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Abstract: Kidney stones constitute a common condition impacting the urinary system. In clinical diagnosis and management, 
traditional surgical interventions and pharmacological treatments are primarily utilized; however, these methods possess inherent 
limitations. Presently, the field of nanomedicine is undergoing significant advancements. The application of nanomaterials in 
biosensors enables the accurate assessment of urinary ion composition. Furthermore, contrast agents developed from these materials 
can improve the signal-to-noise ratio and enhance image clarity. By mitigating oxidative stress-induced cellular damage, nanomaterials 
can inhibit the formation of kidney stones and enhance the efficacy of drug delivery as effective carriers. Additionally, by modifying 
the physical and chemical properties of bacteria, nanomaterials can effectively eliminate bacterial presence, thereby preventing severe 
complications. This review explores the advancements in nanomaterials technology related to the early detection of risk factors, 
clinical diagnosis, and treatment of kidney stones and their associated complications. 
Keywords: nanomaterials, kidney stones, oxidative stress, biomaterial

Introduction
Kidney stone disease (KSD) is one of the most common diseases of the urinary system, which refers to the formation of 
hard deposits composed of minerals and salts inside the kidney.1–3 The incidence of kidney stones is related to 
geographical, socioeconomic and climatic factors. In addition, genetics,4 age, gender, ethnicity, and diet also influence 
the incidence of the disease. The global prevalence of this condition ranges from 2% to 20%, with a recurrence rate of 
approximately 30%-50% over a span of five years.5,6 Consequently, it has emerged as a significant public health concern7 

(Figure 1).
Kidney stones are mainly caused by supersaturation of certain metabolites and minerals in the urine. When the 

concentration of calcium, oxalic acid, uric acid and other substances in urine is too high to exceed its solubility in urine, 
supersaturation will form and urine crystals will appear. This occurs mainly in patients with kidney stones. The 
persistence and constant accumulation of urinary crystals increases the risk of developing kidney stones.8 The metabolic 
process of crystals is often closely related to the concentration of various ions in urine,9 such as calcium ions, oxalate, 
urate and phosphate,10–12 which can promote the crystallization and aggregation of stone components.9 Pyrophosphate 
and citrate can inhibit the formation of stone crystals, so early detection of related ions can effectively intervene in the 
occurrence and development of kidney stones.13,14 The most commonly used imaging methods for clinical evaluation of 
kidney stones include: urinary ultrasound, urography (KUB), computed tomography (CT), magnetic resonance imaging 
(MRI) and intravenous urography.15 Each method has brought great convenience to the diagnosis and treatment of 
patients with suspected kidney stone diseases, and further development of these imaging modalities to enhance the ability 
of clinicians to accurately and safely manage patients with kidney stones will be helpful in the future. Treatment of 
kidney stones usually consists of medical and surgical treatment.16,17 Medical therapy includes alpha-blockers, calcium- 
channel inhibitors, and phosphodiesterase type 5 (PDE5) inhibitors. In patients with uric acid stones, the stones can be 
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dissolved by alkalinizing the urine with potassium citrate. However, due to the lack of good delivery, many stone- 
inhibiting drugs are difficult to achieve satisfactory results due to short residence time and low bioavailability. Therefore, 
effective drug delivery is very important. Surgical treatment includes extracorporeal shock wave lithotripsy (ESWL),18 

ureteroscopic lithotripsy (URS), percutaneous nephrolithotomy (PCNL), laparoscopic lithotripsy19 and, less commonly, 
open surgery.20 However, there are still a considerable number of patients with residual stones and postoperative 
complications. Except for those who actively receive treatment, most patients in the real world do not attract enough 
attention in the early stage of kidney stone disease, but this just increases the probability of other complications. When 
kidney stones block the ureteropelvic junction, they can cause severe back pain, hematuria, vomiting, and painful 
urination.21 Long-term progression can lead to urinary tract infection,22 sepsis,23 urinary tract obstruction and renal 
failure,24 renal cancer,25 and cardiovascular and cerebrovascular diseases.26

Nanoparticles play an important role in modern scientific research, especially in biomedicine.27–31 Nanomaterials 
usually refer to at least one dimensional structure size in the nanoscale (1–100nm),32 which has special thermal, 
biological and electromagnetic properties different from general materials,33–37 such as surface effects, quantum size 
effects and macroscopic quantum tunneling effects.38 Based on their composition, nanoparticles are generally classified 
into two broad classes: organic and inorganic. (Figure 2) Specifically, organic nanoparticles include polymer vesicles, 
dendrimers, polymer micelles, nanospheres, nanohydrogels, liposomes, and lipid nanoparticles, among others. These 
organic nanoparticles are widely used in drug delivery, gene therapy, and vaccine development due to their good 
biocompatibility and tunable physicochemical properties.39,40 Inorganic nanoparticles, on the other hand, include metallic 
nanomaterials and non-metallic nanomaterials. Metal nanoparticles such as gold, silver, and iron oxides are often used in 

Figure 1 Schematic diagram of the application of nanomaterials in the diagnosis and treatment of kidney stone diseases.
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applications such as biological imaging, targeted drug delivery, and cancer therapy due to their unique optical and 
electrical properties.41,42 Non-metallic nanomaterials such as carbon nanotubes and graphene can provide support for cell 
growth and tissue repair due to their excellent mechanical performance.43,44 Inorganic nanomaterials are synthesized in 
a variety of ways, including bottom-up and top-down strategies, which allow researchers to precisely control the shape, 
size, and surface properties of nanoparticles to optimize their applications in biomedicine.45,46 In addition, the combi-
natorial forms of nanoparticles have attracted much attention. For example, lipid-polymer hybrid nanoparticles combine 
the advantages of organic and inorganic materials and are able to improve drug bioavailability and targeting.47,48

In the field of drug delivery, nanoparticles can efficiently load drugs49–53precisely regulate the release characteristics 
of therapeutic drugs, and improve the efficacy of drugs;54 In the detection of disease-related biomarkers: biosensors 
based on carbon nanotubes or graphene can detect biological molecules such as glucose and cholesterol in blood.55,56 In 
the field of targeted therapy, anti-EGFR antibody can be modified on the surface of nanomaterials to achieve active 
targeting of tumor cells against the overexpressed epidermal growth factor receptor(EGFR)on the surface of tumor 
cells.57 Biocompatibility: By controlling the size of nanomaterials, they can be more easily taken up and metabolized by 
cells.58 Magnetic nanomaterials in biomedical imaging can improve the resolution of tissue and cell imaging.59,60 The 
use of nanoparticles in immunotherapy can better effectively transport antigens to antigen-presenting cells, thereby 
enhancing the immune response.61 In addition, chronic inflammatory diseases and regenerative medicine are also widely 
used.49,62,63

Nanomaterials have shown extraordinary potential in the diagnosis and treatment of kidney stones. Using the 
characteristics of nanomaterials to make a biosensor with high sensitivity to detect the relevant ion concentration in 
urine fluid,64 the early monitoring and management of kidney stones can be realized. Nanomaterials can enhance the 
contrast of images and improve the imaging clarity of tissues. Nanoparticles can be used as effective drug carriers to 
protect renal tubular epithelial cells from oxidative stress damage and inhibit the occurrence of stones.65,66 The 

Figure 2 Classification of nanomaterials.
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photothermal and photoacoustic energy generated by nanomaterials can be used to dissolve stones and improve stone 
clearance efficiency. Hydrogel nanomaterials can reduce the residual rate of stones.67 In the treatment of kidney stone 
complications: nanotechnology reduces the possibility of stone-related infections by precisely targeting the removal of 
biofilms and bacteria on kidney stones.68 Biomimetic nanoparticles have shown promise in improving the survival of 
patients with sepsis,32 and can also be used as effective carriers of antibiotics to enhance bacterial clearance and infection 
control.69,70 In addition, nanomaterials can promote arterial wall remodeling and reduce the surgical risk of massive 
bleeding caused by accidental vascular injury during open surgery.71

Application of Nanomaterials Technology in the Detection of Kidney Stone 
Metabolism
Timely detection of related ions in urine can effectively intervene the occurrence and development of kidney stones. One 
of the most effective ways to detect urine ions is as a biosensor, and the unique chemical composition and crystal 
structure of nanomaterials play a crucial role in the electrochemical sensing performance. Quantum dots (QDS), as 
a semiconductor nanostructure with a diameter between 2–10 nm (10–50 atoms), are very popular in the field of sensing 
because of their wide width, symmetry, size-tunable emission spectrum, wide absorption spectrum, long photonics 
lifetime and significant photostability properties.72,73 It can distinguish metal ions of different valence states by fast and 
efficient cation exchange reaction with metal ions at room temperature.74 At the same time, the fluorescence quenching 
effect during the exchange process lays the experimental foundation for the construction of homogeneous fluorescence 
analysis. Nitrogen-doped carbon quantum dots (N-CQD), in which N atoms are doped into the structure of CQDs, form 
N-containing functional groups on the surface of CQDs,75 which show strong water solubility and electrochemical 
activity.76 There are strong cathodic and anodic ECL signals in the sensor.77 VS2 nanoflower structure, this 3D layered 
architecture provides a large surface area and abundant active sites that contribute to the adsorption and oxidation of 
oxalate on the electrode surface. Its high crystallinity ensures efficient electron transfer and enhances the conductivity of 
the modified electrode. The presence of V4+ and S2− in their respective oxidation states contributes to the electrochemical 
activity and stability of VS2 nanoflowers, making them more suitable for electrochemical sensing applications.78 

FeMoO4 nanospheres with rough surface had better peroxide-like activity (V max=28.47×10-8Ms-1) and substrate 
affinity (Km = 0.174 mm) for H2O2. The combination of Fe and Mo ions will avoid the instability of the free Fe2+ 

state and at the same time have a great effect on improving the catalytic activity of FeMoO4 nanomaterials.79 In serum 
and urinalysis, Raman spectroscopy (SERS) has been shown to have practical advantages over IR absorption 
spectroscopy,80 which can be enhanced by nanoparticle surface plasmon resonance (SPR).81 Table 1 summarizes the 
applications of nanomaterials in biosensors (Figure 3).

Determination of Oxalate Content in Urine
Some scholars have proposed to use nanoparticle tracking analysis (NTA) to detect human urine nanocrystals-stained with 
calcium-binding fluorophore Fluo-4AM. After staining, NTA can be used to detect and quantify calcium-containing 
nanocrystals smaller than 1μm.8 Oxalic acid plays an important role in the metabolic evaluation of urinary calculi, 
Researchers have reported a three-signal fluorescence strategy based on the ability of oxalic acid to reduce Cu²⁺ to Cu⁺, 
and the selective detection of Cu²⁺ and Cu⁺ by pyrophosphate-cerium coordination polymer network (PPi-Ce CPNs), cadmium 
telluride quantum dots (CdTe QDs) and N-methyl mesoporous porphyrin (NMM). CdTe QDS will agglomerate upon Cu²⁺ 
addition and CuTe aggregates will be formed upon Cu⁺ addition. This structural change indicates that the cation exchange 
reaction between Cu⁺ and QDS is more significant than that between Cu²⁺ and QDS, and that Cu⁺ has a strong ability to destroy 
the quantum dot structure. Cu⁺ quenched the fluorescence of QDS, and the signal intensity decreased significantly with the 
increase of Cu⁺ concentration in the concentration range of 1μM to 600μM, which was more obvious than that caused by 
Cu²⁺.90 The assay has a detection range of 1nm to 100nm with a detection time of 6 minutes. It can be observed that the color 
change in the solution reflects the oxalate content.83 A PD-AES based on Hg2+ regulation detects oxalate content. This system 
has successfully achieved oxalate detection at 0.1–10μm with LOD as low as 40nm. Miniaturized plasma AES has the 
advantages of low cost, low power consumption, small size, and fast analysis speed.82 This method has been successfully 
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applied to the determination of oxalate in clinical urine samples, and the results are comparable to those of clinical diagnosis. 
A rapid and sensitive colorimetric method based on 3,3’,5,5’ -tetramethylbenzidine – manganese dioxide(TMB-MnO₂) 
nanosheets was used for oxalate detection.84 As an efficient biomimetic oxidase, MnO₂ nanosheets can catalyze the reaction 
with TMB and oxalate. MnO₂ nanosheets are mainly composed of manganese (Mn) and oxygen (O) atoms. Manganese atom 
is an important component of the active site, which can participate in REDOX reactions. There are amino (-NH₂) groups in the 
molecular structure of TMB, which can interact with the manganese atoms and oxygen atoms on the surface of MnO₂ 
nanosheets. The light yellow TMB can be oxidized to the blue oxidized TMB catalyzed by bovine serum albumin stabilized 

Table 1 Application of Nanomaterials in the Detection of Stone-Related Components in Urine

Method of Detection Substance to 
be Tested

Mechanism Advantages Reference(s)

Nanoparticle tracking analysis Calcium 

containing 

nanocrystals

Calcium containing nanocrystals smaller than 1μm 

were detected and quantified using NTA

High sensitivity [8]

Electrochemical detection Oxalate salt Based on oxalic acid, Cu²⁺ can be reduced to Cu⁺ The detection range 

is wide and the time 

is short

[82]

Electrochemical detection Oxalate salt A PD-AES based on Hg2+ regulation detects oxalate 

content

High specificity [83]

Rapid and sensitive 
colorimetric method

Oxalate salt Oxalate inhibited the oxidation of light yellow TMB to 
blue oxidized TMB through consumption reaction 

with MnO₂ nanosheets

High sensitivity [84]

Electrochemical sensing Oxalate salt Vanadium disulfide nanoflowers modify glass carbon 
electrodes to enhance oxalate sensing

High sensitivity and 
selectivity with very 

low detection limit

[78]

Fe3O4NPs@rGOS/GCE 

sensor

Uric acid Nanoparticle-modified rGO nanosheets showed good 

electrochemical reduction peaks.

High stability, 

repeatability and 

reproducibility

[85]

High performance liquid 

chromatography method

Cystine, uric 

acid, oxalic 

acid and citric 
acid

The detection optimization was achieved by using 

a disposable copper coated nanoparticle electrode 

(Cun-SPE)

High sensitivity [86]

Detection using gold 

nanoparticles

Uric acid After reacting with melamine, uric acid inhibits the 

aggregation of gold nanoparticles induced by this 
substance, thereby detecting uric acid based on the 

change in color and absorbance of the solution

High sensitivity [87]

Detection was performed 
using copper nanoparticles

Uric acid For the cleavage of MSA on the surface of CuNPs, the 
small Cu particles were further aggregated into large 

particles with lightning purple, and the content was 

judged based on the absorbance

Short response time 
and high material 

stability

[88]

Detection using graphene-like 

two-dimensional sheet 

carbon nitride nanomaterials

Uric acid Graphene-like two-dimensional sheet carbon nitride 

nanomaterials synthesized from melamine have 

unique structures and properties

High accuracy [89]

Gold nanostar material was 

used for detection

Uric acid The surface of the nanomaterials (gold nanostars) 

enhances the Raman scattering effect and enhances 

the Raman signal of uric acid in urine.

High accuracy [81]

Electrochemiluminescence Citrate Selective determination of citrate ions using intrinsic 

micropore-1 nanoparticles/nitrogen-doped carbon 

quantum dot polymers

High selectivity and 

high sensitivity

[77]

Fluorescent sensor Pyrophosphate An on-off assay for PPi detection was developed using 

a new BPHA (BPHA: N, N-bis (pyridin-2-methyl) 

hexanamine) carbon point

It is easy to operate 

and accurate

[79]
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MnO₂ nanosheets, while oxalate can selectively inhibit the reaction by consumption reaction with MnO₂ nanosheets, thus the 
quantitative detection of oxalate can be achieved. The reliability of the method was effectively verified by testing artificial 
urine samples, indicating that it has great potential in the bedside application of monitoring and diagnosis of urolithiasis in the 
population, which can realize early screening and early intervention. One work introduces a novel electrochemical sensing 
method for oxalate using vanadium disulfide synthesized by hydrothermal synthesis of nanoflowers. The chemical composi-
tion and crystal structure of VS2 nanoflowers play a crucial role in the electrochemical sensing performance.78 The high 
crystallinity of VS2 ensures efficient electron transfer and enhances the conductivity of the modified electrode. The layered 
structure of VS2 provides a large surface area and abundant active site for adsorption and oxidation of O oxalate, resulting in 
increased sensitivity and selectivity. The proposed oxalate sensor exhibits high sensitivity and selectivity over a wide linear 
detection range from 0.2 to 20um with an extremely low detection limit of 0.188μm.

Determination of Uric Acid Content in Urine
In addition, high concentrations of uric acid in urine can also lead to kidney stones. The RGO nanocomposites modified with 
super-active iron oxide nanospheres developed in the current research can be used to measure the uric acid concentration in 
urine and serum samples with high stability, repeatability and reproducibility.80 Due to the characteristics of crystal structure, 
some of the iron atoms on the surface of active iron oxide nanospheres are coordination-unsaturated. These coordinated 
unsaturated iron atoms have high chemical activity, and can form coordination bonds with oxygen atoms and nitrogen atoms in 
uric acid molecules, so as to realize the adsorption and activation of uric acid, reduce the activation energy of the reaction, and 
promote the detection reaction. RGO nanosheets inevitably produce some defect vacancies in the preparation process, and the 
carbon atoms around these defect sites have high activity. Their electronic structure is different from that of the carbon atoms 
in the intact graphene sheet, which can specifically interact with uric acid molecules, enhance the adsorption ability of uric 

Figure 3 Detection of nanomaterials in kidney stone related ion metabolic processes.
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acid, and improve the detection sensitivity. Some researchers have used disposable copper coated nanoparticle electrode (Cun- 
SPE) to promote early diagnosis by detecting creatinine and four urinary stone organic acids (cystine, uric acid, oxalic acid and 
citric acid).81 Gold nanoparticles are characterized by high absorption coefficient due to the surface plasmon resonance effect. 
After reacting with melamine, uric acid was used to inhibit the aggregation of gold nanoparticles induced by the substance, so 
as to detect uric acid according to the changes in color and absorbance of the solution.90 An enzyme-free and sensitive method 
for uric acid field detection was established based on sulfhydryl succinic acid-modified copper nanoparticles, with shorter 
response time and higher material stability.79 Graphene-like two-dimensional sheet carbon nitride nanomaterials synthesized 
from melamine have unique structures and properties. The modified electrode was prepared by compounding it with other 
substances, and the electrochemical behavior of uric acid was studied by this electrode to realize the quantitative detection of 
uric acid. For example, oxidized polyimidazole/carbon nitride modified electrodes are prepared, where uric acid will show 
specific electrochemical signals, and quantitative analysis is performed according to the relationship between these signals and 
uric acid concentration.83 The shape of the nanoparticles is key to enhancing the Raman signal.33 Gold Nano stars typically 
have a central core and six vertices arranged in 3D.91 The length of the vertices was 10 nm on average, and the Angle of the 
vertices was less than 30 degrees. When the gold Nano stars suspension was mixed with urine, The plasma resonance effect 
can be generated on the surface of gold Nano stars due to the interaction between uric acid molecules and gold Nano stars, and 
the surface and nearby regions are important active sites. Under photoexcitation, the free electrons in these regions oscillate 
collectively, generating a strong electromagnetic field that can enhance the Raman signal of uric acid and the gold Nano stars 
was able to determine the concentration of uric acid in the range of 5–50 μg/mL.81

Detection of Citrate Content in Urine
Citrate can bind calcium ions, reduce the concentration of free calcium in urine, alleviate the supersaturation of calcium oxalate, 
and reduce the risk of stone formation.92 For the content of citrate in urine, some experiments have pointed out that a sensitive 
and rapid electrochemiluminescence (ECL) method for conductivity detection has been developed by using intrinsic micro-
porous polymer-1 nanoparticles/nitrogen-doped carbon quantum dots.77 As the concentration of citrate increased, the ECL 
signal gradually decreased, which was used to determine the amount of citrate in urine. Based on the above, various components 
in urine can be analyzed, and the risk of kidney stones is different with the content of components, so as to screen patients.

Determination of Pyrophosphate Content in Urine
Hydroxycalcium phosphate stones account for a large proportion of calcium phosphate stones.93 Pyrophosphate (P2O7

4-, 
PPi) is a by-product of the hydrolysis of adenosine triphosphate (ATP) in cells, which plays a crucial role in energy 
storage, signal transmission and important cellular metabolic processes.94 More importantly, PPi can act as a natural 
inhibitor of urinary calculi and can inhibit the formation of calcium-containing crystals in the urinary tract. Therefore, 
measurement of PPi levels in urine is a measurable factor for urolithiasis prevention. A colorimetric sensing platform for 
pyrophosphate detection based on Femoo4-H2O2-3,3’,5,5’ -tetramethylbenzidine (TMB) system was developed for 
rapid, sensitive and selective detection of PPi in aqueous solution.79 Iron (Fe) and molybdenum (Mo) ions were the 
key active site components in FeMoO₄ structure. Fe ions have variable valence states (such as Fe²⁺ and Fe³⁺) and can 
participate in REDOX reactions. Mo ions can adjust the electronic structure of materials to a certain extent and enhance 
their catalytic activity. Due to Fe(II) and PPi reactions, the presence of PPi can specifically reduce blue oxidized TMB to 
colorless TMB, There was a positive correlation between the change in absorbance and PPi concentration.

Application of Nanomaterials Technology in Imaging Diagnosis of Renal 
Calculi
Imaging Contrast of Renal Stones Enhanced by Nanomaterials
Nanomaterials are ideal structures for biomedical imaging methods. They exhibit one or more contrast imaging 
capabilities by themselves. At the same time, due to their high specific surface area or easily modified sites, they can 
provide adsorption, covalent or non-covalent interactions with other contrast agents to produce high-dimensional bimodal 
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structures for a variety of biomedical imaging methods. Compared with conventional contrast agents, nanoparticles have 
better imaging quality95 and relatively higher safety.96

Iodine and gadolinium contrast agents, such as those used in X-ray and magnetic resonance imaging, have a risk of 
causing kidney fibrosis, but the use of superparamagnetic iron oxide nanoparticles does not, because iron is an essential 
element in the human body, and it also has an extremely high relaxation rate,97 Iron atoms with different valence states, such 
as Fe²⁺ and Fe³⁺, are important active sites. In MRI imaging, iron atoms in these valence states can interact with hydrogen 
protons in water molecules, thereby affecting the relaxation time of surrounding protons. and “positive” contrast agents (T1) 
with bright signals are more suitable for high-resolution imaging. Nanoparticles have unique physicochemical properties 
such as small size, large surface area, and spectral resonance. Making it an ideal choice for ultrasound imaging. For example, 
microbubble nanoparticles,98 as hollow lipid nanoparticles, have unique nonlinear shell properties that generate rich 
harmonics even at lower pressures, which allows them to provide significant contrast in ultrasound imaging.99 Through 
the nonlinear oscillation and pressure dependent response, nanobubbles perform well in ultrasound imaging mode and can 
effectively suppress tissue scattering (mostly linear scattering) while amplifying their own nonlinear scattering signal, thus 
clearly displaying the target region. Functional groups such as phosphate groups and carboxyl groups in lipid molecules can 
be used as active sites. The interaction of charges in functional groups can change the surface charge and stability of 
microbubble nanoparticles. The change of surface charge during ultrasound imaging will affect the aggregation behavior of 
microbubble nanoparticles and the interaction with biological tissues, and then affect the imaging effect.

Gold nanoparticles have been shown to enhance contrast in computed tomography (CT) imaging. 2–4 nm AuNPs were 
captured using a 120 nm polysorbate core with lipid embedding. The formulated particles provide high contrast and high 
signal-to-noise ratio in CT models and in vivo studies. It is helpful to show the shape and location of kidney stones more 
clearly.100 The aforementioned gold Nano stars has multiple arms with sharp corners, which can generate high electric field 
amplification. In imaging technologies such as surface plasmon resonance enhanced spectroscopy, it can be used as the active 
site to significantly enhance the interaction with electromagnetic fields, thereby improving the sensitivity and resolution of 
imaging. Calcium phosphate nanoparticles can interact with calcium components in kidney stones, enhance the imaging effect 
of kidney stones in X-ray and fluorescence imaging, increase X-ray absorption or fluorescence signal, thereby improving the 
contrast of imaging, and contributing to the detection and diagnosis of kidney stones.101 Heavy metal elements with higher 
atomic numbers and higher absorption coefficients exhibit higher contrast compared to standard iodinated contrast agents.102 It 
has been proposed that graphene oxide (GO) is used for imaging diagnosis of kidney, and silver nanoparticles (AgNPs) are 
composite on the surface of GO to enhance its X-ray absorption, which is used as contrast enhancement agent for computed 
tomography (CT) imaging. The contrast agent used in positron emission tomography (PET) is a PET imaging probe, and its 
research and development involve multi-disciplinary cross. DNA nanostructures constructed by the principle of complemen-
tary DNA base pairing are known for their simple preparation, controllable structure, and easy biofunctionalization. Some 
studies have combined DNA nanotechnology with PET imaging technology to explore its application in the diagnosis and 
treatment of kidney diseases, but the specific research results still need further clinical verification (Table 2).

Application of Nanomaterials Technology in the Treatment of Renal 
Calculi
Nanoparticles Antagonize the Formation of Renal Calcium Oxalate Stones by 
Inhibiting Oxidative Stress
Oxidative stress injury of renal epithelial cells plays a crucial role in the formation of renal calcium oxalate stones.104–106 

Oxidative stress can occur through various pathways, increasing the risk of kidney stone formation, and the inflammatory 
response generated during kidney stone formation further exacerbates oxidative stress, forming a vicious cycle. 
Antioxidants can antagonise the oxidative stress injury of renal cells caused by hyperoxaluria and inhibit the formation 
of stones.90 At present, some nanomaterials with enzymatic and catalytic properties, namely, nanozymes, have been 
discovered.107 Nanoenzymes-mediated antioxidant therapy is now considered a promising strategy for the treatment of 
oxidative stress-mediated inflammation.108–110
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CeO₂ (cerium dioxide) nanozymes have a unique crystal structure with abundant oxygen vacancies due to their cubic 
fluorite structure. Ce atom is the core active site, which can present different valence states in the crystal, mainly + 3 and 
+ 4 valence states. This variable valence is one of the key factors for the enzyme-like activity of CeO₂ nanozymes. 
Different crystal forms, spatial structures and particle sizes of cerium dioxide nanoparticles have different ROS 
scavenging abilities.111,112 Because of the change in the valence state of Ce, Deng et al found that the use of porous 
nanorod CeO2 nanozymes can catalyze the decomposition of excess free radicals, and scavenging excess ROS is the key 
to its antioxidant effect. It can inhibit the deposition of calcium oxalate crystals by reducing oxidative stress damage in 
renal tubular epithelial cells. There were no significant side effects on other organs.112 Rod-like nanocrystals have a large 
specific surface area with minimal damage to human hepatocytes, and their antioxidant activity stems from their excellent 
REDOX properties, with the reduction peak appearing for the first time around 100 °C and the largest total area, and their 
surface oxygen content is the largest and most easily reducible.

Metal-organic frameworks (MOF) generally refer to a class of crystalline porous materials formed by the self- 
assembly of inorganic metal centers (metal ions or metal clusters) and bridging organic ligands,113,114 resulting in the 
formation of periodic network structures. It is commonly used for in vivo applications due to its outstanding properties 
such as multiple catalytic centers, wide specific surface area, biodegradability, excellent dispersibility, and 
biocompatibility.115 Previous studies have found that MOF-818 is an octahedral structure in which metal ions are an 
important part of the active site and can act as Lewis acid sites to accept electrons, allowing REDOX reactions to occur, 
using its antioxidant properties to eliminate excess ROS and alter the oxidative stress environment.108 The metal nodes 
decompose superoxide anion radicals and hydrogen peroxide by electron transfer, mimicking the activities of superoxide 
dismutase (SOD) and catalase (CAT). MOF-818 can transform macrophages from M1 to M2, and inhibit 
inflammation.116 Zeng et al showed that MOF-818 could down-regulate the expression levels of adhesion molecules 
(OPN, CD44) and up-regulate the expression levels of antioxidant markers (CAT, SOD) in renal tissues of rats with 
kidney stones. At the same time, when the concentration of MOF-818 is 6.25ug/mL, it can restore the vitality of HK-2 
cells damaged by oxalate, reduce the proportion of cell death, and achieve a significant protective effect.108 It is emerging 
as a promising nanomedicine candidate for effective inhibition of kidney stones. An integrated Nano enzyme with the 
ability to catalyze a cascade of reactions to eliminate reactive oxygen species (ROS) has been developed. Kinetic analysis 
shows that this integrated Nano enzyme not only has two spatially separated active sites, which can mimic superoxide 
dismutase (SOD) and catalase (CAT), but also has a localization effect, which increases the overall reaction rate by 

Table 2 Application of Nanomaterials in Imaging Diagnosis of Kidney Stones

Type of Material Application  
of Imaging

Advantages Safety Reference(s)

Gold nanoparticles CT imaging Contrast and resolution of enhanced 

CT images.

It is relatively safe, although 

there may be a slight risk of 

allergy.

[100]

Iron oxide 

nanoparticles

Magnetic resonance 

Imaging

Good magnetic properties, improve 

MRI signal intensity.

The safety is high, and allergic 

reactions are occasionally 

observed.

[97]

Liposome 

nanomaterials

B ultrasound imaging It has good biocompatibility and can 

be used as ultrasound contrast agent.

Generally relatively safe, a few 

allergic reactions.

[99]

Calcium carbonate 
nanoparticles

X-ray and fluorescence 
imaging

It can be used as CT contrast agent 
to enhance image contrast.

It has good biocompatibility and 
is generally safe

[101]

Silver nanoparticles CT imaging It can improve the quality of CT 

image.

Further research is needed. [102]

Graphene oxide 

nanosheets

Magnetic resonance 

Imaging

It can be loaded with drugs and 

contrast media.

The biocompatibility needs to be 

further studied.

[103]
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improving the mass transfer efficiency and reducing the transfer time between the catalytic centers. It shows excellent 
scavenging activity of reactive oxygen species in vivo experiments.117

Nanoparticles Can Transform Crystals and Inhibit Nanobacteria
Previous studies have identified a species of nanobacteria from kidney stones, which are thought to be nucleation sites 
and can further promote the development of calcification.118 Nanobacteria have unique biomineralization ability and 
aggregation growth characteristics. Calcification can lead to decreased elasticity of renal tissue and damage to renal 
tubular epithelial cells.119 The adhesion of renal tubular epithelial cells to crystals induces the formation of nuclei, which 
leads to the occurrence of kidney stones.120 According to existing research work, Calcium oxalate stones are the most 
common type of kidney stones. There are three different hydrate forms: calcium oxalate monohydrate (COM) crystals, 
calcium oxalate dihydrate (COD) crystals and calcium oxalate trihydrate (COT) crystals.121 COM crystals are the most 
stable, NanoSe⁰ could coordinate with C₂O₄²⁻ in the valence states of C-Se single bond and O-Se single bond, which 
prevented the formation of CaC₂O₄. At the same time, the formation of spherical COD crystals containing selenium was 
induced and the growth of COM crystals was inhibited. Since COD crystals are the less thermodynamically stable phase 
and have a weaker affinity for the cell membrane than COM crystals, the COD crystals will be excreted more easily than 
COM crystals. In addition, There are related experiments showing that the positive detection rate of nano-bacteria in the 
medium without selenium nanoparticles was 60%, and the energy dispersive X-ray analysis showed calcium and 
phosphate peaks. The medium supplemented with 90μmol/L selenium nanoparticles did not observe any nanobacteria, 
and calcium and other minerals were significantly reduced.122

Nanoparticles as an Efficient Carrier for Drug Delivery in the Treatment of Kidney 
Stones
Nanomaterials as carriers greatly improve the stability and solubility of drug active molecules, promote their transport 
across biological membranes, and prolong the circulation time in vivo, thereby improving the therapeutic effect.123,124 It 
plays an important role in drug delivery system for kidney stones Typically,125 effective pharmaceutical small molecule 
compounds are encapsulated in carriers such as synthetic polymers, micelles, and liposomes to form gels, nanoparticles, 
and microcapsules.126 As a carrier, therapeutic solid, liquid and gaseous compounds can be encapsulated and effectively 
delivered to specific targets in vivo.127 It has been shown that a mixed solution of chelated hexametaphate(HMP)\Fe3O4 
nanoparticles and dye is effectively encapsulated by a polylactic acid-polyethylene glycol (PLGA) shell to form uniform- 
sized microcapsules by a two-drop microfluidic process. Under the action of external magnetic field, it can accurately 
move to artificial calcium oxalate, and then the PLGA shell breaks under ultrasound irradiation, releasing the internal 
chelating HMP solution to dissolve the stone.128 Rutin is a chemical derived from plants with strong antioxidant activity. 
However, its hydrophobicity and limited bioavailability limit its clinical application. Researchers have developed 
a biocompatible amphiphilic triblock copolymer, PLGA-PEG-PLGA loaded rutin nanorod. Rutin nanorods (RNS) in 
the 150–180nm range were developed as polymer nanostructures of rutin, which have higher loading capacity and 
significantly improved drug bioavailability than conventional delivery systems of rutin. The PLGA chain segment forms 
a relatively hydrophobic region in the nanorod structure, which is one of the major active sites for rutin loading. Rutin is 
a flavonoid with some hydrophobicity. During nanorod formation, rutin molecules are attracted between PLGA chain 
segments, and the hydrophobic regions of PLGA can be encapsulated in rutin by hydrophobic interactions. Rutin 
nanorods in the range of 100–300nm have good biocompatibility and do not produce toxicity to cells. Higher plasma 
rutin concentrations have been shown in animal models, and polymer nanostructures can protect rutin from gastro-
intestinal factors.129 In addition, rutin nanorod has a good improvement effect on hyperoxaluria, hypercalciuria and 
hypomagnesuria.130 Curcumin is also a polyphenolic compound effective in alleviating oxidative stress, and it can be 
incorporated into cellulose Nano crystallized with cationic surfactant cetyltrimethylammonium bromide, which can be 
filtered through the glomerulus and then delivered to renal tubular cells to play a role.131 For uric acid stones: the 
development of chitosan-coated magnetic nanoparticles (A-MNPs) loaded with allopurinol has become an effective 
method for the management of hyperuricemic kidney stones132 and has achieved good results in preclinical studies. The 
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developed magnetic nanoparticles were coated with a hydrophilic chitosan polymer to protect the nanoparticles from 
early clearance by the body’s immune system. In vivo studies have shown that the duration of drug release is significantly 
prolonged and availability is greatly improved133 (Figure 4).

Nanoparticles Reduce the Residual Rate of Surgical Stones
Ureteroscopic laser lithotripsy is currently a common means of treating kidney stones by using a laser to break the stone 
into smaller pieces and then removing the pieces or allowing them to pass through. However, according to the existing 
reports, the stone-free rate of the ureteroscopic approach is only 60–75%,134 and the residual fragments will lead to the 
recurrence of clinical symptoms, leaving a hidden danger for the formation of larger stone lesions. The magnetic system 
currently used for whole kidney stone extraction can significantly improve the efficiency of stone debris removal. 
Magnetic nanoparticles were prepared from iron oxide nanoparticles. Maghematite, magnetite, and gadolinium, which 
have the unique property of decomposing into oxygen and iron in the body. When iron oxide nanoparticles with a size of 
10nm are synthesized, they exhibit superparamagnetism.135 Superparamagnetic iron oxide nanoparticles could bind to 
calcium ions on the surface of calcium oxalate kidney stones, and biopolymer (chitosan) could agglomerate nanoparticles 
on the stone by ion-gelation. They form a hydrogel to magnetize the stone.136 Under the action of an external magnetic 
field, the stone fragments are attracted and trapped. The carbon (fullerene, nanotubes and graphene) and gold (nanorod 
and nanorod) based photonic nanomaterials with appropriate size, shape, composition and biocompatibility are used to 
activate the nanomaterials by low intensity (<5w) laser irradiation when the photonic nanomaterials and kidney stones 
are in contact, directly transferring photothermal and photoacoustic energy to the stone, causing photothermal mechanical 
stress. Resulting in pulverization,67 allowing residual stones to be excreted through urine.

Figure 4 Application of nanomaterials in the treatment of kidney stones.
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Application of Nanomaterials Technology in the Treatment of Renal 
Calculi Related Complications
Application of Nanoparticles in Urosepsis
Ureteroscopic laser lithotripsy and percutaneous nephrolithotomy often lead to a complication of urosepsis in patients 
with kidney stones.137 Sepsis is caused by the invasion of pathogenic microorganisms138–140 and mainly manifests as 
life-threatening organ dysfunction with high morbidity and mortality in all regions of the world.69,141 Without appropriate 
drug treatment in the short term, the host’s immune response may be dysregulated, leading to excessive release of 
proinflammatory cytokines142 and death.143 Bacteria may also be released from the stone surface during the laser 
lithotripsy procedure. Because there is not enough heat to kill the bacteria attached to the kidney stones when they are 
crushed by the laser, they are dispersed, and under the pressure of hydronephrosis, bacteria and endotoxin137 penetrate 
into the circulation system, which eventually leads to the occurrence of urosepsis. In addition, studies have shown that 
bacteria also exist in the interior of kidney stones.144 When residual stone fragments occur during the operation, bacteria 
can also be widely distributed in the urinary tract and aggravate postoperative infection. The incidence of urosepsis after 
surgery has been reported to be as high as 7.6% to 16%.145,146 It will not only bring expensive additional treatment costs 
to patients, but also endanger the lives of patients, Therefore, early detection, timely diagnosis and intervention of 
bacteria are very important in its treatment.

In urinary tract infections, Gram-negative bacteria are more common than Gram-positive bacteria. As an important 
component of the outer membrane of Gram-negative bacteria, endotoxin can shed lipopolysaccharide during growth and 
infection, which can be used as a biomarker for bacterial detection.147 Some relevant scholars proposed to use 
microwaveassisted cysteamine functionalized ZnO nanoparticles (ZNo-Cys) to construct a photoluminescence based 
biosensor.148 N-acylhomoserine lactonates (AHLs) are common cell communication signaling molecules in Gram- 
negative bacteria, which can regulate a variety of physiological processes of bacteria.149 By detecting AHLs of Gram- 
negative bacteria, the production of bacterial virulence factors, the synthesis of antibiotics, and the pathogenicity and 
motility of pathogens can be better determined. Ultrasensitive lipopolysaccharide detection based on adriamycin coupled 
N-(aminobutyl)-N-(ethylisoluminol)as an electrochemiluminescence indicator and self-assembled tetrahedral DNA den-
drimer as a nanocarrier.150 Existing studies have shown that nanomaterials can often play an antibacterial role through 
multiple mechanisms.151–153 This review mainly elucidates that nanomaterials are used as carriers of antibiotics and 
indirectly complete sterilization according to their unique physical and chemical properties, so as to ultimately improve 
the condition of sepsis.

Polymyxin B (PMB) itself has a strong adsorption ability and bactericidal effect on lipopolysaccharide. It is very 
suitable for the treatment of sepsis. However, the dose used limits its widespread use in patients with sepsis. In order to 
make PMB more safe and reliable for clinical application, we have developed a nanoparticle system, called D-TZP, 
which can selectively reduce the toxicity of mammalian cells without any effect on the therapeutic activity of PMB. 
D-TZP consists of iron-complexed tannic acid nanocapeses containing a vitamin D core, coated PMB, and chitosan 
derivatives that control the interaction of PMB with lipopolysaccharides, bacterial microorganisms, and host cells. 
D-TZP greatly weakened the cell membrane toxicity caused by PMB, but retained the ability of PMB to inactivate 
lipopolysaccharides and Gram-negative bacilli.154 Ilan Klein’s group discovered that poly (4, 4-bis (2-ethylhexyl) - 
cyclopentadiene [2,1-b; 3.4-b] dithiene-2, 6-diyl-azo-2,1, 3-phenylselenadiazole-4, 7-diyl] and FITC-labeled polyethy-
lene glycol (PEG) were used as photothermal agents to excitation the polymer nanoparticles using a light source with 
a wavelength of 800nm (strongly overlapping with the main absorption peak). The exposure time of 60S can make the 
nanoparticles produce enough heat to reduce the presence of pathogenic bacteria associated with kidney stones.68 This 
study provides a theoretical basis for further exploring the targeted ablation of bacteria adhering to kidney stones by 
polymer nanoparticles under the stimulation of near-infrared light.

The development of macrophage biomimetic nanoparticles also brings more possibilities for the effective manage-
ment of patients with sepsis. Nanoparticles made from a macrophage-derived cell membrane wrapped with a polymer 
core have the same antigenic appearance as the source cell. Using themselves as bait for macrophages to allow 
nanoparticles to bind tightly and neutralize endotoxin, these macrophage-like nanoparticles also capture proinflammatory 
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cytokines and inhibit their ability to enhance the sepsis cascade.69,155 Tetrahedral framework nucleic acid (tFNA) is 
a new type of three-dimensional nucleic acid nanomaterials.156 Due to its special physical and chemical properties, it has 
the advantages of good biocompatibility, stable structure, and editing. The investigators used tFNA as a vector to deliver 
sirNA-targeted anti-inflammatory therapy to down-regulate TLR2 expression. Experiments have shown that siRNA can 
specifically reduce the increase of TLR2 induced by LPS and reduce the release of inflammatory factors in experimental 
sepsis induced by LPS, which provides a good reference for the prevention and treatment of sepsis.138 Treatment with 
anti-endotoxin gold nanoclusters significantly prolonged the survival time of mice with LPS-induced sepsis. Ultra-small 
gold nanoclusters can target lipid A of LPS and inactivate toxicity by compressing its packing density, which may be 
a potential therapeutic strategy for early prevention of sepsis caused by Gram-negative bacterial infection.157 In addition, 
intravenous injection of NO-releasing nanoparticles (NO-NP) can play an anti-inflammatory effect of continuous delivery 
of exogenous NO, which can improve LPS induced endotoxemia.158

Chemostress also plays an important role in the development of sepsis.159 Many breakthroughs have been made in 
this field, generally after the initial infection. Hydrogen peroxide (H2O2), a potentially toxic reactive oxygen 
species(ROS),160 is overproduced by proinflammatory immune cells in the initial stages of sepsis, and they play 
a dominant role in pathways related to systemic inflammatory immune activation.161,162 A peroxide scavenger mannose- 
modified polymeric albumin manganese dioxide (mSPAM) nanoassembly was constructed to catalyze H2O2 decomposi-
tion. Highly stable mSPAM nanoassemblies inhibited HIF-1α expression by scavenging H2O2. Treatment studies in 
systemic endotoxemia models have shown that mSPAM treatment reduces the inflammatory cytokines TNF-α and IL-6 in 
the serum, thereby avoiding organ damage caused by inflammatory macrophages, thereby inhibiting the further devel-
opment of sepsis.155,163 Interestingly, an integrated cascade Nano enzyme, formulated as Pt@PCN222-Mn, can be used 
to eliminate excess reactive oxygen species (ROS). The Nano enzyme mimics superoxide dismutase by incorporation of 
a Mn-[5,10,15,20 tetra-(4-carboxyphenyl) porphyrin]-based metal-organic framework compound, which is capable of 
converting oxygen radicals to hydrogen peroxide, and by incorporation of Pt nanoparticles, which catalyzes the 
dismutation of hydrogen peroxide to water and oxygen. Both in vitro and in vivo experimental measurements revealed 
the synergistic ROS scavenging ability of this integrated cascade of Nano enzymes.117 Stimulus-response and biomimetic 
Nano delivery systems are also emerging as advanced biological nanocarriers for enhanced sepsis treatment.164

Application of Nanoparticles in Biofilm Prevention and Control
The secreted polymers of bacteria will form a 3D matrix and eventually form a biofilm structure. Bacterial biofilm is 
a complex microbial community encapsulated by extracellular polymeric substances.165 They have a certain degree of 
persistence and refractoriness, showing strong resistance to general antibiotics.166 Therefore, traditional antibiotic therapy 
often fails to completely treat biofilm-associated infections.66,167 Near-infrared activated nanomaterials are widely used 
in photothermal tumor destruction, energy-gated drug delivery and biofilm eradication.168–171 Photothermal ablation is 
a strategy that may eradicate bacteria and destroy renal calculi related biofilms.172,173 Removal of renal calculi related 
biofilms and bacteria can effectively reduce the incidence of urosepsis. Nanoparticles capable of absorbing light and 
rapidly converting it to heat are advantageous for selective thermal destruction, but residual nanoparticles may become 
potential sites for kidney stone regrowth. Previous studies have shown that polymers can disrupt the formation of calcium 
oxalate crystals, so the use of polymer nanoparticles to disrupt bacterial biofilms associated with kidney stones becomes 
an ideal treatment.174

Nanoparticles with a size of less than 100nm, such as silver (Ag), nickel (Ni), zinc oxide (ZnO), gold (AU), and 
copper (Cu) nanoparticles have significant anti-biofilm properties and can exhibit enhanced antimicrobial activity when 
combined with major drugs used to treat bio membrane-associated infections.175,176 Development of novel biomimetic 
tannic acid-based hybrid nanocarriers (HNs) for targeted delivery of ciprofloxacin (CIP-loaded TAH-NPs) against 
bacterial biofilms. They demonstrated a 3-fold increase in biofilm eradication activity against methicillin-resistant 
Staphylococcus aureus (MRSA) and a 2-fold increase in biofilm eradication activity against Pseudomonas aeruginosa 
compared to naked CIP.177 Nanoparticles have emerged as a superior means of biofilm penetration and treatment.178 For 
example, Wu demonstrated a novel anti-biofilm system based on red phosphorus films, which exhibited safe and effective 
anti-biofilm properties in vitro and in vivo using 808 nm laser at 50°C.179 They demonstrated a 3-fold increase in biofilm 
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eradication activity against methicillin-resistant Staphylococcus aureus (MRSA) and a 2-fold increase in biofilm 
eradication activity against Pseudomonas aeruginosa compared to naked CIP.177 Nanoparticles will be a superior 
means for biofilm penetration and treatment.178 For example, Wu demonstrated a novel anti-biofilm system based on 
red phosphorus films, which exhibited safe and effective anti-biofilm properties in vitro and in vivo using 808 nm laser at 
50°C.179 A novel dual-function composite nanosheet (SiHx@Ga) can be used for sequential anti-biofilm therapy by 
fluctuating the pH value of the biofilm microenvironment. When the biofilm is in an acidic environment, SiHx@Ga uses 
the self-sensitive photothermal Trojan horse strategy, which can effectively damage the reactive oxygen species (ROS) 
defense system and trigger bacterial oxidative stress and lipid peroxidation, showing good antibacterial and biofilm 
destruction effects. In the later stage of the patient’s treatment, SiHx@Ga adsorbs the free pathogenic nucleic acids 
released after biofilm destruction, generates hydrogen through the scavenging of ROS, and promotes the polarization of 
macrophages into M2 type, which effectively reduces the destructive inflammatory burst and promotes the rapid healing 
of tissues.180

Through a large number of literature reviews, it has been found that nanomaterials can strongly interact and react 
biologically with cell membranes in the treatment of infectious diseases, destroying the integrity of biofilm in a short 
time.181 For example, N-trimethylchitosan nanofibers can generate sufficient pressure to cause bacterial lysis and death 
by relying on electrostatic binding of polycations on the membrane to the negatively charged portion of the bacterial cell 
wall. Zinc oxide nanoparticles are positively charged and can bind to and destroy negatively charged bacterial cell 
membranes, leading to leakage of bacterial cell contents and bacterial death.182 At present, therapeutic nanoparticles, 
especially polymeric nanoparticles, liposomes,183 dendrimeric polymers and inorganic nanoparticles, have shown good 
effects on killing bacteria, and many have been used specifically for local antimicrobial therapy.184–188 In conclusion, the 
emergence of nanomaterials technology provides a new strategy for the treatment of sepsis,189 which greatly improves 
the prognosis of patients.

Application of Nanoparticles in Accidental Arterial Bleeding Caused by Renal Calculi 
Surgery
At present, percutaneous nephrolithotomy (PCNL) is the mainstream surgical treatment of kidney stones, and renal 
puncture is the most critical step of PCNL, because puncture is mainly completed under the assistance of ultrasound, 
which is not particularly accurate, so it is easy to cause arterial injury and cause bleeding, and in severe cases, 
embolization is needed. The control of bleeding is extremely sensitive to time, and rapid hemostatic intervention will 
determine the survival rate of injured patients.190 In order to reduce the risk of bleeding and other iatrogenic complica-
tions in the minimally invasive surgical environment, timely and effective hemostasis is particularly important. 
Nanomaterials in bioengineering not only focus on rapid and robust efficacy and excellent tissue sealing quality, but 
also provide better optical visualization for surgeons.191 When arterial bleeding occurs, a novel bioengineered tantalum 
loaded nanocomposite hydrogel for gel embolization material (Ta-GEM) can be rapidly delivered using a clinical catheter 
for immediate hemostasis regardless of coagulation status.71,192 Ta-GEM preparation can be seen by most clinical 
imaging methods, including ultrasound, CT, and MRI, and no obvious artifacts are observed. In addition, the operator 
can retrieve Ta-GEM, resulting in temporary occlusion of the vessel, which can be corrected in a timely way in cases of 
failed coil embolization. The current experimental results of renal and iliac arteries in animal models show safe and 
durable hemostatic effects.193,194 An injectable mesoporous bioactive glass nanoparticle(MBGN)-incorporated biopoly-
mer hydrogel bioadhesive195 that exhibits strong bonding strength (up to 107.55kPa) at physiological temperatures and 
can also be removed and reused. The incorporation of MBGN in the biopolymers hydrogel significantly improved the 
tissue bonding strength compared to the hydrogel adhesive alone, and the bio adhesive exhibited excellent biocompat-
ibility. Avery et al, synthesized a novel gelatin and silicate nanoplatelet hydrogel material with superior biological 
properties to block blood flow without thrombus formation.196,197 Nanofibrous materials, such as chitosan nanofibers,198 

can be used for rapid hemostasis at renal artery bleeding sites.199 It has good biocompatibility and antibacterial 
property.85 Nanofiber structure can increase the contact area with bleeding tissue and promote blood coagulation. 
Synthetic polymer nanofibers such as polylactic acid-co-glycolic acid (PLGA) nanofibers can also be loaded with 
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hemostatic drugs or growth factors for the treatment of renal artery hemorrhage.200,201 Iron oxide nanoparticles are 
superparamagnetic, which can be loaded with hemostatic materials under the guidance of an external magnetic field to 
accurately localize to the renal artery bleeding site,202 and achieve hemostasis by promoting platelet aggregation and 
blood coagulation.

Conclusion and Perspective
This review focuses on the application of nanoparticles in the early urine monitoring, imaging diagnosis, surgical treatment, 
drug treatment and complication management of kidney stones. The rapid development of nanomaterials provides a new 
prevention and treatment strategy for kidney diseases, especially kidney stones. Due to its high specificity and high sensitivity, 
nanoparticles are more widely used in electrochemical biosensors, which can provide early quantitative analysis of com-
pounds in urine and related components involved in the formation of kidney stones, and make a reasonable risk assessment for 
patients. The current surgical methods for the treatment of kidney stones are still insufficient. The intervention of nanomater-
ials can greatly improve the efficiency of intraoperative stone removal, reduce the residual stone rate, shorten the operation 
time, and make the whole process more minimally invasive and avoid further recurrence of kidney stones. Nanoparticles have 
anti-inflammatory and anti-oxidative stress effects,203 which can inhibit the occurrence and development of renal calcium 
oxalate stones. By changing the shape, size, surface charge and composition of nanomaterials, the drug can be better loaded. 
The drug small molecules modified by nanomaterials have excellent biocompatibility, bioavailability and responsiveness. It 
can control the release rate of drugs, allow timed release, and long-term drug delivery. It can also achieve targeted drug 
delivery through molecular recognition, so that more active ingredients can act on the disease site, increase the local effective 
concentration and therapeutic effect of drugs, and avoid the impact on healthy organs. In terms of complications, nanomater-
ials also have great advantages, which bring a new direction and choice for the treatment of sepsis. In bacterial infection, 
nanomaterials can effectively remove biofilms and load antibiotics to kill a variety of drug-resistant bacteria, and participate in 
hemostasis and repair of arteries as biomaterials for vascular embolization.

However, the long-term side effects of nanoparticles in humans are unknown.204 The pathophysiological processes 
involved in the progression of some kidney diseases have not been fully elucidated and require more detailed studies before 
they can be widely applied. The effectiveness of nanomaterials may change during the translation from laboratory studies to 
clinical practice. In the laboratory environment, nanomaterials may show good therapeutic effects on cells or animal 
models. However, in clinical application, individual differences of patients (such as age, gender, underlying diseases, etc.) 
and the complexity of diseases may affect the actual efficacy of nanomaterials, resulting in less effective than expected.

In order to further better guide the clinical practice, the development of bioactive nanomaterials needs to be further 
explored and studied in the following aspects: (1) The exploration of chemical mechanism. The study of the chemical 
mechanism of materials can help researchers better understand the structure-activity relationship of materials and 
biological functions, thereby providing principled guidance for the design and development of bioactive nanomaterials. 
(2) broaden the scope of nanomaterials. Future research should focus on investigating the physicochemical properties and 
biological activities of novel biomaterials. For example, nanomaterials fabricated by 3D printing technology are 
important biomedical nanomaterials, and exploring their related biological activities will be a promising research 
direction. (3) to improve the treatment effect of materials. Due to the complexity of biological systems, the therapeutic 
effects of bioactive nanomaterials are often unsatisfactory. The tissue targeting, biodistribution, biodegradation and 
immunogenicity of materials should be considered and addressed in our subsequent work.

In conclusion, nanotechnology provides a new approach for the treatment of kidney stones and shows great potential 
in the diagnosis and treatment of related kidney diseases in the future.
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