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OBJECTIVE—Bcl-xL is an antiapoptotic member of the Bcl-2
family of proteins and a potent regulator of cell death. We
investigated the importance of Bcl-xL for �-cells by deleting the
Bcl-x gene specifically in �-cells and analyzing their survival in
vivo and in culture.

RESEARCH DESIGN AND METHODS—Islets with �-cells
lacking the Bcl-x gene were assessed in vivo by histology and by
treatment of mice with low-dose streptozotocin (STZ). Islets
were isolated by collagenase digestion and treated in culture
with the apoptosis inducers staurosporine, thapsigargin, �-irra-
diation, proinflammatory cytokines, or Fas ligand. Cell death was
assessed by flow cytometric analysis of subgenomic DNA.

RESULTS—Bcl-xL–deficient �-cells developed but were abnor-
mally sensitive to apoptosis induced in vivo by low-dose STZ.
Although a small proportion of �-cells still expressed Bcl-xL,
these did not have a survival advantage over their Bcl-xL–
deficient neighbors. Islets appeared normal after collagenase
isolation and whole-islet culture. They were, however, abnor-
mally sensitive in culture to a number of different apoptotic
stimuli including cytotoxic drugs, proinflammatory cytokines,
and Fas ligand.

CONCLUSIONS—Bcl-xL expression in �-cells is dispensible
during islet development in the mouse. Bcl-xL is, however, an
important regulator of �-cell death under conditions of synchro-
nous stress. Bcl-xL expression at physiological levels may par-
tially protect �-cells from apoptotic stimuli, including apoptosis
because of mediators implicated in type 1 diabetes and death or
degeneration of transplanted islets. Diabetes 58:2316–2323,
2009

I
slet �-cells undergo apoptosis during developmental
remodeling and under conditions of stress, such as
islet isolation or exposure to proinflammatory cyto-
kines or cytotoxic drugs. Members of the Bcl-2 gene

family encode proteins that function either to inhibit or
promote apoptotic cell death. Of the antiapoptotic mem-
bers (Bcl-xL, Bcl-2, Bcl-w, Mcl-1, and A1), readily detect-
able levels of Bcl-xL and Mcl-1 have been found in mouse
and/or human primary �-cells by immunohistology or in
situ hybridization (1,2). In contrast, Bcl-2 expression in

primary �-cells appears less abundant (1,3,4), consistent
with the finding that Bcl-2 and Mcl-1 are differentially
expressed in epithelial structures (5). There is preliminary
but unvalidated evidence for in situ expression of Bcl-w in
human �-cells (Human Protein Atlas: Q92843), and in situ
expression of A1 in these cells has yet to be examined.
Overexpression of Bcl-xL (1,6) or Bcl-2 (7) in mouse
�-cells did not have notable consequences for islet devel-
opment nor did it cause neoplastic transformation of
�-cells. In contrast, Mcl-1 overexpression resulted in islet
hyperplasia (8). Studies of mice with global deletion of
Bcl-2 (9,10), Bcl-w (11), or A1-a (12) did not report any
obvious islet abnormalities, and because mice lacking
Bcl-x or Mcl-1 die during embryogenesis (13,14) their roles
in �-cell development and apoptosis need to be assessed in
gene-targeted mice in which these genes can be deleted in
a cell type–specific manner using suitable Cre transgenes.

The Bcl-x (Bcl2l1) gene encodes several isoforms (Bcl-
xL, Bcl-xS, Bcl-x�, Bcl-x�, and Bcl-x�TM), with Bcl-xL being
predominant. Deletion of the Bcl-x gene in mice (that
prevents expression of all isoforms of Bcl-x) results in
embryonic lethality at around E14.5, involving massive
death of neurons and immature erythroid cells (13). Cre-
mediated deletion of Bcl-x has revealed its importance in
specific cell types and developmental stages, including late
stages of erythropoiesis (15), primordial germ cells (16),
mammary epithelial cells during the first stage of involu-
tion (17), dendritic cells (18), immature thymocytes (19),
and hepatocytes (20).

Given its importance in many cell types, we wanted to
determine the role of Bcl-xL in islet �-cells during devel-
opment and in culture after exposure to a variety of
stress-inducing stimuli. This information would help de-
fine which apoptotic stress responses, relevant to type 1
diabetes, are controlled by Bcl-xL and whether manipulat-
ing Bcl-xL levels would prove useful for improving islet
isolation, transplantation, or resistance to the toxic effects
of immunosuppressive drugs. We found that islets lacking
Bcl-xL appeared normal embryonically and in adults.
However, Bcl-xL was needed to help protect islets from
low-dose streptozotocin (STZ) treatment in vivo. In vitro
assays showed that whole islets with Bcl-xL deficient �
cells were stable in culture but were abnormally sensitive
to a number of stressors, including cytotoxic drugs and
death receptor ligation.

RESEARCH DESIGN AND METHODS

Animals were housed under specific pathogen-free conditions at the Univer-
sity of Melbourne and at St. Vincent’s Institute (Melbourne, Australia).
Experiments involving animals were conducted according to our institutional
animal ethics committee guidelines. Conditional Bcl-x knockout mice (Bcl-

xfl/fl) (B6;129S6-Bcl2l1tm1.1Mam), a gift from Dr. Lothar Hennighausen (National
Institutes of Health) (16), were backcrossed to C57BL/6 (BL/6) for six
generations and then bred to an N10 B6.RIP-Cre transgenic line (B6.Cg-
Tg(Ins2-cre)25Mgn/J) (21) to generate mice that lacked Bcl-xL expression in
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�-cells (RIP2-Cre.Bcl-xfl/fl) and littermate controls (Bcl-xfl/fl). B6bm1.RIP-Bcl-2
transgenic mice (B6-H2bm1-Tg(RIP2-BclII)407Wehi/J) expressing human Bcl-2
in �-cells under control of the rat insulin promoter have been described
previously (7). PCR screening of mice is detailed in the online supplemental data
available at http://diabetes.diabetesjournals.org/content/early/2009/06/23/db08-
1602/suppl/DC1.
Detection of Bcl-xfl/fl recombination in sorted �-cells and other tissues.

Pancreatic �-cells and non–�-cells were sorted from trypsin-dissociated islets
based on auto-fluorescent profile (�-cells have high FL1 auto-fluorescence)
(22) using a FACSAria (Becton Dickinson, San Jose, CA). DNA was extracted
from sorted islet cells and from homogenized tissues using proteinase K.
Bcl-xfl/fl gene deletion was detected by PCR as detailed in the online
supplemental data.
Western blotting. Isolated islets or sorted �- and non–�-cells were solubi-
lized in lysis buffer (0.25M Tris–HCl, pH 6.8, 10% SDS, 20% glycerol, 5%
2-mercaptoethanol, 0.02% bromophenol blue, and 0.5 mg/ml Pefabloc). Wild-
type mouse embryonic fibroblasts (MEFs) and MEFs from Bcl-x knockout
mice were used as controls. After SDS-PAGE electrophoresis (12% gel) and
transfer to immobilon P membrane (Billerica, MA), the blot was probed for
Bcl-xL, followed by stripping and reprobing for �-actin. Antibody details are
given in the online supplemental data.
Intracellular insulin staining, immunohistology, and double-label im-

munofluorescence. Details of the antibodies used and their dilutions are
given in the online supplemental data. Intracellular insulin staining and flow
cytometric analysis was performed as described (23).

Immunohistology was done on Bouin’s solution fixed, paraffin-embedded
pancreas. Sections (5 microns) were cut at four levels separated by 100
microns, so each section sampled different islets. For scoring of islet sizes, the
numbers of insulin-expressing cells per islet were counted and the islet
assigned to a size group ranging from �5 insulin-positive cells per islet to
�150 insulin-positive cells per islet. Each size group was then expressed as a
percentage of total islets.

Double-label immunofluorescence was done on acetone-fixed, frozen sec-
tions of pancreata. Sections were double stained for insulin and Cre recom-
binase. To score Cre expressing insulin cells, at least 1,000 insulin-positive
cells were counted per mouse pancreas. Counting was done using a BIORAD
MRC 1024 confocal microscope using BIORAD software.
TUNEL analysis of islets from STZ-treated mice. RIP-Cre.Bcl-xfl/fl mice
and Bcl-xfl/fl littermate controls were injected intraperitoneally with 35 �g/ml
of STZ (Sigma-Aldrich, St. Louis, MO) in citrate buffer daily for 4 days.
Sections of 4% (wt/vol) paraformaldehyde fixed, paraffin-embedded pancreas
were then subject to TUNEL using biotinylated dUTP that was detected with
a horseradish peroxidase–streptavidin conjugate. Staining with anti-insulin
antibody was detected with an alkaline phosphatase–conjugated secondary
antibody. Antibody details are given in the online supplemental data. At least
45 islets (excluding islets with �20 cells) were scored, per mouse, for
TUNEL-positive cells. Data were plotted as the average number of TUNEL-
positive cells per islet section.
Cell death assays. Islets were isolated from 3 to 4 aged-matched male and
female mice and pooled. Following overnight culture, 100 islets of uniform
size range were handpicked into 3.5-cm untreated Petri dishes containing 1.1
ml of supplemented CMRL medium, and death agents were added. Islets plus
medium containing detached cells were washed in PBS and dissociated at
37°C in Accutase (Chemicon, Millipore, Temecula, CA) for 5 min. After
washing in PBS, islet cells were resuspended in 300 �l of a hypertonic buffer
containing 50 �g/ml propidium iodide, 0.1% wt/vol tri-sodium citrate, and 0.1%
vol/vol Triton-X 100 before being analyzed by flow cytometry for the numbers
of cells with a �2C DNA content (apoptotic cells), as previously described
(24). Cells were analyzed on a FACSCalibur using Cell Quest software (Becton
Dickinson, San Jose, CA) in the FL3 channel.

Apoptosis-inducing reagents used were recombinant murine interferon �
(IFN�) (Genentech, South San Francisco, CA), recombinant human interleu-
kin-1� (IL-1�) (R&D Systems, Minneapolis, MN), Mega Fas ligand (FasL)
(APO-O10; Apoxis/Topotarget, Lausanne, Switzerland), staurosporine (Sts;
Sigma-Aldrich) dissolved at 10 mmol/l in DMSO and stored under nitrogen gas
at �70°C, thapsigargin (Thap; Calbiochem, EMD Biosciences, San Diego, CA)
dissolved at 1.5 mmol/l in 100% ethanol and stored at �20°C and NG-methyl-
L-arginine acetate salt (NMMA) (Sigma-Aldrich) dissolved at 200 mmol/l in
medium and stored at �20°C.
Quantitative RT-PCR analysis of expression of antiapoptotic Bcl-2

family members. Islets from Bcl-xfl/fl and RIP-Cre.Bcl-xfl/fl mice were freshly
isolated and snap frozen on dry ice. RNA was prepared using the RNeasy Kit
(Qiagen, Valencia, CA). First-strand cDNA was prepared from 0.5 to 1.5 �g
RNA using the Taqman RT system (Roche, Mannheim, Germany). Real-time
PCR was performed using the ABI Prism 7900 (Applied Biosystems) and the
QuantiTect SYBR Green PCR Kit (Qiagen) in 15-ml reaction volumes. Bcl-x,
Bcl-2, Bcl-w, Mcl-1, and A1 were assayed by quantitative RT-PCR. Data

analyses were performed with the �CT method using �-actin as an internal
control. Primer sequences are provided in online supplemental data.
Statistical analysis. Data are represented as means � SD. Results were
analyzed using a two-tailed Student’s t test. A P value of �0.05 was considered
significant.

RESULTS

Generation of mice lacking Bcl-xL in �-cells. Mice
carrying a floxed Bcl-x gene (16) were crossed with
B6.RIP2-Cre transgenic mice (21,25), and their offspring
intercrossed to obtain RIP-Cre.Bcl-xfl/fl mice and Cre-
negative littermates (Bcl-xfl/fl). The RIP2 promoter has
been shown to direct expression of transgenes to �-cells
as early as embryonic day 10 (26). Bcl-xfl/fl and RIP-
Cre.Bcl-xfl/fl offspring were similar in appearance, num-
bers, weight, and blood glucose levels (see online
supplemental data, Fig. S1A–C).

Deletion of the Bcl-x locus was verified by PCR on
fluorescence-activated cell sorter (FACS)-sorted �-cells
(	90% pure) using primers that gave rise to a 	150-bp
product when the Bcl-x gene was deleted (Fig. 1A, lane 2).
Bcl-x gene deletion was not seen in non–�-islet cells (Fig.
1, lane 3). Thymus or tail DNA from Bcl-xfl/fl mice that
expressed the Cre recombinase in thymocytes under the
lck promoter was used as a positive and negative control,
respectively (Fig. 1, lanes 4 and 5). A survey of tissues
from RIP-Cre.Bcl-xfl/fl mice showed deletion of Bcl-x in
whole pancreas, as expected (Fig. 1, lane 7), and unex-
pectedly in salivary gland (Fig. 1, lane 9). The RIP-Cre
transgene can show ectopic expression, for example, in
the hypothalamus (25) and as our data indicate, apparently
also in the salivary gland.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

≈150bp

A

B 1 2 3 4 5 6 7 8

Actin

Bcl-xL
36Kda

36Kda

FIG. 1. A: PCR screening of tissues from RIP-Cre.Bcl-xfl/fl mice. Primers
flanking the upstream and downstream loxP sites in the Bcl-x locus
were used to identify the deleted Bcl-x allele (150-bp product) in
Bcl-xfl/fl mice that expressed the Cre recombinase in �-cells (RIP
promoter) or thymocytes (Lck promoter). Lane 1, marker; lane 2,
RIP-Cre.Bcl-xfl/fl sorted �-cells; lane 3, RIP-Cre.Bcl-xfl/fl sorted non–�-
cells; lane 4, Lck-Cre.Bcl-xfl/fl thymus; lane 5, Lck-Cre.Bcl-xfl/fl tail;
lane 6, water; lane 7, RIP-Cre.Bcl-xfl/fl pancreas; lane 8, thymus; lane 9,
salivary gland; lane 10, liver; lane 11, lung; lane 12, kidney; lane 13,
heart; lane 14, ovary; lane 15, tail. Nonspecific bands in all lanes
lacking a recombination product are due to oligonucleotide concatam-
ers. B: Knockdown of Bcl-xL protein in �-cells from RIP-Cre.Bcl-xfl/fl

mice. Sorted �-cells or whole islets from Bcl-xfl/fl and RIP-Cre.Bcl-xfl/fl

mice aged 8–12 weeks were analyzed by Western blotting for Bcl-xL
expression and for �-actin that served as a loading control. Lane 1,
sorted RIP-Cre.Bcl-xfl/fl �-cells; lane 2, sorted Bcl-xfl/fl �-cells; lane 3,
RIP-Cre.Bcl-xfl/fl whole islets; lane 4, Bcl-xfl/fl whole islets; lane 5,
wild-type MEFs; lane 6, Bcl-x knockout MEFs; lane 7, sorted RIP-
Cre.Bcl-xfl/fl non–�-cells; and lane 8, sorted Bcl-xfl/fl non–�-cells.
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Western blotting of FACS-sorted �-cells (	90% pure)
from RIP-Cre.Bcl-xfl/fl mice showed a substantial reduction
of Bcl-xL protein when compared with �-cells from Bcl-
xfl/fl mice (Fig. 1B, lanes 1 and 2). Knockdown of Bcl-xL
protein was less obvious in whole islets from RIP-Cre.Bcl-
xfl/fl mice when compared with Bcl-xfl/fl islets (Fig. 1, lanes
3 and 4) because whole islets contain a number of cell
populations of which only 	75% comprise �-cells. Probing
of lysates from wild-type and Bcl-x–deficient MEFs was
used as a control for the anti–Bcl-xL antibody (Fig. 1, lanes
5 and 6). FACS-sorted non–�-cells showed no reduction
in Bcl-xL levels in RIP-Cre.Bcl-xfl/fl islets (Fig. 1, lanes 7
and 8).

The RIP-Cre transgene that we used directs expression
of Cre to 	85% of islet �-cells (http://jaxmice.jax.org/
strain/003573.html), partially explaining the presence of
some Bcl-xL protein in the RIP-Cre.Bcl-xfl/fl sorted (	90%
pure) �-cell population. It was necessary to determine the
efficiency of Bcl-x gene deletion in the �-cell population of
our mice. Staining for Bcl-xL in normal islets by immuno-
histology or intracellular flow cytometry proved intrac-
table. However, because Cre is a highly efficient
recombinase requiring only a few molecules to mediate
gene deletion (27), the presence of Cre should equate to
deletion of Bcl-x. Pancreas sections from RIP-Cre, Bcl-xfl/fl,
and RIP-Cre.Bcl-xfl/fl mice were examined for Cre expres-
sion using immunofluorescence microscopy (Fig. 2A).
Bcl-xfl/fl �-cells showed no background staining with the
anti-Cre antibody. Cre expression in RIP-Cre and RIP-
Cre.Bcl-xfl/fl �-cells was comparable with 	70% of adult
�-cell nuclei expressing Cre at levels detectable by immu-
nofluorescence (Fig. 2A, inset). There was variability in
the intensity of Cre staining among �-cells, and the 	70%
value will be an underestimate given that immunohistol-
ogy would not detect low numbers of Cre molecules that
may still be sufficient to mediate Bcl-xfl/fl gene deletion.
Cre was also detected in neonatal and embryonic �-cells
from these animals. Therefore, �-cells can develop and
survive in the absence of Bcl-xL expression.
Normal histology of islets with Bcl-xL–deficient
�-cells. Staining for the islet cell hormones insulin, gluca-
gon, and somatostatin revealed normal islet architecture
in RIP-Cre.Bcl-xfl/fl mice (Fig. 2B). We analyzed islets from
recently weaned (31 days), adult (100 days), and aged mice
(300 days) for the range of islet sizes. Both groups showed
the same islet size range at these timepoints (Fig. 2C). The
absolute numbers of islets counted in four histology
sections were also comparable (Fig. 2D).
Bcl-xL–deficient �-cells are abnormally sensitive to
STZ in vivo. Mice with Bcl-xL–deficient �-cells were
treated with multiple low doses of STZ to induce apoptosis
in the �-cells (28). TUNEL staining of pancreas sections by
immunohistology showed that islets with �-cells deficient
in Bcl-xL were more susceptible to this treatment than
islets from control littermates (Fig. 2E). Thus, under
conditions of stress, �-cells require Bcl-xL to maintain
survival in vivo.
Effects of collagenase isolation on islets with Bcl-xL–
deficient �-cells. After collagenase isolation, the islet
yields from B6.RIP-Cre, Bcl-xfl/fl, and RIP-Cre.Bcl-xfl/fl lit-
termates were counted and no major differences found
(Fig. 3A). In addition, islets from all strains appeared
microscopically similar postisolation and also after 6 days
in culture (online supplemental Fig. S2A). The proportion
of �-cells in the islets was quantified by intracellular
insulin staining and flow cytometric analysis. All groups

contained similar proportions of insulin-producing cells
(Fig. 3B and online supplemental Fig. S2B). These results
show that Bcl-xL is not essential for maintaining survival
of �-cells during whole-islet extraction and culture.
Effects of stress stimuli on Bcl-xL–deficient �-cells in
vitro. We next tested the importance of Bcl-xL expression
in cultured �-cells under conditions of stress, using whole-
islet assays. We compared islets containing Bcl-xL–
deficient �-cells with those containing wild-type �-cells or
�-cells overexpressing Bcl-2. We expected that Bcl-2
would act as a functional homolog of Bcl-xL (as it does in
hemopoietic cells) and allow us to compare �-cells that
lacked Bcl-xL with those that overexpressed its functional
homolog. We chose stress stimuli, relevant to type 1
diabetes, known to activate different members of the
BH3-only, proapoptotic Bcl-2 protein subfamily (29).
These included cytotoxic drugs (Sts) and proinflammatory
cytokines (IL-1� plus IFN�) as well as agents that induce
endoplasmic reticulum stress (Thap), DNA damage (�-
irradiation [RAD]), or death receptor signaling (FasL) (29).
Loss of Bcl-xL does not accelerate Sts-induced killing
of �-cells in vitro. The broad-spectrum, protein kinase
inhibitor, Sts, is a classic apoptosis initiator in most cell
types. Islets were cultured for 40 h in Sts, trypsinized, and
then assayed for apoptosis by flow cytometric analysis of
DNA fragmentation, as described by Nicoletti (24). Bcl-xL
deficiency did not enhance islet cell death in response to
Sts (Fig. 4A). We ensured that the vehicle control (DMSO)
was not itself toxic to Bcl-xL–deficient �-cells (Fig. 4B).
Overexpression of Bcl-2 protected �-cells from Sts as
previously shown (7) (Fig. 4C). Although supra-physiolog-
ical levels of Bcl-2 protected against Sts-induced killing,
the presence or absence of physiological levels of Bcl-xL
made no difference in the response of islet cells to this
cytotoxic agent.
Bcl-xL–deficient �-cells are abnormally sensitive to
treatment with the endoplasmic reticulum stress–
inducing drug Thap or �-RAD in vitro. Thap inhibits
endoplasmic reticulum–specific Ca2
 ATPase function
causing apoptosis because of endoplasmic reticulum
stress. Whole islets with �-cells lacking Bcl-xL were more
susceptible to Thap-induced death than control islets (Fig.
4D), supporting the idea that Bcl-xL is a critical player in
controlling endoplasmic reticulum stress–induced apopto-
sis. The vehicle control (1.3% ethanol) was not toxic to
Bcl-xL–deficient �-cells (Fig. 4E). Overexpression of Bcl-2
resulted in a reduced but not significant protection of
�-cells from Thap (Fig. 4F). This result differs from that of
Zhou et al. (6) who found that Bcl-xL overexpression in
�-cells gave good protection of mouse islets from Thap-
induced apoptosis after 48 h in culture. Islets were also
treated with �-RAD to induce DNA damage. Although only
a low amount of islet cell death was found in control
samples 6 days after RAD, this increased when Bcl-xL was
lacking from �-cells (Fig. 4G).

In summary, Bcl-xL is needed to help protect �-cells
from agents that induce endoplasmic reticulum stress or
DNA damage. In addition, it appeared that in �-cells Bcl-2
and Bcl-xL may not be functionally equivalent.
Bcl-xL–deficient �-cells are abnormally sensitive to
cytokine-induced apoptosis in whole-islet culture.
Whole rodent primary islets undergo cell death from
upregulation of inducible nitric oxide synthase (iNOS)
when exposed to high levels of inflammatory cytokines,
such as IL-1 plus IFN�. NO may inhibit mitochondrial
electron transfer by inactivating aconitase (see 30) result-

�-CELLS DEFICIENT IN Bcl-xL
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ing in cell death. NO may also induce endoplasmic retic-
ulum stress in mouse or rat �-cells (31,32) and deficiency
in the endoplasmic reticulum stress–induced protein,
C/EBP homologous protein, can partially protect (31).
Antiapoptotic Bcl-2 family members, such as Bcl-xL or

Bcl-2, are likely to be critical for protecting islets against
both of these apoptotic pathways. We found that islets
with �-cells lacking Bcl-xL were more susceptible to IL-1�
plus IFN� (Fig. 5A). This death could be blocked in both
control and Bcl-xL–deficient islets by coaddition of the
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iNOS inhibitor NMMA (Fig. 5B), indicating that the in-
creased �-cell death in Bcl-xL–deficient islets was medi-
ated primarily by NO. Overexpression of Bcl-2 in �-cells
did not protect the cytokine-treated islets from death as
previously shown (see 33 and Fig. 5C).
Bcl-xL–deficient �-cells are abnormally sensitive to
FasL-induced apoptosis in vitro. Islet cells do not
normally express Fas, but low concentrations of IL-1 plus
IFN� (that do not kill) can induce Fas on �-cells (34). After
culture with low levels of IL-1� plus IFN� to induce Fas
and with FasL to induce cell killing, death was substan-
tially increased in islets with �-cells that lacked Bcl-xL
(Fig. 5D). Our lab has previously shown that �-cell death
through the death receptor pathway is mediated by the
BH3-only protein Bid and can be inhibited by Bcl-2 over-
expression (35). In summary, Bcl-xL is critical for protec-
tion of �-cells from death through the death receptor
pathway.
Quantitative RT-PCR analysis of Bcl-xL–deficient
�-cells did not reveal upregulation of other Bcl-2
family antiapoptotic members. Given there was so little
impact of Bcl-xL deficiency on the development of islets
and their survival in the absence of cytotoxic stressors, we
tested whether other antiapoptotic members of the Bcl-2
family were transcriptionally upregulated in the absence
of Bcl-xL. Whole islets from Bcl-xfl/fl and RIP-Cre.Bcl-xfl/fl

mice were assayed for levels of mRNA for antiapoptotic
Bcl-2 family members (Bcl-xL, Bcl-2, Bcl-w, Mcl-1, and
A1). As expected, there was a notable reduction in Bcl-xL

mRNA in islets with Bcl-xL–deficient �-cells (Fig. 6)
consistent with the Western analysis of whole islets (Fig.
1B). Unexpectedly, a twofold reduction in Bcl-2 mRNA
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was also noted, but the biological implications of this
reduction are at present unclear. There was no significant
upregulation of the other gene transcripts in islets with
Bcl-xL–deficient �-cells.

DISCUSSION

To address the role of Bcl-xL in pancreatic islets we used
the Cre-loxP system to delete the Bcl-x gene specifically in
�-cells. Loss of Bcl-xL in �-cells was not lethal. The
numbers of islets were normal and the proportion of
�-cells that made up the islets was similar to controls.
Although a proportion of �-cells (	20%) do not express
Cre (25) and would remain Bcl-x sufficient, these cells did
not have a survival advantage over their Bcl-x–deficient
neighbors, again indicating that Bcl-xL is not essential for
�-cell growth and survival. Although other prosurvival
members were expressed but not transcriptionally upregu-
lated in response to Bcl-xL loss in �-cells, it appears likely
that normal levels could substitute for Bcl-xL deficiency,
with Mcl-1 being a plausible candidate given its ready
detection in islets at the protein level (2,5). Interestingly,
Hager et al. (36) recently showed that Bcl-x gene defi-
ciency did not affect growth of �-cell tumors transformed
by the SV40 T antigen and that other antiapoptotic mem-
bers were not upregulated at the transcriptional level in
these tumors.

Our findings in �-cells differ from those for hematopoi-
etic cells (13,15), neurons (13,37,38), and germ cells (16) in
which Bcl-xL was found to play an indispensable role in
cell survival during development. Our results are more like
those observed for another epithelial tissue, the mammary
gland (17), where Bcl-xL depletion did not affect normal
organ development or function during mammopoiesis
(17), although it appears to be the most highly expressed
antiapoptotic Bcl-2 family member in this tissue (17,39).
Bcl-xL was important, however, during the first phase of
mammary gland involution after weaning, a stage charac-
terized by considerable cell stress and extensive tissue
remodeling that is associated with apoptosis (17,40). In
line with this, Bcl-xL–deficient �-cells were abnormally
susceptible to death when subject to a synchronous cell
stressor, low-dose STZ.

In vitro, Bcl-xL helped to protect �-cells against a
variety of cell death inducers that activate different pro-
apoptotic, BH3-only proteins (29). Cell death elicited by
Thap-induced endoplasmic reticulum stress, �-RAD, IL-1�
plus IFN�, or Fas death receptor signaling was enhanced
in the absence of Bcl-xL, confirming it as a critical
guardian of cell survival in these settings. Unexpectedly,
Bcl-xL deficiency did not enhance cell death by the classic
apoptosis initiator, Sts. Sts may cause a massive induction
of several BH3-only proteins that rapidly overwhelms all
antiapoptotic Bcl-2 family members in �-cells so that
presence or absence of physiological levels of Bcl-xL
makes little difference.

We also studied the effects of Bcl-2 overexpression in
�-cells under the premise that Bcl-2 was a functional
homologue of Bcl-xL. Bcl-2 overexpression reduced cell
deaths induced by Sts and Fas ligand (see 35) but not by
Thap or cytokines (IL-1� plus IFN�). It is possible that in
response to Thap or cytokines �-cells activate additional
apoptotic death pathways not controlled by Bcl-2 family
members, for example serine protease-mediated mecha-
nisms that damage the mitochondrial membrane (41).
Alternatively, Zhou et al. (6) found that overexpression of

Bcl-xL itself did afford �-cells significant protection from
Thap-induced killing. It may be that Bcl-2 and Bcl-xL can
play different roles in the �-cell’s response to different
types of cytotoxic insults. An explanation for this comes
from studies on mouse embryonic fibroblasts (42) which
reported that although Bcl-2 and Bcl-xL can act as func-
tional homologues under some situations, they in fact
control the Bax/Bak molecules differently. Bcl-xL is able to
restrain both Bak and Bax, whereas Bcl-2 can only restrain
Bax and may therefore be a less effective inhibitor of
apoptosis under certain conditions.

In conclusion, we have demonstrated that although
Bcl-xL is not needed for �-cells to develop, it plays an
important role in promoting islet cell survival when islets
are exposed to a range of death stimuli. Our data indicate
that Bcl-xL is critical for helping to protect �-cells against
most, but not all, specific death signals. In addition, Bcl-xL
and Bcl-2 are not functionally equivalent in �-cells.
Whether Bcl-xL also functions to maintain islet integrity
under unfavorable culture conditions will be important to
examine for the prospects of clinical applications of islet
manipulation in culture followed by subsequent transplan-
tation into patients.
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