berridge et al., 2010; DiFeliceantonio 
& Berridge, 2016; Peciña & Berridge, 2013), and injection of 
μ-opioid agonists into the mesolimbic reward system induces 
reward (Bozarth & Wise, 1981). Molecular imaging studies 
in humans have further demonstrated central opioidergic 
activation following administration of various rewards ranging 
from feeding to social contact and exercise-induced “runner’s 
high” (Boecker et al., 2008; Burghardt et al., 2015; Manninen 
et al., 2017). Sex is one of the most potent rewards for humans, 
given that copulation may lead to reproduction. Human sex 
drive varies both between sexes as well as between and within 
individuals (Baumeister et al., 2001; Twenge et al., 2017), 
and multiple lines of evidence suggest that the MOR system 
could be involved in maintenance of human sex drive (Pfaus 
& Gorzalka, 1987).

Opioid receptors (OR) are widely expressed in the neuro-
circuitry that underlies sexual behavior (Le Merrer et al., 
2009). Yet, the exact role of OR agonists and antagonists 
in exciting and inhibiting sexual behaviors is complex with 
nuanced differences across species and conditions. In a 
fashion similar to that of having sex, opioid agonists may 

 * Lauri Nummenmaa 
 latanu@utu.fi

1 Turku Pet Centre and Turku University Hospital, 
FI-20520 Turku, Finland

2 Department of Psychology, University of Turku, Turku, 
Finland

3 Department of Psychology, Åbo Akademi University, Turku, 
Finland

4 Clinical Neurosciences, University of Turku, Turku, Finland
5 Department of Endocrinology, Turku University Hospital, 

FI-20521 Turku, Finland

/ Published online: 22 November 2021

Cognitive, Affective, & Behavioral Neuroscience (2022) 22:281–290

http://orcid.org/0000-0001-9044-7604
http://orcid.org/0000-0002-5596-0485
http://crossmark.crossref.org/dialog/?doi=10.3758/s13415-021-00960-3&domain=pdf


 

1 3

increase pleasure and liking, and the euphoric sensations fol-
lowing opioid administration in drug addicts has sometimes 
been called “pharmacogenic orgasm” (Chessick, 1960). 
Microstimulation studies in mice have found that injecting 
opioids in the medial preoptic area induces consummatory 
sexual behaviours (Hughes et al., 1990), but striatal admin-
istration yields less consistent outcomes (see review in Le 
Merrer et al., 2009). In rats, copulation also induces release 
of endogenous opioid peptides in the medial preoptic area 
of hypothalamus, as indexed by MOR internalization (Bal-
four et al., 2004; Coolen et al., 2004). Finally, some stud-
ies have shown that also opioid antagonists may promote 
sexual behaviour, as administration of naltrexone shortens 
ejaculation latency while increasing copulation rate in rats 
(Rodríguez-Manzo & Fernández-Guasti, 1995).

Opioids are among the most common illicit drugs in 
the United States (Grant et al., 2016), and clinical studies 
suggest that long-term opioid use has inhibitory effects on 
sexual behaviour at multiple levels. In humans, administra-
tion of opioid agonist heroin results in acute suppression 
of lutenizing hormone, and subsequently lowered plasma 
testosterone levels (Mirin et al., 1980). Both short- and long-
term use of μ-opioid receptor agonists also decrease sexual 
desire and pleasure (Birke et al., 2019). One meta-analysis 
found that more than 50% of patients on methadone mainte-
nance treatment suffer from sexual dysfunction (SD), most 
commonly due to decreased desire and libido (Yee et al., 
2014). Comparable rates of SDs are reported for heroin 
and buprenorphine maintenance, and prevalence of SDs 
exceeds 90% for those on naltrexone maintenance (Grover 
et al., 2014). Additionally, meta-analyses have confirmed 
that opioid use is associated with erectile dysfunction (Zhao 
et al., 2017). Finally, there is some evidence on the role of 
long-term opioid therapy on chronic pain being associated 
with SD (Chou et al., 2015). This may relate to the fact that 
the opioid system is activated during sexual inhibition (Arg-
iolas & Melis, 2013), thus blunting the ability of excitatory 
systems to be activated (Pfaus, 2009).

The current study

Taken together, there is ample evidence suggesting that ORs 
may modulate sexual behaviour in humans and nonhuman 
animals, but the effects between human and animal studies 
are not always converging. Moreover, direct in vivo evidence 
regarding the role of OR in human sexual motivation is lack-
ing. Here, using a cross-sectional design, we hypothesized 
that human sex drive is associated with endogenous MOR 
availability. We used positron emission tomography (PET) 
with radioligand  [11C]carfentanil that has high affinity for 
MOR and measured MOR availability in 52 healthy males. 
Because there is evidence on the relationship between sex 

drive and cerebral grey matter density in certain patient 
populations (Bloemers et al., 2014; Schmidt et al., 2017) 
but limited data on healthy subjects (Takeuchi et al., 2015), 
we also addressed this issue as a secondary research ques-
tion. To that end, we tested whether sex drive links with 
regionally specific alterations in cortical density using the 
voxel-based morphometry (VBM) approach of T1-weighted 
magnetic resonance imaging scans in a partially overlap-
ping sample of 108 males. Sex drive was determined by 
self-reports. We show that frequency of engaging in sexual 
behavior (both masturbating and partnered sex) is positively 
associated with MOR availability in striatum, cingulum, and 
hippocampus, while there was only limited evidence for sex-
drive dependent alterations in cortical density.

Materials and Methods

Subjects

The study protocol was approved by the Turku Univer-
sity Hospital Clinical Research Services Board, and the 
study was conducted in accordance with the declaration of 
Helsinki. The PET sample consisted of 52 healthy males 
(Table 1) studied with high-affinity agonist radioligand  [11C]
carfentanil (Frost et al., 1985), retrieved from the AIVO 
(http:// aivo. utu. fi) database of in vivo PET images hosted at 
the Turku PET Centre. A subset of the data were included 
in our previous study on MORs and subclinical depression 
and anxiety (Nummenmaa et al., 2020). Brain imaging data 
were acquired using a GE Healthcare Discovery 690 PET/
CT scanner. All PET subjects and an additional sample of 56 
male subjects (a total of 108 males) were scanned with Phil-
lips Ingenuity TF PET/MR 3-T whole-body scanner using 
T1-weighted sequence (TR 9.8 ms, TE 4.6 ms, f lip angle 
7°, 250 mm FOV, 256 × 256 reconstruction matrix). All sub-
jects gave written, informed consent and completed the ques-
tionnaires as a part of the corresponding experimental proto-
cols. Sex drive was measured with self-reported frequency 
of engaging in masturbation, sexual fantasies, and various 
sexual behaviours (kissing and caressing, oral, anal, and 
vaginal sex) with partner (Derogatis, 1978). Each item was 
rated on a nine-step scale ranging from “not at all” to “more 

Table 1  Subject characteristics (means and standard deviations)

PET and MRI sample
(n = 52)

MRI only sample
(n = 56)

Age (yr) 25.7 (0.71) 30.1 (8.66)
Sex drive 4.01 (1.13) 3.60 (1.05)
BDI-II score 3.73 (4.37) 8.11 (7.22)
STAI-X score 33.57 (7.86) 41.34 (9.66)
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than once per day” and averaged to yield total sex drive 
score. To rule out potential effects of anxiety and depression 
on MOR and GM density (Nummenmaa et al., 2020), all 
subjects also completed the Beck Depression Inventory II 
(BDI-II; (Beck et al., 1988) and the trait anxiety scale from 
the state-trait anxiety inventory (STAI-X; Spielberger et al., 
1970). Power analysis on prior molecular imaging studies on 
personality and  [11C]carfentanil binding (Karjalainen et al., 
2016; Nummenmaa et al., 2015; Nummenmaa et al., 2020; 
Tuominen et al., 2012) suggested that an expected effect size 
of r = 0.45, a sample size of 45 subjects would be sufficient 
for detecting the predicted effects at power of 0.95.

PET and MR image preprocessing

PET images were preprocessed using the automated PET 
data processing pipeline Magia (Kantonen et al., 2020; Kar-
jalainen et al., 2020) (https:// github. com/ tkkar jal/ magia) 
running on MATLAB (The MathWorks, Inc., Natick, MA). 
Radiotracer binding was quantified using nondisplaceable 
binding potential (BPND), which is the ratio of specific bind-
ing to nondisplaceable binding in the tissue (Innis et al., 
2007). This outcome measure is not confounded by differ-
ences in peripheral distribution or radiotracer metabolism. 
BPND is traditionally interpreted by target molecule den-
sity (Bmax), even though  [11C]carfentanil is also sensitive 
to endogenous neurotransmitter activation (Zubieta et al., 
2001). Accordingly, the BPND for the tracer should be inter-
preted as density of the receptors unoccupied by endogenous 
ligands (i.e., receptor availability). Binding potential was 
calculated by applying basis function method (Gunn et al., 
1997) for each voxel using the simplified reference tissue 
model (Lammertsma & Hume, 1996), with occipital cortex 
serving as the reference region (Frost et al., 1989). The para-
metric images were spatially normalized to MNI-space via 
segmentation and normalization of T1-weighted anatomical 
images, and finally smoothed with an 8-mm FWHM Gauss-
ian kernel.

To assess the link between cerebral density and sex 
drive, we performed a complementary voxel-based morpho-
metry (VBM) analysis of the T1 images. VBM was done 
with SPM12 (https:// www. fil. ion. ucl. ac. uk/ spm/ softw are/ 
spm12/), which enables automated spatial normalization, 
tissue classification, and radiofrequency bias correction to 
be combined with the segmentation step. Cutoff of spatial 
normalization was 25 mm, and medium affine regularization 
0.01 was used. Following normalization and segmentation 
into GM and WM, a modulation step was incorporated to 
take into account volume changes caused by spatial nor-
malization and to correct for the differences in total brain 
size across subjects. Finally, the segmented, normalized, and 
modulated GM images were smoothed using 8-mm FWHM 
Gaussian kernel.

Data analysis

Regional effects were estimated using Bayesian hierarchi-
cal modeling using the R package BRMS (Bürkner, 2017), 
which uses the efficient Markov chain Monte Carlo sampling 
tools of RStan (https:// mc- stan. org/ users/ inter faces/ rstan). 
Atlas-based ROIs were generated in the MOR-rich regions in 
the brain (amygdala, hippocampus, ventral striatum, dorsal 
caudate, thalamus, insula, orbitofrontal cortex (OFC), ante-
rior cingulate cortex (ACC), middle cingulate cortex (MCC), 
and posterior cingulate cortex (PCC) using AAL (Tzourio-
Mazoyer et al., 2002) and Anatomy (Eickhoff et al., 2005) 
toolboxes. Mean regional  [11C]carfentanil BPND and GM 
densities from VBM were extracted for each region. The 
ROI data were analysed with R statistical software (https:// 
cran.r- proje ct. org).

We used weakly informative priors: For intercepts, we 
used the default of BRMS (i.e., Student’s t-distribution with 
scale 3 and 10 degrees of freedom). For predictors, a Gauss-
ian distribution with standard deviation of 1 was used to 
provide weak regularization. The BRMS default prior half 
Student’s t-distribution with 3 degrees of freedom was used 
for standard deviations of group-level effects; BRMS auto-
matically selects the scale parameter to improve convergence 
and sampling efficiency. The BRMS default prior LKJ(1) 
was used for correlations of group-level random effects. The 
ROI-level models were estimated using five chains, each of 
which had 1,000 warmup samples and 3,000 post-warmup 
samples, thus totaling 15,000 post-warmup samples. The 
sampling parameters were slightly modified to facilitate 
convergence (adapt_delta = 0.99 max_treedepth = 20). The 
sampling produced no divergent iterations and the Rhats were 
all 1.0, suggesting that the chains converged successfully. 
Before model estimation, predictors were standardized to 
have zero mean and unit variance, thus making the regres-
sion coefficients comparable across the predictors. Binding 
potentials were log-transformed because posterior predictive 
checking (Gabry et al., 2019; Gelman et al., 2013) indicated 
that log-transformation significantly improves model fit. The 
log-transformation essentially switches the model from addi-
tive to multiplicative; it also helps in model fitting because 
the assumption of linear additivity works poorly when the 
dependent variable is restricted to positive values (Gelman 
& Hill, 2006).

Complementary full-volume statistical analysis was 
performed using SPM12. The normalized and smoothed 
BPND images and GM segments were entered into separate 
general linear models, where they were predicted with sex 
drive. Age was entered into the models as nuisance covari-
ate because aging influences both MOR availability and sex 
drive (Kantonen et al., 2020; Twenge et al., 2017). Statisti-
cal threshold was set at p < 0.05, FDR-corrected at cluster 
level.     
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Results

Sex drive was independent of the depression and anxiety 
scorers as well as age (rs < 0.2, ps > 0.05); depression and 
anxiety scores however correlated significantly as expected 
(r = 0.62, p < 0.001). Mean distribution of MORs is shown 
in Fig. 1. Regional Bayesian analysis revealed that sex drive 
was in general positively associated with MOR availability 
(Fig. 2). The 95% posterior intervals did not overlap zero in 
middle and posterior cingulate cortices, hippocampus, and 
dorsal caudate nucleus. The 80% posterior intervals did not 
overlap with zero in any of the tested regions. For VBM, 
there was only limited evidence for sex drive dependent dif-
ferences in cortical density. All of the 80% posterior inter-
vals overlapped with zero and only in MCC was there was a 
weak association between sex drive-dependent GM density 
increase.

The complementary full-volume SPM analysis yielded 
corroborating findings (Fig.  3). Significant positive 

associations between sex drive and MOR availability 
were found in amygdala, hippocampus, cingulate cortex, 
and ventral and dorsal striatum. Additional effects were 
observed in thalamus, medial, and lateral frontal cortex, as 
well as primary somatosensory and motor cortices. Again, 
the effects were consistently positive and when a stricter 
statistical threshold (p < 0.01, FDR corrected) was used, 
activations remained significant in the cingulate and left 
lateral frontal cortices.

Finally, we performed full-volume GLM analysis for the 
GM segments. We found that sex drive was associated with 
increased cortical density in the anterior, middle, and pos-
terior cingulate cortex, supplementary motor cortex, and 
primary somatosensory cortex (SI). No effects were found 
in extrastriatal areas (Fig. 4). The effects in the cingulate 
cortex overlapped with those where sex drive dependent 
MOR upregulation was observed (Fig. 3). When stricter sta-
tistical thresholding (p < 0.01, FDR corrected) was applied, 
no effects remained significant.

Fig. 1  Mean distribution of  [11C]carfentanil  BPND in the sample

Fig. 2  Posterior distributions of the regression coefficients for sex 
drive dependent variability in MOR availability (a) and cortical den-
sity (b). Thick lines show 80% and thin lines 95% posterior intervals. 

ACC = anterior cingulate cortex, Dcaud = Dorsal caudate nucleus, 
MCC = middle cingulate cortex, PFC = orbitofrontal cortex, PCC = 
posterior cingulate cortex, VST = ventral striatum
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Discussion

Our main finding was that male sex drive is positively 
associated with central opioidergic tone. The more fre-
quently the subjects reported in engaging in sexual activi-
ties, the more μ-opioid receptors they had in the striatum, 
thalamus, amygdala, and middle cingulate cortex. In the 
cingulate cortex, this effect was paralleled by elevated 
grey matter tissue density. Our study thus demonstrates 
that individual differences in male sex drive are associ-
ated with availability of μ-opioid receptors, suggesting 
that central opioidergic mechanisms modulate not only 
affiliative bonding but also sexual behavior in the human 
male.

Cerebral MOR availability is associated with sex 
drive

Sex drive had a consistent positive association with MOR 
availability in hippocampus, dorsal caudate, and midcin-
gulate cortices. Although the 95% posterior intervals over-
lapped with zero in the other tested ROIs, the effects were 
systematically positive. Complementary whole-brain analy-
sis supported sex drive-dependent MOR expression in amyg-
dala, thalamus, frontal cortex, as well as primary somatosen-
sory and motor cortices. Although the regional Bayesian and 
whole-brain analysis identified common regions with sex 
drive-dependent MOR expression, the whole-brain analysis 
also identified additional regions whose MOR expression 

Fig. 3  Brain regions where MOR availability was associated with sex 
drive. The data were thresholded at p < 0.05, FDR corrected. Scatter-
plots show least-squares-regression lines with 95% confidence inter-

vals in representative regions. PCC = posterior cingulate cortex, VST 
= ventral striatum

Fig. 4  Brain regions where cortical density was associated with sex drive. The data are thresholded at p < 0.05, FDR corrected
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was linked with sex drive. This is not unexpected, given that 
the whole-brain analysis approach often is more sensitive 
than the regional analysis, which averages data across many 
voxels, of which not all necessarily show similar associa-
tion profiles with the predictor variables. Yet importantly, 
the overall pattern of results obtained with both techniques 
suggests a positive association between sex drive and MOR 
availability, with focus in the limbic and striatal regions. 
This general widespread effect likely reflects the high auto-
correlation in MOR expression as quantified with PET 
(Tuominen et al., 2014).

The regions in which MOR availability was associated 
with sex drive are known to modulate variety of soci-
oemotional functions (Amodio & Frith, 2006; Saarimäki 
et al., 2016), and they also contribute to modulating sexual 
behavior. While ventral and dorsal striatum modulate sex-
ual motivation (Calabrò et al., 2019), the cingulate cortex 
is particularly associated with modulation of sexual drive, 
and meta-analyses show that anterior and middle cingulate 
cortices are consistently activated during sexual stimula-
tion in humans (see review in Stoléru et al., 2012). Moreo-
ver, direct stimulation of the ACC elicits masturbation-like 
genital touching in the macaque (Robinson & Mishkin, 
1968). Finally, the whole-brain analysis revealed sex drive 
dependent variability of MOR in the somatosensory corti-
ces. Touching is a powerful way of triggering sexual arousal 
(Steers, 2000), and individual differences in the brevity of 
the sexually receptive fields of the body (“erogenous zones”) 
is associated with sexual drive and sexual interest (Num-
menmaa et al., 2016). It is thus possible that such individual 
differences in the capacity for tactile sexual stimulation are 
dependent on MOR availability. Although hypothalamus is 
known to be involved in sexual functioning and that direct 
opioidergic stimulation of medial preoptic area induces con-
summatory sexual behaviour in rats (Hughes et al., 1990), 
we did not observe sex drive dependent effects in hypo-
thalamic MOR availability. It is thus possible that at least 
in human males, hypothalamus is more involved in acute 
sexual motivation consummatory responses, rather than in 
sustained sexual drive.

To our knowledge, this is the first in vivo imaging study of 
sexual function and MOR in humans, and the present find-
ings suggest that variation in focal MOR availability may 
provide an important neurochemical mechanism explaining 
individual differences in sex drive. Our results emphasise 
that this is a quantitative relationship with receptor density. 
It is nevertheless remarkable that MOR availability was 
positively rather than negatively associated with sex drive. 
This is a surprising observation given the general inhibitory 
role of OR agonist administration on sexual behaviour (see 
review in Le Merrer et al., 2009; Pfaus, 2009). However, 
comparable pattern (i.e., downregulation by agonists and 
positive trait correlation with MOR availability) has also 

been observed in the closely related phenomena of romantic 
and affiliative bonding, which also are modulated by MORs. 
Pharmacological studies in nonhuman primates have found 
that opioid antagonists promote social bonding behaviour in 
monkeys (Fabre-Nys et al., 1982; Graves et al., 2002; Kev-
erne et al., 1989); conversely opioid agonists alleviate sepa-
ration distress in puppies (Panksepp et al., 1978). Exogenous 
opioid use also is associated with lower affiliative social 
motivation in humans (Ross et al., 2005; Schindler et al., 
2009). Paralleling the pharmacological and clinical studies, 
molecular imaging experiments in humans have consistently 
shown that MOR expression is positively associated with 
secure romantic and affiliative bonding (Manninen et al., 
2017; Nummenmaa et al., 2015; Turtonen et al., 2021). 
Similarly, as sex drive linked individual differences in MOR 
availability, these effects are observed in the amygdala and 
cingulate cortices. This may reflect either opioidergic contri-
bution to domain-general sociosexual motivation or simply 
OR-dependent sensitivity to rewards in general (Sander & 
Nummenmaa, 2021).

The more OR individuals have in the striatum, the higher 
pain threshold they have (Hagelberg et al., 2012). In similar 
vein, it is possible that individuals with high MOR availabil-
ity are more tolerant to the MOR agonist driven sexual inhi-
bition. Alternatively, it is possible that the individuals with 
high MOR levels simply derive more hedonic enjoyment 
from sexual behaviours, potentiating sex drive. Accord-
ingly, PET imaging studies suggest that MOR availability 
is associated with behavioural activation system tone, which 
in turn is linked with appetitive motivation in general (Kar-
jalainen et al., 2016). Both alcohol and cocaine dependence 
are associated with increased rather than decreased MOR 
availability, possibly due to reduction in endogenous opi-
oids or upregulation of MORs (Gorelick et al., 2005; Weerts 
et al., 2011). It is thus possible that frequent sexual contact 
might similarly upregulated MOR or downregulate endog-
enous opioids, thus explaining the present findings.

A single baseline PET scan is not sufficient for determin-
ing the exact proportions for causal factors to the altered 
receptor availability which could potentially be affected by 
changes in receptor density, affinity, or endogenous ligand 
binding (Henriksen & Willoch, 2008). Although  [11C]car-
fentanil binding is sensitive to endogenous neurotransmitter 
release triggered by nonpharmacological stimulation includ-
ing social contact, physical exercise, and feeding (Hiura 
et al., 2017; Manninen et al., 2017; Saanijoki et al., 2017; 
Tuulari et al., 2017) these effects are typically in the rank of 
5-10% changes in the BPND. Because  [11C]carfentanil scans 
have high test-retest reproducibility (VAR < 6%, ICC > 0.93) 
(Hirvonen et al., 2009), the BPND from baseline  [11C]carfen-
tanil scans reflect predominantly tonic MOR availabilities 
indicating that despite transient modulations in BPND caused 
by endogenous ligands (see also Kantonen et al., 2020). In 
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future it would be important to use the PET challenge para-
digm to measure the effects of acute sexual behaviors on 
MOR availability.

Sex drive and cortical density

The complementary voxel-based morphometric analysis 
revealed that grey matter density across the cingulate, pri-
mary somatosensory, and supplementary motor cortex was 
negatively associated with sex drive. Although 80% poste-
rior intervals overlapped with zero in the primary regional 
analysis, the overall effect of sex drive on GM density was 
consistently positive. The sex drive-dependent effects in 
MOR availability and GM density overlapped in the cingu-
late cortex. This possibly reflects the fact that GM density 
estimates derived from VBM are influenced by the voxel-
wise neuroreceptor densities (Manninen et al., 2021); thus, 
the present VBM and PET data in the cingulum provide cor-
roborative evidence on the sex drive-dependent alterations 
in MOR expression. There is currently limited evidence on 
the cortical density changes associated with sexual function 
in healthy subjects. In one study, healthy subjects’ sexual 
permissiveness (i.e., how acceptable people consider sexual 
activities in general) is negatively associated with grey mat-
ter density in amygdala in a mixed-sex sample (Takeuchi 
et al., 2015). Patient studies have found increased amygdala 
density in mixed-sex sample of subjects with compulsive 
sexual behavior (Schmidt et al., 2017), whereas women with 
hypoactive sexual desire disorder, compared with controls, 
had reduced GM volume in the insula, anterior temporo-
occipital, and frontal cortex, as well as ACC (Bloemers 
et al., 2014).

Limitations

Sex drive was based on self-reported sexual activity. These 
may not be perfectly accurate, as subjects may not remem-
ber their sexual activity accurately or may be reluctant to 
disclose their sexual behaviour. However, prior studies con-
firm that this kind of self-reports yield reasonably reliable 
results—for example, partners’ retrospective reports of mar-
ital intercourse frequency are consistent (Clark & Wallin, 
1964; Upchurch et al., 1991). Also, it is possible that sex 
drive is decoupled from the actual sexual behaviour (e.g., 
not engaging in sexual behaviour despite high desire to do 
so, or having sex without experiencing desire), yet on aver-
age the frequency of sexual behaviours is concordant with 
the sexual drive (Santtila et al., 2007). However, because 
the data were cross-sectional, we cannot conclude whether 
the links between MOR availability/cerebral integrity and 
sex drive reflect: i) genetically determined individual dif-
ferences in MOR availability/cortical structure (Weerts 

et al., 2013) contributing to increased motivation for sexual 
behaviour; or ii) upregulation of MOR neurotransmission 
and cortical density resulting from frequent sexual behav-
iour. Finally, our study only included young male subjects; 
thus, the results do not necessarily generalize to older men 
or women due to differences in the sex-specific reproductive 
biology, as well as sex differences in sex drive and erotic 
plasticity (Baumeister, 2000; Baumeister et al., 2001). Sex 
drive levels were in general moderately high in the sample, 
and we did not observe associations between sex drive and 
age, likely due to the limited age range of the subjects. Our 
data cannot thus reveal whether aging and accompanying 
altered MOR signaling (Kantonen et al., 2020) underlies 
lowered sexual drive towards the old age (Lindau et al., 
2007).

Conclusions

Central opioidergic system modulates sex drive in human 
males. Striatal and limbic OR availability is positively 
associated with sex drive, and with the exception of 
midcingulate cortices, this effect was not related to cer-
ebral grey matter density. Although opioid system acutely 
suppresses sex drive (Pfaus, 2009), our study suggests that 
central opioidergic mechanisms modulate not only affili-
ative bonding but also long-term sexual behaviour in the 
human male.
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