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Abstract

Mass media reports can induce individual behaviour change during a disease outbreak,

which has been found to be useful as it reduces the force of infection. We propose a com-

partmental model by including a new compartment of the intensity of the media reports,

which extends existing models by considering a novel media function, which is dependent

both on the number of infected individuals and on the intensity of mass media. The exis-

tence and stability of the equilibria are analyzed and an optimal control problem of minimiz-

ing the total number of cases and total cost is considered, using reduction or enhancement

in the media reporting rate as the control. With the help of Pontryagin’s Maximum Principle,

we obtain the optimal media reporting intensity. Through parameterization of the model with

the 2009 A/H1N1 influenza outbreak data in the 8th Hospital of Xi’an in Shaanxi Province of

China, we obtain the basic reproduction number for the formulated model with two particular

media functions. The optimal media reporting intensity obtained here indicates that during

the early stage of an epidemic we should quickly enhance media reporting intensity, and

keep it at a maximum level until it can finally weaken when epidemic cases have decreased

significantly. Numerical simulations show that media impact reduces the number of cases

during an epidemic, but that the number of cases is further mitigated under the optimal

reporting intensity. Sensitivity analysis implies that the outbreak severity is more sensitive to

the weight α1 (weight of media effect sensitive to infected individuals) than weight α2 (weight

of media effect sensitive to media items).

Introduction

Emerging and reemerging infectious diseases including the 2003 severe acute respiratory syn-

drome (SARS) and the 2009 A/H1N1 influenza epidemic have become a major cause of mor-

tality and morbidity in emergency situations. News reports have the potential to modify a

community’s knowledge of emerging infectious diseases, and affect people’s attitudes and

behaviours during infectious disease outbreaks [1, 2]. People informed by media reports can

take precautions ranging from washing hands, wearing protective masks to avoiding social
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contact with infected individuals, to reduce their susceptibility. Informed infective individuals

will also take measures to protect themselves from being exposed to others to reduce infectiv-

ity. It has been shown that behaviour change during infectious disease outbreaks can curb the

effects of infectious diseases in populations [3].

In recent years, a growing number of studies have focused on understanding and quantify-

ing the impact of such behaviour influencing factors on the spread of infectious diseases [4–

18]. A number of studies have employed mathematical models to assess the impact of media

reports on emerging infectious disease prevention and control [4, 5, 19–30]. Recently, Green-

halgh et al. [19] presented a brief and nice commentary on the literature related to awareness

and their effects on the dynamics of diseases. In summary, it has been found that there are

three main methods being used to incorporate behaviour change in mathematical models due

to awareness of disease. In the first method, the incidence rate of the disease is reduced by

some factors that depend on the numbers of infected individuals, hospitalized individuals or

exposed individuals, due to education about preventative knowledge of the disease through

media coverage. The common choice of the reduction factors is a saturated [4, 6, 31, 32] or

exponential [20, 24, 27] growth function. For example, Liu et al. [27] incorporated an expo-

nential decreasing factor β0 = βe−a1E−a2I−a3H into the transmission coefficient (with exposed (E),

infectious (I), hospitalized (H)) to illustrate the possible mechanism for multiple outbreaks of

SARS due to the psychological impact. Cui et al. [32] used the general nonlinear incidence

function μ1 − μ2 f(I) to represent the media and education impact on the spread of the infec-

tious disease. In [5], the authors focused on simple endemic models by modelling the contact

rate as a function of the available information on the present and the past disease prevalence.

In the second method, a separate compartment that effectively represents the level of aware-

ness in the population is introduced, and individuals in the population can move from the

unaware to aware compartments [7, 15, 16, 19, 21–23, 28]. For example, in [19], the authors

proposed a mathematical model by inducing behavioural changes in the population through

delineation of the susceptible class into unaware susceptible and aware susceptible subpopula-

tions. [16] and [29] explicitly introduced distinct compartments for unaware and aware indi-

viduals in each of the disease states, and transitions between respective unaware and aware

compartments took place at constant rates.

In the third method, a compartment representing the awareness program is incorporated

[8, 18, 21, 25]. Yan and Tang et al. [25] described the effects of media reports on population

infection by modifying the transmission rate β following an exponential function βe−pM with

M representing the level of media reports. Further, in [8], the media reporting is introduced as

a separate compartment in a mathematical model and the susceptible population is divided

into three awareness levels, each with a different infection rate. In [18], the authors considered

the interaction of disease outbreak and media impact by formulating a susceptible-infected-

hospitalized-recovered framework of population. By extension, susceptible and infected popu-

lations are subdivided into aware and unaware since individuals modified their behaviors to

reduce their transmissibility and infectivity, and the dynamics of media reports was incorpo-

rated by considering how media was influenced by the numbers of infected and hospitalized

individuals.

The majority of the mathematical modelling studies described above have incorporated

media impact either in the disease transmission term or by dividing the susceptible population

into subgroups with various awareness levels. However, the relationship between mass media

and disease spread can be more complex than these models portray. On one hand, media

reporting influences the public awareness of the disease and affects the effectiveness of preven-

tion measures. On the other hand, the severity of the disease has an impact on the degree of

mass media reporting. We’ve known that, in the first and third methods, media impact is
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modelled through the inclusion of a “media function”, which is proportional to the number of

infected individuals and/or the level of media reports, to reduce the incidence rate through

increased protective behaviour. However, it remains unclear as to whether awareness of the

number of infections, or the awareness of media reports best modify individual behaviour dur-

ing an infectious disease outbreak. This falls within the scope of this study.

Herewithin, we establish a mathematical model incorporating media reports as a separate

compartment by considering how media is influenced by disease statistics (number of newly

observed individuals). Disease progression is characterized by an SEIR model of which the

transmission rate is modified by a media function affected by the media reports and also the

number of infected individuals. The model can be recognized as the combination of the first

method and the third method of modelling. In our model, we formulate the novel media func-

tion f(I, M, α1, α2) with αi (i = 1, 2) denoting the weight of infected individuals and media

reports, and examine their effects on disease spread. Further, we investigate an optimal control

problem in order to seek the optimal reporting intensity of information to minimize the num-

ber of infected individuals (and costs). We parameterize the proposed model on the basis of

the 2009 A/H1N1 data in Shaanxi province of China, and estimate the basic reproduction

number and other unknown parameters. A sensitivity analysis is conducted to identify model

parameters that most affect the peak magnitude of the epidemic, as well as the total number of

infections over the entire epidemic.

Methods

Model

We are interested in studying the effects of I and M on the outcomes of an infectious disease

outbreak/epidemic. We therefore consider a mass media compartment M and a media effect

function that depends on both the number of infected I and media reports M. Consider an

SEIR model that incorporates a compartment of media programs M, in which the media

impact on the human behaviour is reflected in the contact rate.

dS
dt ¼ L � f ðI;M; a1; a2ÞbSI � mS;
dE
dt ¼ f ðI;M; a1; a2ÞbSI � sE � mE;
dI
dt ¼ sE � gI � mI;
dR
dt ¼ gI � mR;
dM
dt ¼ rsE � dM:

8
>>>>>>><

>>>>>>>:

ð1Þ

where S(t), E(t), I(t), R(t) represent the susceptible, exposed, infective, and recovered popula-

tions, respectively, M(t) represents the number of news items. Here, Λ is the birth rate, μ is the

natural death rate, σ is the progression rate from the exposed to infective classes, and γ is the

recovery rate. The propagation of information depends on the number of newly observed indi-

viduals (σE), and ρ represents the reporting rate of the newly observed individuals. It is

assumed that δ represents the spontaneous disappearance rate of media. The baseline trans-

mission rate without media effect is represented by β and f(M, I, α1, α2) is used to modify the

transmission rate, which is induced by the media effect. Finally, α1, α2 are the weights of media

effect sensitive to infectives and media items, respectively. All the parameters are non-

negative.

It’s obvious that the media impact on the behavior of humans increases as the number of

infected individuals increases or the intensity of media reports increases. Thus the term of

media impact factor reflecting the behavior change f(I, M, α1, α2) is a decreasing function with
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respect to the number of infected individuals I and the media intensity M, it should satisfy the

following assumptions:

@f ðI;M; a1; a2Þ

@I
� 0 for all I > 0;

@f ðI;M; a1; a2Þ

@M
� 0 for all M > 0;

f ð0; 0; a1; a2Þ ¼ 1; f ðI;M; a1; a2Þ ! 0 as I !1 or M !1:

ð2Þ

Here, we choose two different media functions,

f1ðI;M; a1; a2Þ ¼ e� a1I� a2M;

and

f2ðI;M; a1; a2Þ ¼
1

1þ a1I þ a2M
:

Optimal control

In system (1), the reporting rate is proportional to the newly reported number of infected indi-

viduals. It is natural to ask whether we should enhance the reporting rate to reduce the total

infected number and minimize the cost of media reporting. Thus our main purpose is to mini-

mize the total number of infective individuals as well as the cost required to reduce or enhance

the media reporting intensity.

Consider the optimal control problem to minimize the objective functional

JðuÞ ¼
ZT

t0

½AIðtÞ þ B
2
u2ðtÞ�dt ð3Þ

subject to

dS
dt ¼ L � bf ðI;MÞSI � mS; Sðt0Þ ¼ S0 > 0;

dE
dt ¼ bf ðI;MÞSI � sE � mE; Eðt0Þ ¼ E0 � 0;

dI
dt ¼ sE � gI � mI; Iðt0Þ ¼ I0 � 0;

dR
dt ¼ gI � mR; Rðt0Þ ¼ R0 � 0;

dM
dt ¼ uðtÞrsE � dM; Mðt0Þ ¼ M0 � 0:

8
>>>>>>><

>>>>>>>:

ð4Þ

where the coefficients A and B/2 are positive. Here we assume that A = 1, and that B/2 is the

weight associated with the control u(t). Note that u(t) is a Lebesgue measurable function on

a finite interval [t0, tend], where 0� u(t)� umax, umax> 1, and 0� u(t) < 1 represents reduc-

tion in reporting intensity, whereas 1< u(t)� umax represents enhancement in reporting

intensity.

Parameter values

We use data from the 8th hospital of Xi’an in Shaanxi province to study the effects of media

reports. The data are fully available in S2 File. The data include information on the daily num-

ber of hospital notifications in the 8th hospital from September 3 to 30, 2009. Parameter values

for Eq (1) are informed by the literature and are further estimated through model fits to the

hospital notification data, using the Least Square Method.
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To ensure that our model estimates of the basic reproduction number, R0, are from the

exponential growth phase of infection, we assume data from September 3-21 [33]. Also, so that

we can compare the effects of I and M on the optimal control of media reporting, we assume a

mass media compartment and a media function that depends both on I and M. Table 1 lists

the best-fit parameters determined for model (1), without media impact f(I, M, α1, α2) = f0(I,
M) = 1 and with two different media functions f1 = e−α1I−α2M and f2 ¼ 1

1þa1Iþa2M, respectively.

Note that, for completeness, we consider the extended dataset from September 3-30 in a

sensitivity analysis. Also, we have provided model fits and parameter values when the mass

media compartment M is not included in the model in S1 File Appendix C. However, as we

are interested in comparing the effects of I and M in the current study, we consider the full

model with the M compartment in the optimal control and sensitivity analysis.

Results

Equilibrium

The basic reproduction number for system (1) can be calculated as

R0 ¼
bsL

mðgþ mÞðsþ mÞ
ð5Þ

easily using the next generation method [35] or the survival function method (see [36] for a

review of this method and other methods that are commonly used). Note that the basic repro-

duction number is independent of the mass media compartment. Also note that it is not

affected by the media function f(I, M). Therefore, it is the same as it would be in a model

without media impact, which means that media coverage does not play a role in affecting this

epidemic threshold. This has also been observed in previous studies [4, 6, 11].

Omitting the equation for R, the system (1) can be rewritten as a four dimensional

model. Here, the disease free equilibrium is E0ð
L

m
; 0; 0; 0Þ, and the endemic equilibrium

Table 1. Values of initial populations and parameters in the model (1).

Variables Description Initial value Resource

f0 f1 f2
S(t) Susceptible population 28410 28410 28410 LS

E(t) Exposed population 59 59 61 LS

I(t) Infected population 4 4 4 data

R(t) Recovered population 0 0 0 [25]

M(t) Media items 8 8 8 [25]

Parameters Description Value Resource

f0 f1 f2
Λ Birth rate of the population (per day) 0 0 0 -

μ Natural death rate of the population (per day) 0 0 0 -

β Contact transmission rate (per person per day) 0.0000154 0.0000158 0.0000158 LS

α1 Weight of media effect sensitive to infected individuals 0 0.00015 0.00015 LS

α2 Weight of media effect sensitive to media items 0 0.0138 0.0122 LS

σ Progression rate from exposed to infected (per day) 1/2.8 1/2.8 1/2.8 [34]

γ Recovery rate of infected population (per day) 1/4.16 1/4.16 1/4.16 [34]

ρ Media reporting rate (per day) - 0.01 0.01 LS

δ Media waning rate (per day) - 0.4940 0.2535 LS

https://doi.org/10.1371/journal.pone.0213898.t001
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E�ðS�;E�; I�;M�Þ should satisfy

L � f ðI�;M�ÞbS�I� � mS� ¼ 0;

f ðI�;M�ÞbS�I� � sE� � mE� ¼ 0;

sE� � gI� � mI� ¼ 0;

rsE� � dM� ¼ 0;

8
>>>><

>>>>:

ð6Þ

Simplifying gives

S� ¼
L

m
� dðsþ mÞ

rsm
M�; E� ¼ d

rs
M�; I� ¼ d

rðgþ mÞ
M�; ð7Þ

and

f ðI�;M�Þ L � dðsþ mÞ

rs
M�

� �
¼ mðsþ mÞðgþ mÞ

bs
: ð8Þ

Since I� can be expressed by M�, we can rewrite f(I�, M�) as hðM�Þ ¼ f ð d

rðgþmÞ
M�;M�Þ. Denote

hðMÞ ¼ f ð d

rðgþmÞ
M;MÞ, then h(M) is a decreasing function with respect to M. Let

gðMÞ ¼ hðMÞ L � dðsþmÞ

rs
M

� �
�

mðsþmÞðgþmÞ

bs
: ð9Þ

Then we have gð0Þ ¼ L �
mðsþmÞðgþmÞ

bs
> 0 when R0 > 1, gð rsL

dðsþmÞ
Þ ¼ �

mðsþmÞðgþmÞ

bs
< 0, and

g 0ðMÞ ¼ h0ðMÞðL � dðsþmÞ

rs
MÞ � dðsþmÞ

rs
hðMÞ < 0 holds true for any M satisfying

L �
dðsþmÞ

rs
M > 0. Thus there must exist one and only one positive root M� < rsL

dðsþmÞ
that satis-

fies g(M�) = 0 if R0 > 1. Particularly, if we choose

f1ðI;MÞ ¼ e� a1I� a2M;

and

f2ðI;MÞ ¼
1

1þ a1I þ a2M
;

we have

M� ¼
rsL

dðsþ mÞ
�

rðgþ mÞ

a1dþ a2rðgþ mÞ
LambertWð

mða1dþ a2rðgþ mÞÞ

bd
e
ða1dþa2rðgþmÞÞsL

dðsþmÞðgþmÞ Þ;

and

M� ¼
rmðgþ mÞðR0 � 1Þ

mða1dþ a2rðgþ mÞÞ þ bd
;

respectively. (Please find detailed definition of Lambert W function in paper [10, 37]).

Note that the disease free equilibrium E0ð
L

m
; 0; 0; 0Þ is globally asymptotically stable

if R0 � 1, and unstable if R0 > 1. Meanwhile, the unique endemic equilibrium

E�ðS�;E�; I�;M�Þ exists if and only if R0 > 1 and it is locally asymptotically stable if it is feasi-

ble. For more information about the stability of the disease free equilibrium and the endemic

equilibrium, see S1 File Appendix A.
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Existence of optimal control

Denote the control set

U ¼ fuðtÞ : 0 � uðtÞ � umax; t0 � t � tend; uðtÞ is Lebesgue measurableg. The existence of

optimal control can be shown using the results from Theorem 4.1 in [38]. We can easily verify

the following properties:

1. The set of control and corresponding state variable is non-empty, which can be shown by

the boundedness of solutions of system (4) using the results from Theorem 9.2 in [39].

2. The control set U is closed and convex by definition.

3. The right-hand side of the state system is bounded above by a linear function in the state

and control, since the solutions are bounded, which determines the compactness needed

for the existence of the optimal control.

4. The integrand of the objective functional is convex on the control u(t), and there exists q1 >

0, q2 > 1 such that AIðtÞ þ B=2uðtÞ2 � q1juðtÞj
q2 � q3, where we can choose q1 = B/2 and

q2 = 2.

Then we have that, for the control problem (3) and (4), there exists an optimal control

u� 2 U such that min J(u) = J(u�) on the interval [t0, tend].

Theorem 1 There exists an optimal control u� that minimizes J(u) over U . Moreover, there
exists adjoint functions

l
0

SðtÞ ¼ bf ðI;MÞIðlS � lEÞ þ mlE;

l
0

EðtÞ ¼ sðlE � lI � ruðtÞlMÞ þ mlE;

l
0

IðtÞ ¼ � Aþ bf ðI;MÞSðlS � lEÞ þ bSI
@f ðI;MÞ
@I ðlS � lEÞ þ gðlI � lRÞ þ mlI;

l
0

RðtÞ ¼ mlR;

l
0

MðtÞ ¼ bSI
@f ðI;MÞ
@M ðlS � lEÞ þ dlM;

8
>>>>>>><

>>>>>>>:

ð10Þ

with the transversality conditions

lSðtendÞ ¼ 0;lEðtendÞ ¼ 0; lIðtendÞ ¼ 0; lRðtendÞ ¼ 0;lMðtendÞ ¼ 0: ð11Þ

The optimal control u� is given by

u�ðtÞ ¼ maxfminf
� lMrsE

B
; umaxg ; 0g: ð12Þ

For detailed derivation of the optimal control for the control problem (3) and (4), see S1

File Appendix B.

Numerical simulation

During the 2009 A/H1N1 influenza pandemic, media coverage was used to spread precaution

information about the disease, which influenced human behaviours [11, 25]. Using data

extracted from the initial laboratory-confirmed cases of 2009 A/H1N1 that were admitted to

the 8th hospital of Xi’an for the period 3rd September to 21st September, and the Least Square

Method, we estimated the parameters shown in Table 1 and Fig 1, with R-square value being

0.9588, 0.9577, 0.9583, using three different media functions f0, f1, f2. Note that the goodness of

fit is significant, but similar for each case. This is not unexpected as the data spans 19 days

only. Also, however, as shown in our discussion of R0, during the early stages of an epidemic

Optimal media reporting intensity on mitigating spread of an emerging infectious disease
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there is little effect due to mass media reports. Therefore it is reasonable that the model fits

and parameter values are similar comparing the model with (f1, or f2) and without (f0) media.

Using the Akaike Information Criterion (AIC) for Least-Squares case,

AIC ¼ n log ðRSS
n Þ þ 2k, where n is the sample size, k is the number of parameters, and RSS

denotes residual sum of squares of fitted model, we obtain an AIC of 90.8918 for the model

without media impact (i.e. the model with f0), 99.3676 for the model with f1, and 99.0981 for

the model with f2. We note that the model without media impact has the lowest AIC and mod-

els that do not consider the mass media compartment M also fit the data well (see S1 File

Appendix C). However, as we are interested in understanding the effects of mass media

reports M and known infectives I to an individual in the population, we continue our study

considering the model with the M compartment, and media functions f1 and f2. Considering

the R-square and AIC, we conclude that model (1) with f2 fits the observed data better than

the model with media function f1.

To show the sensitivity of the basic reproduction number R0 with respect to the time inter-

val considered, we also estimated key epidemic parameters and initial conditions considering

the time periods between September 3rd and 23rd, 25th, 28th, and 30th, respectively. Results

are presented in Table 2 and shown in Fig 2. When different periods are considered, the repro-

duction number varies from 1.8715 to 2.0463. The results indicate that, for each period we

consider, the model with both f1 and f2 can fit the observed data well. Note that we have chosen

to consider the model fits using data from the 3rd to 21st of September in the analysis below.

This is done to ensure that we estimate R0 during the exponential growth phase of the outbreak

[33].

Fig 1. Data fitting for the daily number of hospital notifications from September 3rd to 21st, 2009 in the 8th hospital of Xi’an. Circles represent the hospital

notifications in the 8th hospital of Xi’an, black curve, red curve and blue curve represent the estimating solutions for the number of infected individuals in system

(1) without media impact (i.e. f0 = 1), and by using media function f1 = e−α1I−α2M, f2 ¼ 1

1þa1 Iþa2M, respectively.

https://doi.org/10.1371/journal.pone.0213898.g001
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Using data from September 3-21, the basic reproduction number is estimated as R0 =

1.8248 without media impact (f(I, M, α1, α2) = f0 = 1), which is lower than the estimates for

R0 = 1.8715 for media function f(I, M, α1, α2) = f1 and 1.8716 for media function f(I, M, α1,

α2) = f2. These three values of R0 are all in agreement with the result in [25], in which the mean

value of the basic reproduction number was estimated as 1.794 with 95% confidence interval

[1.3858, 1.9091]. Again, we note that the similar R0 values reflect the fact that there is little

impact of media reports in the early days of the epidemic.

Table 2. Parameter estimates based on data from the 8th hospital of Xi’an after 3rd September.

Parameter Sep. 3-21 Sep. 3-23 Sep. 3-25 Sep. 3-28 Sep. 3-30

f1 f2 f1 f2 f1 f2 f1 f2 f1 f2
S(0) 28410 28410 28970 29000 29512 29510 28483 28558 29352 29351

E(0) 59 61 58 57 77 79 60 62 66 66

β 1.58e-5 1.58e-5 1.583e-5 1.58e-5 1.6622e-5 1.6571e-5 1.6401e-5 1.5947e-5 1.68e-5 1.672e-5

α1 1.5e-4 1.5e-4 1.5e-4 1.5e-4 1.9691e-4 1.7433e-4 4.9951e-4 3.6903e-4 0.0011 0.0013

α2 0.0138 0.0122 0.01 0.01 0.1124 0.1782 0.0166 0.0146 0.0598 0.0563

ρ 0.01 0.01 0.0352 0.01 0.0032 0.0024 0.01 0.01 0.01 0.01

δ 0.4940 0.2535 0.5 0.2940 0.2616 0.3086 0.2914 0.2577 0.4469 0.4481

R0 1.8715 1.8716 1.9118 1.9101 2.0463 2.0401 1.9477 1.8989 2.0563 2.0589

R-square 0.9577 0.9583 0.9663 0.9687 0.9796 0.9787 0.9803 0.9797 0.9602 0.9583

AIC 99.3676 99.0981 106.6231 105.1710 107.4610 107.3906 117.3241 117.9277 140.9177 141.999

https://doi.org/10.1371/journal.pone.0213898.t002

Fig 2. Data fitting for four time intervals. (A) September 3-23; (B) September3-25; (C) September 3-28; (D) September 3-30, 2009. Circles represent the

hospital notifications in the 8th hospital of Xi’an, red and blue curves are the fitting curves for the model with f1 and f2, respectively.

https://doi.org/10.1371/journal.pone.0213898.g002
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We plot the epidemic curves of system (1) without media function (f0 = 1) and with media

function f1, f2, in Fig 3, using the parameter values listed in Table 1. This figure shows that the

number of infected individuals is greatly reduced when media impact is considered. For exam-

ple, the peak magnitude is reduced from 2091 to 1225 (1189) when we use the media function

f1 (f2), giving a reduction of 41.4% (43.1%). The total number of infected individuals over one

year is also reduced, from 87974 to 74391 (73370). It also follows from Fig 3 that there is no

obvious difference on the epidemic prevalence for system (1) with media function f1 or func-

tion f2, though the number of media items looks very different for the different media func-

tions, which may be attributed to the small numbers of media items and the small value of the

weight of media effects sensitive to the media reports. This is also confirmed in Fig 4(A) and

4(B) that media functions f1 and f2 are almost the same under their estimated parameters.

The contour plots of Fig 5 show the dependence of the peak magnitude and the total num-

ber of infections on the weight of media effects sensitive to infected individuals α1 and the

weight of media effects sensitive to the media reports α2, using the two different media func-

tions. With increases in α1 or α2, both the peak magnitude of the number of infected individu-

als and the total number of infections over a year decrease greatly, indicating that the media

effect reduces outbreak severity. To identify key parameters that influence the disease infection

dynamics, we use Latin Hypercube Sampling (LHS) and partial rank correlation coefficients

(PRCCs) to examine the dependence of the peak magnitude and total number of infections on

corresponding model parameters. It follows from Figs 6 and 7 that, despite the fact that the

baseline value of the transmission rate β and the recovery rate γ are the most sensitive parame-

ters to the peak magnitude and the total number of infections, parameters related to the media

coverage α1, α2, ρ, δ can also significantly affect the results. In particular, increases in the

weight of infective cases α1 and media reports α2 in the media function will significantly

Fig 3. Comparison of solutions for system (1) with and without media effect. Black, red, blue curves represent the result of without media effect (f0 = 1),

with media function f1 = e−α1I−α2M, and with media function f2 ¼ 1

1þa1 Iþa2M, respectively.

https://doi.org/10.1371/journal.pone.0213898.g003
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Fig 4. Comparison of media functions. (A) Comparison of media functions in system (1) varying with time, black curve, red curve and blue curve represent

f0 = 1, f1 = e−α1I−α2M, f2 ¼ 1

1þa1 Iþa2M, respectively. (B) Comparison of f1 and f2 when parameters α1 and α2 are fixed as values estimated by using Least Square

Method and I, M vary.

https://doi.org/10.1371/journal.pone.0213898.g004

Fig 5. Contour plots. Contour plots of the peak magnitude and the total number of infections versus α1 and α2 by using media functions f1 and f2, respectively.

The red star represents the α1 and α2 we have parameterized by using the real data.

https://doi.org/10.1371/journal.pone.0213898.g005
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reduce the peak magnitude and total number infections. Also, decreases in the media reporting

rate ρ, and increases in the media waning rate will lead to more severe outbreaks.

To access the effectiveness of enhancing the media reporting on the epidemic outbreak, we

plot the variation in peak magnitude and total infections with the corresponding parameter ρ,

as shown in Fig 8(A) and 8(B). It shows that increasing ρ by 4 times from baseline value (while

keeping other parameters fixed) can reduce the peak magnitude from 1225 to 779 (decreased

by 36.4%) for the media function f1 or 1189 to 687 (decrease by 42.2%) for the media function

f2, and also can reduce the number of total infections from 74391 to 66783 for f1 or 73370 to

64102 for f2.

To further investigate what pattern of media report is optimal in minimizing the number of

infected individuals and costs, we simulate the optimal control system (4) and obtain the opti-

mal control. Here, we fix the parameter values as listed in Table 1 and employ the Forward-

Backward Sweep method. It follows from Fig 9(A) that the optimal control is to continuously

strengthen/increase the media reports at the beginning of an epidemic, when the disease starts

to spread. A maximum level should then be maintained in times surrounding the peak number

of infections, and then it should be slowly weakened as the infection reduces in the population.

It is clear that the optimal control is similar for the two different media functions f1 and f2,

Fig 6. Sensitivity analysis. LHS-PRCC results for peak magnitude of infected individuals and total number of

infections of system (1) with respective to β, α1, α2, σ, γ, ρ, δ. The sensitivity analysis is done with 2000 bins, the left and

right columns correspond to system (1) with media functions f1 and f2, respectively.

https://doi.org/10.1371/journal.pone.0213898.g006
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however, the optimal media reporting intensity for system (4) with media function f2 is stron-

ger than that for system (4) with media function f1 (i.e., u�
2
> u�

1
).

Figs 9(B) and 10 show the optimal epidemic curves under the optimal reporting intensity.

These figures indicate that the optimal control significantly reduces the peak magnitude and

total number of infected individuals. They also show that the peak magnitude appears earlier

in time for both media functions f1 and f2. Comparing Fig 3 to Fig 9(B) and Fig 10(A), we see

that, while simply having media reports during an epidemic can greatly reduce the severity of

an epidemic, it is further mitigated under the optimal reporting intensity. Moreover, in such a

scenario, a stronger media report intensity u�
2

for media function f2 gives rise to a greater

reduction in peak magnitude and the total number of infected individuals than the media

report intensity u�
1
.

Discussion

It is known that media reports can play an important role in generating public awareness and

promoting disease mitigation measures. Quantifying and evaluating the media impact on the

control of emerging infectious diseases is quite challenging. Our study here included the inten-

sity of media reports as a separate compartment, and a modified transmission rate that is

Fig 7. Sensitivity analysis. LHS-PRCC results for peak magnitude of infected individuals and total number of

infections of system (1) with respective to α1, α2, ρ, δ. The other parameters are fixed as estimated in Table 1. The

sensitivity analysis is done with 2000 bins, the left and right column correspond to system (1) with media functions f1
and f2, respectively.

https://doi.org/10.1371/journal.pone.0213898.g007
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Fig 8. Plots of the peak magnitude and total infections by varying k (the rates of change of ρ). The red and blue curves with asterisk markers are the results

by using function f1 and f2, respectively. Each column of markers denotes that k increases 50% per time. All the other parameters are fixed as shown in Table 1.

https://doi.org/10.1371/journal.pone.0213898.g008

Fig 9. Optimal control. (A) The optimal control u(t) for the optimal control problem (4) obtained by using Forward-Backward sweep method. The red and blue

dashed curves represent the optimal control for system (4) with different media functions f1 and f2, respectively. (B) Comparison of total infections for system (1) and

the optimal control system (4). A = 1, B = 5, umax = 5, t0 = 0, tend = 150, all other parameters are shown in Table 1.

https://doi.org/10.1371/journal.pone.0213898.g009
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reduced using a media function that is bounded between 0 and 1. We also considered a novel

media function which depends both on the number of infected individuals I and the intensity

of mass media M (where mass media reports were assumed to depend on the reporting of

newly infected individuals, ρσE) [8].

We calculated the basic reproduction number of system (1) which is the same as that for

the classical SEIR model. This result illustrates that the mass media has no effect on the basic

reproduction number, which agrees with the previous studies [11, 24, 27]. We then investi-

gated the threshold dynamics of the proposed model with a general media function effect. We

theoretically investigated the optimal control problem by seeking an optimal media reporting

intensity to minimize the total infected individuals and the cost of media reporting. The opti-

mal media reporting intensity obtained here indicated that during the early stage of epidemic

we should quickly enhance the media reporting intensity, keep it at the maximum level during

the time period around the peak of the epidemic, and then decrease the intensity after the epi-

demic vanishes significantly.

By fitting our proposed model to laboratory-confirmed case data from the 8th Hospital of

Xi’an over the first 19 days of the 2009 H1N1 influenza pandemic (to ensure that the data lie in

the exponential growth phase of the epidemic), we estimated the unknown model parameters

and the basic reproduction numbers without media impact and with two special media func-

tions. We found that the basic reproduction number may be underestimated if the media

impact is not considered. We also illustrated that the peak magnitude of the endemic would

greatly decrease when the mass media function is considered, which has also been demon-

strated in [26]. Sensitivity analysis indicated that the severity of the disease outbreak is sensitive

to the parameters associated with the media impact (the reporting rate ρ, media waning rate δ,

weight of media effect sensitive to infected individuals α1, and weight of the media effect sensi-

tive to media items α2) besides the epidemiological parameters (like transmission rate β and

Fig 10. Optimal control solutions. (A) Comparison of numbers of infected individuals for system (1) and the optimal control system (4). The solid

curves are solutions of the original system (1) while the dashed curves are solutions of the optimal control system (4). The red and blue colors represent

the corresponding solutions by using media function f1 and f2, respectively. (B) Comparison of two different media functions f1 (red), f2 (blue) before

(solid) and after (dashed) optimal control.

https://doi.org/10.1371/journal.pone.0213898.g010
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the recovery rate γ). In particular, the outbreak severity is more sensitive to the weight α1

than weight α2 (shown in Figs 5–7), indicating that more response to the number of infected

individuals will lead to greater reductions in the peak magnitude and the total number of

infections.

For the particular media functions f1 and f2, we observed no obvious differences in the epi-

demic curve (shown in Fig 3) when the optimal reporting rate was not considered, though

from the point of R-square or AIC for the Least-Square case, the model with f2 can fit the

observed data better than the model with f1. However, with the optimal media reporting rate

the optimal epidemic curves are quite different. In particular, the shape of the optimal control

u�
1

and u�
2

are similar, but u�
2

is greater than u�
1
, causing the optimal solution of system (4) with

f2 to be less than the optimal solution of system (4) with f1. This means that there is optimal

media reporting function such that the number of infected individuals and costs reach the

minimum, which helps design an optimal news releasing patterns that mostly affect individu-

als’ behaviour changes, and hence result in the infection significantly decline.

In previous studies, media campaigns have been characterized as a dynamic variable [21].

Media data can be collected to inform the mass media compartment [8, 25]. In our current

study, we include a separate compartment for mass media reports. We will consider the incor-

poration of mass media data in future work.

In summary, we extend the classical SEIR model by incorporating the media as a separate

compartment and through the modification of the transmission rate by a media factor associ-

ated with not only the number of infected individuals I but also the media items M. Through

the inclusion of the media compartment and the modified transmission rate βf(I, M) we can

use model (1) to study the effects of I and M separately. In this study, we focus our work on

understanding the media impact on the transmission of 2009 H1N1 in Shaanxi, China, and

explore the efficiency of optimal control on the media reporting rate. Ultimately, we find that

response to the number of infected individuals I will lead to greater reductions in the peak

magnitude and the total number of infections. We also find that the optimal media reporting

intensity should be enhanced early in the outbreak, be kept at the maximum level during the

time period around the peak of the epidemic, and then be decreased after the epidemic reaches

a low level to ensure a minimal level of infection in a population.
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