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Abstract: Halal is an Arabic term used to describe any components allowed to be used in any products
by Muslim communities. Halal food and halal pharmaceuticals are any food and pharmaceuticals
which are safe and allowed to be consumed according to Islamic law (Shariah). Currently, in line
with halal awareness, some Muslim countries such as Indonesia, Malaysia, and Middle East regions
have developed some standards and regulations on halal products and halal certification. Among
non-halal components, the presence of pig derivatives (lard, pork, and porcine gelatin) along with
other non-halal meats (rat meat, wild boar meat, and dog meat) is typically found in food and
pharmaceutical products. This review updates the recent application of molecular spectroscopy,
including ultraviolet-visible, infrared, Raman, and nuclear magnetic resonance (NMR) spectroscopies,
in combination with chemometrics of multivariate analysis, for analysis of non-halal components in
food and pharmaceutical products. The combination of molecular spectroscopic-based techniques
and chemometrics offers fast and reliable methods for screening the presence of non-halal components
of pig derivatives and non-halal meats in food and pharmaceutical products.
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1. Introduction

Halal is an Arabic term used to describe any products which are allowed to be consumed
by Muslims, according to Shariah (Islamic law) [1]. Muslim societies are not allowed to consume
any products containing non-halal components, except under extremely exceptional conditions [2].
Halal products, including food and pharmaceuticals, are defined as any products including food,
cosmetics, and pharmaceuticals that contain ingredients permitted under Shariah law that fulfill
the following conditions: (a) do not contain any parts or products of animals that are non-halal by
Shariah law or any parts or products of animals which are not slaughtered according to Shariah law;
(b) do not contain najs (animals such as amphibians, pig and its derivatives, blood and carrions);
(c) safe for human use, e.g., non-poisonous, non-intoxicating or non-hazardous to health according
to prescribed dosage; (d) not prepared, processed, or manufactured using equipment contaminated
with najs; (e) do not contain any human parts or its derivatives that are not permitted by Shariah
law; (f) during its preparation, processing, handling, packaging, storage and distribution, the halal
pharmaceutical products are physically separated from any other pharmaceutical products that do not
meet the requirements stated in items (a), (b), (c), (d), and (e) above, or any other items that have been
decreed as non-halal and najs by Shariah law [3].
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According to the Holy Quran and some hadith of Prophet Muhammad, non-halal components
include carrion or dead animals, blood (flowing or congealed), pig derivatives, animals that are not
slaughtered in compliance with Shariah law, animals that are killed accidentally or on purpose through
means such as strangling or beating, all types of intoxicants such as alcohol and drugs, carnivorous
animals with fangs such as lions, dogs, wolves, or tigers, predator birds such as falcons, eagles, owls,
or vultures, and certain land animals such as snakes [4]. Among these, pig derivatives (components
derived from a pig or Sus scrofa domesticus) such as pork fat (lard), pork, and porcine gelatines are the
most reported components present in food, cosmetics, and pharmaceutical products [5,6]. In addition,
some derivatives coming from non-halal animals such as dog meat [7], wild boar meat [8], and rat
meat [9] have been reported to be presented in meat-based food products like meatball and sausages;
therefore, the identification and confirmation of non-halal components is very urgent.

Halal certification is needed to ensure that products are safe and allowed to be consumed. The halal
process is not only related to religious issues but also to fulfill consumer rights. Issues related to
halal certification include healthy, organic, environmentally friendly, cruelty-free animal welfare,
ethical, and fair-trade aspects, which have made the halal concept popular and highly accepted by
all the societies. Halal certification has attracted non-Muslim consumers who come from different
ethnic backgrounds, such as Jews (kosher consumers), Americans, Europeans, and Asians, as well
as natural and organic consumers, to consume halal products. In addition, in line with awareness
among Muslim societies, the demand for halal products has increased tremendously [10]. To meet the
demand, a number of public and private organizations have delved into providing halal certification to
products [11]. The main purpose of this review is to discuss some molecular spectroscopic techniques
for the analysis of non-halal components in food and pharmaceutical products.

2. Molecular Spectroscopy

Molecular spectroscopy is the study involving the interaction between electromagnetic radiation
in certain frequencies or wavelengths, with analytes at the molecular level. The use of “molecular”
terms is intended to the contrary with atomic spectroscopy, in which analytes are analyzed at the atomic
level. The different levels of compositions of certain compounds present in non-halal components
such as protein, fatty acids, triglycerides, and lipids are main factors which cause the different
profile of molecular spectra at specific wavelengths (in ultraviolet-visible spectra and near-infrared
spectra) or wavenumbers (mid-infrared). The functional groups responsible for molecular spectra
absorption determine the differentiation between halal and non-halal components present in food and
pharmaceutical products [12].

Over the past few decades, molecular spectroscopy has gained interest in the analysis of food
and pharmaceutical products, including in stages of production and quality control. This method
offers several advantages, such as ease in sample preparation, low cost, less time analysis, less
solvent (green analytical chemistry), and the ability to monitor several compounds [13]. Molecular
spectroscopy has been widely used for the analysis of any products as well as for halal analysis
because this method is capable of detecting non-halal substances in samples. The most common
types of molecular spectroscopy used for halal analysis are ultraviolet–visible (UV–vis) spectroscopy,
vibrational spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy.

Ultraviolet–visible spectroscopy can be used to monitor the interactions of targeted compounds
with ultraviolet light (200–400 nm) and visible light (400–800 nm). The molecule in the sample is
subjected to UV–vis light; then the electron undergoes excitation from a ground state to an excited state.
This excitation is generally known as electronic transitions [14]. UV–vis spectroscopy can be used for
both qualitative and quantitative analysis, and the molecules must have chromophores to be analyzed
with the UV–vis method. For quantitative analysis, the absorbance based on Lambert-Beer law is used
to quantify the non-halal substances. This method has advantages to be applied for non-halal analysis
in food and pharmaceutical products because it allows the detection and quantification of the target of
analytes/molecules in the presence of the matrix [15].
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Vibrational spectroscopy (infrared and Raman) is a non-destructive analytical technique offering
fast analysis and cost-effective that makes it an excellent analytical method for food and pharmaceutical
product analysis. Infrared spectroscopy either in the mid-infrared region (4000–400 cm−1) and
near-infrared region (14000–4000 cm−1) is the most commonly used method for food analysis [16].
The principle of infrared spectroscopy is based on the interactions between samples with electromagnetic
radiation at the infrared region, resulting in vibrational transitions of molecules in the sample.
FTIR spectroscopy using the mid-infrared region (4000–400 cm−1) has wide application in the
analysis of food and pharmaceutical products [17]. FTIR using the ATR (attenuated total reflectance)
spectroscopy technique for obtaining spectra of samples offers multiple advantages such as easy
in-sample preparation; for instance, the samples can be directly placed on an ATR crystal for
measurement, with less time analysis and requiring less solvent. Mid-infrared FTIR spectroscopy
enables a wider range analysis of compounds; moreover, it showcases the fingerprint region in
the wavenumber region of 1500–900 cm−1 that strongly supports the differentiation of non-halal
compounds [18]. However, the spectra generated from FTIR measurements are complex, which makes
it difficult to be analyzed; therefore, the use of powerful statistical analysis such as chemometrics of
multivariate analysis is unavoidable to overcome this problem [19].

Raman spectroscopy is an analytical method based on inelastic scattering, resulting in shifted
energy frequencies. Raman scattering relies upon inelastic scattering, whereas elastic scattering
results in Rayleigh scattering. In Raman scattering, the molecule is subjected to photons, resulting in
excitation from a ground state to the excited state, then undergoing a wavelength shift [20]. Raman
and FTIR spectroscopy are complementary methods in some analyses [21]. There are several types of
Raman spectroscopy, such as Fourier transform Raman spectroscopy, dispersive Raman spectroscopy,
spatially offset Raman spectroscopy, and surface-enhanced Raman spectroscopy [22]. Moreover, Raman
spectroscopy offers an imaging technique for fingerprinting and profiling of compounds in samples,
which is very useful for sample differentiation. Therefore, the application of Raman spectroscopy for
ensuring halal products is obviously promising [23].

Nuclear magnetic resonance (NMR) spectroscopy is a sophisticated molecular spectroscopy that
has been extensively used for food and pharmaceutical product analysis, and it has been considered
as a potential analytical method for the detection of non-halal substances [24]. The principle of
NMR spectroscopy is based on the interaction of molecules with certain radio waves, resulting in
the changes of spin direction. NMR provides fingerprint spectra, which makes it useful for sample
differentiation, including the detection of non-halal substances [25]. The instruments mostly used
for the analysis operate at a frequency of 500–600 MHz. NMR is a versatile molecular spectroscopy
technique because of its advantages, such as easy in-sample preparation, less solvent requirements
(considered as green analytical chemistry), less time required for analysis, highly reproducible and
highly robust, as well as it can be used for the analysis of heterogeneous samples simultaneously [26].
The most common technique used is proton-NMR (1H-NMR) spectroscopy because it offers simplicity
in sample preparation, fast analysis, and it can be used even for crude extract analysis [27]. Other NMR
techniques that play important roles in halal authentication analysis are carbon NMR (13C-NMR) and
two-dimensional NMR (2D) techniques such as J-resolved, HSQC (heteronuclear single quantum
correlation), and HMBC (heteronuclear multiple bonds correlation). Research in food analysis has
been conducted using NMR spectroscopy, including the authentication of edible oils such as virgin
olive oil, cod liver oil, and sesame oil [28]. The benefit of using NMR spectroscopy is the capability
for metabolomics analysis, either by metabolite fingerprinting or metabolite profiling, which is very
useful for metabolite differentiation in adulteration practices, including the detection of non-halal
substance [24]. A combination with chemometrics of multivariate analysis, which can manage the
huge dataset generated from NMR measurements, makes it an ideal method for metabolomics analysis
of food and pharmaceutical products, as well as halal authentication [29].
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3. Chemometrics

According to the International Chemometrics Society (ICS), the definition of chemometrics is
described as “the science of relating chemical measurements made on a chemical system to the property
of interest (such as concentration) through the application of mathematical or statistical methods” [30].
Chemometrics is widely applied in chemical data of molecular spectra and chromatograms. Data from
the results of the multi-component analysis, as analyzed using molecular spectroscopy, is complex;
therefore, it is very difficult to evaluate. To solve this problem, chemometrics with mathematical and
statistical techniques is applied to retrieve more information from the chemical data [31].

In line with the advanced development of statistical software, computer technology, and analytical
approaches, the chemometric method has emerged as the leading tool among analytical chemists in order
to obtain faster analysis results and shorter product development times [19]. In halal authentication,
various chemometric techniques are commonly applied and provide an alternative way to analyze the
complex chemical data, namely, chemometric classification analysis and multivariate calibration [6].
Some data pre-processing, such as mean centering, Savitzy–Golay-based derivatization, standard
normal variate, baseline corrections, signal correction and compression, spectra normalizations,
and multiplicative correction, are also used to treat molecular spectra before being subject to
chemometrics analysis.

3.1. Chemometrics of Classification

Chemometrics of classification is the most common chemometric technique applied in halal
authentication. It is typically performed using three approaches, namely, exploratory data analysis,
unsupervised pattern recognition, and supervised pattern recognition techniques, as shown in Figure 1.
Exploratory data analysis and unsupervised pattern recognition are commonly used to simplify groups
of samples by reducing the amount of original data and gaining better knowledge of chemical data sets.
Therefore, the main challenge of these is to remove the redundancy and noise while retaining the
meaningful information contained in the original data [32].
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Figure 1. The chemometrics techniques widely applied for the classification of objects. SA = similarity
analysis, HCA = hierarchical clustering analysis, PCA = principal component analysis, SIMCA = soft
independent modeling of class analogy, LDA = linear discriminant analysis, PLS-DA = partial least
squares discriminant analysis, KNN = k-nearest neighbors, and ANN = artificial neural networks [30].

Exploration data analysis is a variable (data) reduction technique defining a number of latent
variables used to make linear combinations of the original variables, which include principal component



Int. J. Mol. Sci. 2020, 21, 5155 5 of 18

analysis (PCA), projection pursuit (PP), and factor analysis (FA). Among these, PCA is the most widely
applied compared to PP and FA in the reduction of data dimensionality. Unsupervised pattern
recognition differs from exploratory data analysis because the aim of the methods is to detect
similarities, whereas exploratory data analysis has no particular preconception as to whether or how
many groups will be found. The unsupervised pattern recognition techniques include clustering
analysis (CA) and similarity analysis (SA). CA, comprising fuzzy clustering (FC) and hierarchical
clustering analysis (HCA), can be used for preliminary evaluation of the information contents in the
data matrices. The objects (samples) are classified based on similarities of the used variables [33].

Supervised pattern recognition (SPR) tries to make the class membership of the objects (samples)
to a certain group known as training sets. It enables classifying new unknown samples (test samples) in
one of the known classes on the basis of variables used. SPR can be differentiated into class-modeling
methods and discrimination methods. The most-used class modeling method is known as SIMCA
or soft independent modeling of class analogy. SIMCA considers the objects (samples) that fit the
class model for a category as part of the class model and classify as non-members those that do not.
Discrimination models include linear discriminant analysis (LDA), partial least squares discriminant
analysis (PLS-DA), artificial neural networks (ANNs), and k-nearest neighbors (KNNs). All these
discrimination models are used to build models using certain variables (for example, FTIR spectra)
based on all the categories concerned in the discrimination, whereas disjoint class-modeling methods
create a separate model for each category. The most-reported discrimination methods are discriminant
analysis, either using linear or partial least square algorithms. LDA is based on linear discriminant
functions (LDFs) in which the variance ratio of between-class membership of objects is minimized,
while the variance ratio of within-class objects is maximized. PLS-DA is intended to find the variables
and directions in the multivariate space capable of discriminating the established classes in the
calibration set [34]. ANNs consider finding the most appropriate grouping of training, learning,
and transfer function for classifying the data sets (variables) with a growing number of features and
classified sets. In a simple form, ANNs try to imitate the operation of neurons in the brain [35].
KNN is one of the most popular classification techniques based on distance algorithms. KNN is based
on measuring the distances between the training samples and test samples to determine the final
classification output [36].

3.2. Chemometrics of Quantification

For quantitative analysis of non-halal components in food and pharmaceutical products,
the chemometrics of multivariate calibration is usually used to predict the levels of analyte(s)
of interest in unknown samples [37]. Calibration is the mathematical relationship between the
predictor (independent variables) and response variables (dependent variables). The chemometrics of
multivariate calibration uses several variables, such as employing the absorbance values at several
wavelengths or wavenumbers region. Multivariate calibration is commonly used to develop calibration
and validation models capable of correlating the actual values of analytes as determined by the
reference method and predicted values using several variables assessed [38].

Various multivariate calibrations have been used for quantitative analysis of non-halal components,
including stepwise multiple linear regression (SMLR), principal component regression (PCR),
and partial least square regression (PLSR) [39]. These calibrations are considered as inverse
calibration in which concentrations (in the y-axis) are modeled using absorbances at several
wavelengths/wavenumbers (x-axis) [40]. The accuracy of calibration and validation models using
multivariate calibration was evaluated by the coefficient of determination (R2) for the relationship
between two variables, while the precision of models was assessed by the root mean square error of
calibration (RMSEC) and root mean square error of prediction (RMSEP). RMSEC and RMSEP were
obtained using these equations:

RMSEC =

√∑m
i=1

(
Ŷi−Yi

)2

M− 1
(1)
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RMSEP =

√∑n
i=1

(
Ŷi−Yi

)2

N
(2)

Yi and Ŷi represent the actual and predicted value of analytes, while M and N are the numbers of data
in the calibration and validation sets [41]. Figure 2 explains the role of multivariate calibration for
quantifying non-halal components in the evaluated samples.
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Figure 2. Scheme of quantitative analysis of non-halal components in food and pharmaceutical products
assisted by multivariate calibration [42].

The main advantage of multivariate calibration is the reliability of prediction results for
unknown samples obtained. However, multivariate calibrations have the main disadvantage, namely,
the over-fitting of the model. Overfitting is the over-optimistic performance of multivariate calibrations
in calibration datasets, but the performance in validation datasets is not acceptable; as a consequence,
cross-validation of the leave-one-out technique can be used to assess this problem. In cross-validation,
one of the calibration samples is left out from multivariate calibration models used, and the remaining
calibration samples are exploited for developing a new calibration model. The removed sample is then
calculated using the newly developed PLS model. This procedure was repeated by leaving one by one of
the calibration samples. The statistical parameters used to evaluate the performance of cross-validation
is R2 (for accuracy of the model), as well as the root mean square error of cross-validation (RMSECV)
and the predicted residual error sum of squares or PRESS (for the precision of the model) [35].
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4. Application of Molecular Spectroscopy Combined with Chemometrics for Analysis of
Non-Halal Components

Molecular spectroscopy (UV–vis, infrared, Raman, and NMR) combined with chemometrics
techniques have been applied for the analysis of non-halal components, especially pig derivatives and
non-halal meats in food and pharmaceutical products.

4.1. UV–vis Spectroscopy

Ultraviolet–visible spectroscopy has been used for the differentiation of fish, porcine, and bovine
gelatines based on measurement of the degree of browning during Maillard reaction of different
types of reducing sugars. Among reducing sugars evaluated, D-(+)-xylose has the highest value of
browning value, as indicated by the highest absorbance values at 420 nm compared to other sugars.
The degrees of browning products (Maillard reaction products) combined with chemometrics of PCA
can differentiate the sources of gelatines. According to the loading plot in PC1 and PC2, D-(+)-xylose
is the most contributing variable in classification among gelatines [43]. Previously, some parameters
affecting the Maillard reaction were investigated using response surface methodology [44]. The effects
of initial pH, temperature, and heating time toward the browning intensity of melanoidin have been
evaluated. The increase of initial pH, temperature, and heating time is associated with an enhanced
browning intensity of Maillard reaction products.

Another study involved the evaluation of several factors contributing to the Maillard reaction,
resulting in the browning index measured using visible spectroscopy at 420 nm for differentiation of
gelatine sources being investigated [45]. The parameters evaluated included temperature, time, and the
presence of metal ion Cu2+. The optimal reaction was obtained using the temperature of the water bath
at 95 ◦C for 9 h with a concentration of metal ion Cu2+ of 5 m. This optimum condition influences the
differentiation of bovine gelatine compared to fish and porcine gelatine. Maillard reaction, as analyzed
using UV–vis spectroscopy, is one of the convenient protocols for authentication of halal gelatine.

4.2. Infrared Spectroscopy

Among molecular spectroscopies, Fourier transform infrared spectroscopy is the most reported
method used for the analysis of non-halal components in any products. Due to its advantages as
fingerprint analytical techniques, FTIR spectroscopy, in combination with chemometrics, is widely
applied for the rapid identification of non-halal components, including pig derivatives and several
types of non-halal meats such as wild boar meat, dog meat, and rat meat [46]. Che Man et al. [47]
have used FTIR spectroscopy combined with chemometrics of principal component analysis (PCA)
and cluster analysis (CA) for the identification and confirmation of lard and other edible fats and
oils. Lard, obtained from rendering adipose tissues of pigs, and other fats and oils were subjected
to FTIR spectra measurement using the sampling technique of attenuated total reflectance (ATR) in
normal spectra at wavenumbers (1/λ) of 6000–650 cm−1. Using PCA, lard and other contaminants
could be separated along with the first principal component (PC1) and second principal component
(PC2), accounting for variations of 44.1% and 30.2%, respectively, using absorbance values picked at
16 different wavenumbers as variables. Based on the loading plot, the variables most contributing
to the separation on PC1 and PC2 were absorbance values at 2853, 2922, and 1465 cm−1. In addition,
CA could make clustering of lard and other fats and oils, including chicken fat, cod liver oil, corn oil,
rice bran oil, soybean oil, sunflower oil, sesame oil, extra virgin olive oil, pumpkin seed, walnut oil,
palm oil, and canola oil using the same variables used in PCA analysis. Lard appeared at the separate
clusters from other fats and oils observed using a CA dendrogram.

For quantitative analysis, FTIR spectroscopy combined with chemometrics of partial least square
regression (PLSR) has been successfully used for the simultaneous analysis of lard in the quaternary
mixtures with chicken fat, mutton fat, and beef fat [48]. Figure 3 shows the FTIR normal/original
spectra of these animal fats. These FTIR spectra look similar and revealed typical characteristic
of absorption bands of triacylglycerols. The peak at 3007 cm−1 corresponds to the stretching of
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vinylic C-H. The stretching vibrations of methylene (-CH2-) and methyl (-CH3) groups can be seen at
frequencies of 2922 and 2853 cm−1, respectively. Methylene and methyl groups are also observed at
1465 and 1377 cm−1 due to their bending vibrations. The carbonyl (C=O) absorption of ester linkage is
observed at 1743 cm−1 with strong intensity. The bands at 1237, 1160, 1117, 1098, and 721 cm−1 are the
results from the overlapping of the CH2-rocking vibrations and the out-of-plane bending vibration of
cis-disubstituted olefins. However, using detailed investigation, the peak intensities of lard could be
differentiated from others, especially in peaks 1160 (a), 1117 (b), and 1098 cm−1 (c).
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Taken with permission from the PhD thesis of Abdul Rohman [49].

Several FTIR spectral regions and their combinations have been optimized for developing a PLS
calibration model intended for the quantification of lard. The selection of wavenumbers regions
was based on the highest values of R2 and the lowest values of RMSEC and RMSEP. Finally, first
derivative spectra at selected fingerprint regions of 1500–1000 cm−1 were suitable for the quantitative
analysis of lard in a quaternary mixture. The values of R2 and RMSEC obtained were 0.9997 and
0.773%, respectively.

In food products, FTIR spectroscopy combined with chemometrics of PLSR could be used for
quantitative analysis of non-halal meat of pork in beef meatballs for adulteration issues. PLSR at a
selected fingerprint wavenumber region (1200–1000 cm−1) was capable of quantifying lard, a lipid
fraction extracted from meatballs containing pork, with R2 and RMSEC values of 0.996% and 0.712%,
respectively [50]. In addition, discriminant analysis (DA) at the same wavenumbers was also successful
in discriminating between beef meatballs and pork meatballs. Pork in beef meatballs also can be
analyzed using the lipid fractions extracted from meatball broth. The chemometrics of PCA could
classify meatball broth with and without pork in the analyzed calibration samples using a variable of
absorbance values at 1200–1000 cm−1. Meanwhile, lard extracted from pork meatballs was quantified
by PLSR using absorbances at wavenumbers of 1018–1284 cm−1, providing R2 and RMSEC values of
0.9975% and 1.34% (v/v), respectively. The results indicated that FTIR spectroscopy, in combination with
PCA and PLS, is a rapid and reliable technique for detection and quantification of pork in meatballs for
halal authentication studies [51]. Table 1 compiled the application of FTIR spectroscopy combined
with multivariate analyses (chemometrics) used for the analysis of non-halal components in food and
pharmaceutical products.
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Table 1. The application of near-infrared (NIR) and mid-infrared (MIR) spectroscopy with several chemometrics techniques for analysis of non-halal components in
food and pharmaceutical products.

Non-Halal
Components Issue Infrared (NIR/MIR) Spectroscopy

Condition
Chemometrics

Techniques Results References

Lard (pork fat) Adulteration of lard
in palm oil

NIR at wavelength 950–1650 nm using
transflectance and transmission

sampling techniques

Classification using
SIMCA,

quantification using
PLS

SIMCA can classify palm oil and palm oil
adulterated with lard with model accuracy of 0.93
(transflectance) and 0.95 (transmission). NIR can

predict lard content described by an equation
relating between actual value of lard (x) and

NIR-PLS predicted value (y) as:
Y = 0.9987x + 0.02032 (transflectance)
Y = 0.9994x + 0.01024 (transmission)

[52]

Lard
Adulteration of beef
with pork through

analysis of lard

The extraction was performed using
Soxhlet apparatus at 70 ◦C for 6 h with
n-hexane. FTIR normal spectra at 1/λ
1200–1000 cm−1 using ATR technique

Classification using
PCA and

quantification with
PLS regression

FTIR spectra combined with PCA could classify
sausages with pork and beef. PLS gave an

equation of predicted value = 0.921 x (actual
value) + 4.623 R2 = 0.985 and RMSEC = 2.094%;

RMSEP = 4.77% RMSECV = 5.12%.

[53]

Lard

Analysis of lard in
crackers “rambak”
(Foods consumed
among Indonesian
people made from
various kinds of

animal skin)

The “rambak” crackers containing
pigskin and cow skin was subjected to

Soxhlet extraction using hexane.
ATR-FTIR spectra at 1/λ 1200–1000

cm−1

PLS regression

PLS regression could predict lard extracted from
“rambak” crackers with R2 (calibration) of 0.946
with RMSEC of 2.77%. For validation models, R2

of 0.997 and RMSEP of 2.77.

[54]

Lard

Analysis of lard in
“rambak” crackers
containing buffalo

skin

The “rambak” crackers was extracted
using Soxhlet procedure with hexane

as extracting solvent. ATR-normal
FTIR spectra at 1/λ 1200–1000 cm−1

Classification using
PCA and

quantification with
PLS regression

PCA could classify “rambak” crackers according
to animal skin (pigskin and buffalo skin). PLS

regression could predict pigskin in rambak with
R2 of 0.96, RMSEC of 2.56%, and RMSEP of 1.10%.

[55]

Lard Analysis of lard in
bread formulation

Lard in bread was extracted using
Bligh and Dyer method by extensive

vortexing at each step. Second
derivative spectra at 1/λ 1190–900 cm−1

using ATR technique

PLS regression for
quantification

PLS using the selected FTIR spectra region could
quantify lard in bread successfully with detection

limit of 1% wt/wt
[56]

Lard (pork fat)

Adulteration of
chicken fat with
pork fat in food

products

Normal spectra at 1/λ 1236 and 3007
cm−1 using ATR technique

Classification using
PCA

Combination of FTIR spectra and chemometrics
could classify lard in chicken fat, pure lard, food

containing lard, palm oil, and chicken fat
[57]
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Table 1. Cont.

Non-Halal
Components Issue Infrared (NIR/MIR) Spectroscopy

Condition
Chemometrics

Techniques Results References

Lard

Differentiation of
lard chicken,

mutton, tallow- and
palm-based
shortening

Samples are heated at different
temperatures (120, 180 and 240 ◦C) and

time (30, 60, 120 and 180 min) and
normal FTIR spectra at 4000–650 cm−1

were evaluated for differentiation

Classification using
PCA, k-mean cluster

analysis and LDA

The combination of PCA with k-mean CA was
capable of differentiating the heated lard and other
samples according to its origin. LDA method was

successfully used to classify 80.5 % of samples
according to its group

[58]

Lard

Analysis of lard in
crude palm oil

(CPO) for
authenticity issue

Lard in the mixture with CPO using
ATR at the combined wavenumbers of

1481–999 and 1793–1650 cm−1
PLS regression

PLS could predict the levels of lard in CPO with
R2 value of 0.998 and RMSEC of 1.291% (v/v) and

RMSECV value of 0.838% (v/v).
[59]

Lard Analysis of lard in
palm oil

The samples were directly subjected to
short wave near-infrared spectroscopy
(NIR) at wavelength 800–1600 nm and

measured with transflectance and
transmission modes

Spectra were
subjected to variable

selection.
Classification using

SIMCA,
quantification with

PLS

SIMCA algorithm could classify lard and palm oil
mixed with lard with accuracy level of >0.95 for

both transflectance and transmission modes. PLS
regression could predict the levels of lard in palm

oil with R2 of 0.9987 (transflectance) and 0.9994
(transmission) with RMSEC of 0.5931

(transflectance) and 0.6703 (transmission).

[52]

Lard

Detection of the
presence of lard in

pure ghee (heat
clarified milk fat)

Normal FTIR spectra at combined 1/λ
region of 3030–2785, 1786–1680,

1490–919 cm−1

Classification using
SIMCA,

quantification using
PLS

Pure ghee and the one adulterated with lard could
be classified using PCA. Using SIMCA, 90% of the
samples were classified into their respective class.

PLSR could quantify lard with R2 >0.99 in
calibration and prediction models. Detection limit

reported was 3% wt/wt

[60]

Lard Analysis of lard in
cheese samples

FTIR normal spectra at wavenumbers
of 700, 1140–1070, 756 and 720 cm−1

Quantification of
lard using PLS

regression

PLS could quantify the level of lard in cheese
samples successfully [61]

Lard Analysis of lard in
lipstick

Lard was extracted from lipstick using
saponification method followed by

liquid/liquid extraction with
hexane/dichlorometane

(DCM)/ethanol/water, saponification
method followed by liquid/liquid

extraction with DCM/ethanol/water,
and Bligh and Dyer method. ATR-FTIR

spectra were measured at 1200–800
cm−1

Classification of
lipstick with and
without lard was
performed using

PCA, while
quantification of

lard was performed
using PLS regression

PCA could classify lipstick with lard and without
lard in its formulation with PC1 accounted for

63.7%, and PC2 accounted for 26.4% (90.1% of the
variance is described by PC1 and PC2). PLS is

capable of predicting the amount of lard in lipstick
formulation with the equation y (predicted value)
= 1.0070 x (actual value) − 4563 (R2 = 0.9956) in

calibration model and y = 0.9811x + 0.3381 (R2 of
0.9970) in validation equation.

[62]
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Table 1. Cont.

Non-Halal
Components Issue Infrared (NIR/MIR) Spectroscopy

Condition
Chemometrics

Techniques Results References

Lard, lard olein
(LO) and lard

stearin (LS)

Differentiation of LO
and LS from other

common animal fats

Normal spectra at wavenumbers
region (4000–650 cm−1) PCA

Due to its fingerprint nature, FTIR spectra
combined with PCA could differentiate and could
classify LO and LS from chicken fat, lard, beef fat,

and mutton fat

[63]

Pork Adulteration of beef
meatball with pork

The extraction of lard is performed
using concentrated hydrochloric acid
as a hydrolytic agent and petroleum

benzene as solvent extraction. Normal
FTIR spectra 1000–1200 cm−1 using

ATR technique

Classification using
PCA and

quantification using
PLS regression

PLS regression offered good relationship between
actual value and predicted value of lard with FTIR
predicted value with R2 0.997 and standard error
of calibration of 0.04%. PCA could classify beef

meatball and beef meatball mixed with pork

[64]

Dog meat
Adulteration of dog

meat in beef
meatball

The lipid fraction of meatball was
obtained using Bligh-Dyer and Folch

extraction methods. ATR-Normal FTIR
spectra at 1700–700 cm−1.

Classification using
PCA and

quantification using
PLS regression

FTIR spectroscopy, coupled with chemometrics at
1700–700 cm−1, is capable of classifying dog

meatballs and beef meatballs. PLS offered reliable
quantitative analysis of dog meat in beef meatballs

with acceptable statistical results

[65,66]

Porcine gelatin

Analysis of porcine
gelatin in candies

and its classification
from other gelatin

types

Direct analysis using ATR technique.
FTIR spectra were analyzed at

1734–1528 cm−1

Classification
between halal

gelatin and
non-halal gelatin
using HCA, PCA,

and PLS-DA

Gummy candy samples could be classified
accurately according to its sources with accuracy

levels of 100% using Ward’s algorithm (HCA),
PLS-DA, and PCA. The results were confirmed by

real-time polymerase chain reaction

[67]

Porcine gelatin

Differentiation
between porcine

gelatin and bovine
gelatin

Direct analysis using ATR at combined
region of 3290–3280 and

1660–1200 cm−1
PCA and DA

DA based on the Cooman’s plot obtained using
the software TQ Analyst could classify and

discriminate gelatines without any
misclassification exploiting the same peaks used

in PCA analysis

[68]

RMSEC = root mean square error of calibration; RMSEP = root mean square error of prediction; RMSECV = root mean square error cross-validation; PCA = principal component analysis;
DA = discriminant analysis; LDA = linear discriminant analysis; SIMCA = soft independent modeling class analogy; HCA = hierarchical cluster analysis; PLS = partial least square;
PLS-DA = partial least square discriminant analysis; SIMCA = soft independent modeling class of analogy.
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4.3. Raman Spectroscopy

Raman spectroscopy has been used for differentiation and quantification of lard in mixtures
with other animal fats and oils such as beef tallow, chicken fat, and duck oil. The analysis was
performed using a 785-nm laser diode. The spectra were recorded in the wavenumber region of
1800–700 cm−1 using a resolution of 1.25 cm−1. Chemometrics of principal component analysis (PCA)
was successfully used for the classification of these four types of animal fats. The combination of Raman
and chemometrics of partial least square (PLS) was also successfully applied for the quantification
of lard in binary mixtures with duck oil and beef tallow [69]. The model showed high correlation
coefficient values for lard in beef tallow (0.96674) and lard in duck oil (0.97148), indicating the good fit
of the model [70].

Fatty acid analysis of pork backfat has been performed using Raman spectroscopy and
chemometrics. Samples were subjected to Raman spectroscopy using a 785 nm laser diode, and
the spectra were recorded in the wavenumber region of 1800–200 cm−1. PCA was successfully applied
to differentiate between inner and outer fat layers from pork [71]. PCA score plot showed that inner
and outer fat layers were well separated using PCA, indicating that they were systematically different.
Investigation on PCA loading score resulting that peaks at the wavenumber of 1296, 1128, and 1061 cm−1

have positive contributions in sample differentiation. Chemometrics of PLS has also been used for
the prediction of fatty acids, either individual or total fatty acids, using Raman spectroscopy and gas
chromatography for reference to fatty acid concentration. All models showed high values of R2 and
lower RMSEC values that confirmed the accuracy and precision of the PLS model [72].

Another study of L-cysteine detection in wheat flour has been successfully performed using
Raman micro-spectroscopy coupled with chemometrics of HCA (hierarchical cluster analysis) and
PCA. Raman micro-spectroscopy is one of Raman techniques equipped with an optical microscope that
enables a non-invasive acquisition spectrum with resolution down to 1 µm. L-cysteine is widely used
as food additives; however, the use of L-cysteine in wheat flour is forbidden in Turkey, considering
its source. L-cysteine is commonly obtained from animals such as pigs, cows, and ducks. Moreover,
it can also be obtained from humans, such as human hair [73]. Therefore, it is forbidden to be
mixed with food products related to the halal status of the products. The combination of Raman
spectroscopy measured using a 532 nm diode laser in the wavenumber region of 2100–400 cm−1 and
chemometrics of PCA using first derivative spectra was successfully used to differentiate authentic
wheat flour and wheat flour adulterated with L-cysteine. Moreover, analysis using HCA resulted in
well-separated clusters between adulterated and unadulterated samples, with L-cysteine observed
from the dendrogram [74]. It could be suggested that Raman micro-spectroscopy, in combination with
chemometrics, provides an adequate method for the detection of L-cysteine adulteration in wheat flour.

4.4. Nuclear Magnetic Resonance (NMR) Spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy emerges as a sophisticated method for food
and pharmaceutical product analysis [75]. The use of NMR spectroscopy for halal authentication in
food products has been developed recently. 1H-NMR spectroscopy has been successfully used for the
detection and quantification of lard in binary mixtures with butter. Butter is one of the milk-derived
products which has many functions and benefits in food and dairy products. The combination of
1H-NMR spectroscopy with chemometrics of partial least square (PLS) was successfully used for
authentication of butter from lard. The PLS model was linear and showed a strong correlation between
the actual value and predicted/calculated values of lard presented by its high R2 value (more than
0.998) for both calibration and validation models. The lower RMSEC (0.0091) and RMSEP (0.0090)
values were obtained, indicating lower errors and high precision in the PLS model [76].

Carbon NMR (13C-NMR) spectroscopy has also been successfully used for authentication of
butter adulterated lard instead of the 1H-NMR spectroscopy technique. The spectra generated from
13C-NMR measurements are more complex, but they are more informative because they contain many
important signals of interest compounds [77]. The resonance of some compounds, such as fatty acids
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and triacyclglycerols, could be used for sample differentiation from several sources. For instance,
the region of palmitic acid and olefinic could be used to distinguish lard and butter. Moreover,
two-dimensional (2D) NMR spectroscopy also possesses advantages for the authentication of fats and
oils. Heteronuclear multiple bond correlation (HMBC) is the sophisticated 2D NMR technique in NMR
spectroscopy, which shows more detailed information about nuclei correlation either carbon to carbon
or carbon to proton. The study on butter adulterated lard using the HMBC technique found the signals
of palmitoyloleoyllinoleoyl (POL) [78].

NMR spectroscopy has been employed for the authentication of milk fat blended with animal and
vegetable fats. Milk fat has the highest price among fats, so that it has the potential to be adulterated
with other fats [79]. 13C-NMR spectroscopy was successfully used for authentication of milk fat
blended with pork (lard) and margarine. The compound of butyrate was found as a marker to ensure
the authenticity of milk fat. Butyrate is specific for milk fat compound, and no butyrate signals were
observed either in lard or in margarine. The butyryl backbone appeared in the chemical shift of
173.13, 35.94, 18.37, and 13.63 ppm. Quantification of butyrate was also successfully performed using
NMR, and the result was compared to the gas chromatography method. These methods showed
high regression coefficient (R2 more than 0.999) for quantification of butyrate indicating that NMR
could be used for quantification of butyrate for detection of adulteration in milk fat from lard and
margarine [80].

1H-NMR spectroscopy, in combination with chemometrics of multivariate analysis, has been
successfully applied for authentication of heparin, a pharmaceutical product derived from animal
tissue that plays an important role in blood coagulation [81]. Some animal species could be the sources
for heparin, including pigs. 1H-NMR spectroscopy, coupled with principal component analysis (PCA),
was successfully used to differentiate bovine, ovine, and porcine heparin. Heparin samples were
extracted using deuterium oxide (D2O), then measured using a 600 MHz NMR spectrometer. Another
chemometrics technique, namely K-means, was also successfully used to classify bovine, ovine, as
well as porcine, heparin. K-means is an unsupervised pattern recognition technique which is used
for group clustering using pre-defined K variables. The less variation within a cluster, the more
homogenous variables within the same cluster. Bovine, ovine, and porcine heparin samples were
completely separated using both PCA and K-means. It suggested that 1H-NMR spectroscopy, in
combination with chemometrics, offers a powerful technique for the authentication of pharmaceutical
products such as heparin [82].

5. Methods

During performing this review, we explored some databases such as the Science Citation Index,
PubMed, Medline, Scopus, and Google Scholar to identify and to download the abstracts, reports,
review articles, and research papers related to the molecular spectroscopic techniques for analysis
of non-halal components. The keywords used during searching of information were molecular
spectroscopy (or UV–vis spectroscopy, or infrared spectroscopy, or Raman spectroscopy or NMR
spectroscopy) + pig derivatives (or non-halal meat, or pork, or rat meat, or dog meat, or wild boar
meat) + halal authentication.

6. Conclusions

Molecular spectroscopy, based on the interaction of electromagnetic radiation (EMR) with non-halal
components in molecular levels, including ultraviolet-visible, infrared, Raman, and nuclear magnetic
resonance (NMR) spectroscopies, revealed promising tools for screening and identification of pig
derivatives and non-halal meats in food and pharmaceutical products. Combined with chemometrics
of classification and quantification, molecular spectroscopy has emerged as rapid and reliable analytical
techniques for analysis of pig derivatives (lard, pork, porcine gelatin) and non-halal meats (rat meat,
wild boar meat, and dog meat) with acceptable analytical performance in terms of accuracy and
precision. However, the molecular spectroscopy methods need to be confirmed using other instruments
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such as gas chromatography–mass spectrometry (GC–MS), two-dimensional gas chromatography–mass
spectrometry (GC × GC–MS), liquid chromatography–tandem mass spectrometry (LC–MS/MS), and
real-time polymerase chain reaction (RT-PCR) methods.
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