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Abstract: In the present work, a neuronal dynamic response prediction system is shown to estimate
the response of multiple systems remotely without sensors. For this, a set of Neural Networks and the
response to the step of a stable system is used. Six basic characteristics of the dynamic response were
extracted and used to calculate a Transfer Function equivalent to the dynamic model. A database
with 1,500,000 data points was created to train the network system with the basic characteristics of
the dynamic response and the Transfer Function that causes it. The contribution of this work lies in
the use of Neural Network systems to estimate the behavior of any stable system, which has multiple
advantages compared to typical linear regression techniques since, although the training process is
offline, the estimation can perform in real time. The results show an average 2% MSE error for the set
of networks. In addition, the system was tested with physical systems to observe the performance
with practical examples, achieving a precise estimation of the output with an error of less than 1% for
simulated systems and high performance in real signals with the typical noise associated due to the
acquisition system.

Keywords: Neural Network; parameter estimation; dynamic response; sensorless estimation

1. Introduction

The estimation of parameters is a widely studied problem; there are multiple works
such as [1–6] in which the estimation of the parameters of the Photovoltaic Models is
developed as the main object of study. It is due to the high interest in having a function
that describes the dynamic behavior of the systems since its performance can be estimated
as in [7], where the authors propose a sensor-less prediction system. Another option to use
parameter estimation is precise control design since it is generally done theoretically based
on system dynamics, as in [8–12] where the authors base the control design on the analysis
of the dynamic model and the parameters precision gives the controller precision.

A recurrent option in the control and analysis of the dynamic system is the use of the
Transfer Function. This type of function allows a general analysis of the system. The main
advantage is that different systems can be represented in the same way, especially when
studying first-order and second-order systems. Several investigations use systems of first-
order or second-order [13–15]. The investigation [16] uses the parameter estimation of the
Transfer Function instead of working with the dynamic model of the system to solve the
inverse heat conduction problem. Another example of the use of Transfer Function is the
work [17], where the authors estimate the dynamic behavior of the electrohydraulic servo
drive through the Transfer Function.
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There are various techniques for parameter estimation. One option is a heuristic
method like the one presented in [18], where a parametric estimation system with the
vector-type recursive least squares (VRLS) is developed. The investigations [19–22] use
a heuristic method to estimate and control the systems based on the dynamic response.
Another example for the analysis with a heuristic method is the study [23] where the
authors do the Transfer Function parameter estimation with the Vector Fitting technique.

Another option for parametric estimation is the so-called population-based meta-
heuristic algorithms, such as the research presented in [24–26]. The authors use the Cuckoo
Search Algorithm to estimate different types of physical systems. These types of algorithms
have numerous advantages, among them their easy implementation [27], which allows
them to be implemented in systems of multiple natures [28,29]. However, its nature is
inherently iterative; therefore, its processing time is usually longer, and its implementation
online is more complicated.

Some authors have developed adaptive techniques for parametric estimation. For in-
stance, in the research shown in [30], the authors develop a method for parameters that
vary in time. Another widely studied option is the use of Neural Networks. Several works
exploit the use of networks in different fields [31,32]. Particularly in the field of parameter
estimation, Neural Networks have shown excellent results, for example, in motors [33].
Another example is the work exhibited in [34], which showed the advances in parametric
estimation through a Neural Network for lithium batteries.

Some authors have developed adaptive techniques for parametric estimation. For in-
stance, in the study [30], the authors develop a method for parameters that vary in time.
Another widely studied option is the use of Neural Networks. Several works exploit the
use of networks in different fields [31,32]. Particularly in parameter estimation, Neural
Networks have shown excellent results, for example, in motors [33]. Another example is
the work exhibited in [34], which showed the advances in parametric estimation through a
Neural Network for lithium batteries. Despite the different estimation and optimization
methods, it is important to note that no one algorithm is better in all cases since, according
to the No Free Lunch theorem, the algorithms cannot outperform the others if they are aver-
aged over all possible problems. Much of the performance of the algorithms lies then in the
correct parameters selection that governs their behavior and the problem specificity [35].

Unlike previous works, the proposed research is not based on estimating a specific
system. Instead, it aims to develop a standard parametric estimation system for any open-
loop stable systems using the second-order standard Transfer Function. Therefore, this
method is applied to systems that enter a steady state with a finite value different than
zero. The main contribution of this work is summarized in the estimation of the equivalent
Transfer Function of second-order through Neural Networks for systems of any type of
system based on the key characteristics of the dynamic response. This Transfer Function
will allow estimating the response of the system and designing controllers effectively
sensorless even if the system cannot be measured continuously or its parameters are
difficult to calculate.

Additionally, this work presents the analysis of the components of the dynamic
response as input of a Neural Network. The time rise and final value in steady state are the
main factors of influence in estimating parameters based on the response to the step of a
system. On the other hand, time delay and time peak are the variables that have a minor
influence. Multiple architectures were analyzed to determine the best performance of the
network, demonstrating that it can estimate the equivalent Transfer Function with only the
key points of the dynamic response instead of all points. In addition to the vector of tests,
the network was tested with two typical engineering systems: an electrical circuit and a DC
motor to evaluate this network behavior with a step dynamic response in physical systems.

The rest of the work is described in the following way. Section 2 briefly describes
the parts of the Transfer Function and their application in the description of physical
systems. Section 3 shows the description of the Neural Network, its use, and the analysis
of its performance based on the dynamic response. Section 4 presents the results of the
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trained network when implemented with signals from physical systems obtained through
simulation. In Section 5 the analysis of the performance of the proposed network in real
systems is analyzed. Finally, in Section 6, the conclusions are shown.

2. Second-Order Transfer Function Characteristics and Its Dynamic Response

The Transfer Function is highly used in control systems; it allows us to relate the input
with the output of the system as expressed in Equation (1).

G(s) =
O(s)
I(s)

(1)

where G(s) is the Transfer Function, O(s) is the output of the system, and I(s) is the input.
All variables are in the Laplace domain and are considered null initials values.

The function can be expressed in terms of the damping ratio (ξ), the natural frequency
(ωn), and a DC gain (k), as seen in Equation (2).

G(s) =
O(s)
I(s)

= k
ω2

n
s2 + 2ξωns + ω2

n
(2)

The above equation represents a large number of physical linear and single-input
single-output systems. Although these limitations in the representation of systems through
a Transfer Function, motors, pistons, damping systems, among many other types of systems,
can be represented with this expression. The behavior of the system output is calculated
in a standard way if the system is stable in an open-loop for its analysis using a step type
input of magnitude a. Therefore, the output of the system can be obtained by Equation (3).

O(s) = k
ω2

n
s2 + 2ξωns + ω2

n

a
s

(3)

A step input generates a typical, expected dynamic response, as shown in Figure 1,
where the key characteristics of the dynamic response are observed.

The function returns the characteristics in a structure containing the fields:

• Final value (Vf )—Value taken in the steady state;
• Rise Time (tr)—Time it takes for the output to reach from 10% to 90% to the end value

in steady-state response;
• Overshoot (Mp)—maximum peak value in percentage;
• Peak Time (tp)—Time at which the overshoot happens;
• Time delay (td)—Time for reaching 50% of the final value the first time.
• Settling Time (ts)—Time it takes for the error between the output and final value to

fall within 2% of final value.

Each of these variables constitutes a part of the dynamic response for any system.
However, depending on the type of response, some of these characteristics may not appear
within the dynamic response. For example, overshoot only appears when the system is
underdamped. In any other case, its value will always be zero. These characteristics are
extracted and stored in a database as described in the next section. Finally, if the Final
Theorem Value is considered, the value of k is determined by Equation (4).

k =
Vf

a
(4)

Equation (4) is valid only when time tends to infinity and the system is in the steady
state. The value of a and Vf are typically known. Therefore, the dynamic response of the
system depends on ξ and ωn.
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Figure 1. Key characteristics of the dynamic response to step input.

3. Neural Network as Parameter Estimator

Artificial Neural Networks (ANN) are widely used in any type of engineering problem,
including control problems. The ANNs are mainly used for the resolution of non-linear
systems. However, it can also be used in linear systems. However, they have not been tested
as parametric estimators for Transfer Functions. This section explains the development of
the Neural Network used for estimation tests.

The general process to use the network as an estimator is observed in Figure 2 and
consists of training the Neural Network, subsequently using the step response to extract
the key points of the dynamic response. With these points as input, the network estimates
the parameters of the transfer function.

Reference

Step	Input

PlantInput. Output.

System

Key	points

ξ

ωn

Neural	Network

Step	Response Key	points

Extraction	of	key	points	
from	the	dynamic	response

Second-order	Transfer	Function

Weight	adjustmentDatabase

Offline process

Figure 2. General process to implement the BP-ANN as parameter estimator of a Transfer Function.

The first step is to select the type of architecture network, although, in the literature,
there are multiple network architectures. The backpropagation (BP) Neural Network was
chosen because it is the most widely used Neural Network [36]. The BP-ANN has been
used in multiple types of systems, and their advantages and disadvantages are well known.

This type of network requires a training stage, and a broad database allows the net-
work to know how the system responds to known inputs. For the trained and performance
evaluation, an artificial database was created. It is observed in Equations (3) and (4) that
two parameters must be adjusted to obtain different dynamic responses, the damping
factor, and the natural frequency. The value of the amplitude and the gain k are directly
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related to the final output value of the system. Therefore, it is unnecessary to consider
them as long as the value of the amplitude of the input step used is available.

A total of 1,500,000 combinations were performed in which each parameter was
varied within the range shown in Table 1 to cover a vast number of values and different
dynamic response types. The Simulink model shown in Figure 3 was used to simulate the
1,500,000 combinations.

Second-order	Transfer	Function

KStep	Input

Figure 3. Simulation used for obtained the variables of the step response.

Table 1. Ranges for variables used for generating the database.

ωn ξ

[1 × 10−6 10,000] [1 × 10−6 10,000]

The parameter ωn was varied uniformly to obtain 1000 values within the range.
The case of ξ was treated with 1500 values since it has special cases. The underdamped
case has ξ between 0 and 1, and 500 values uniformly distributed in that range were
used. For the critically damped case, the value of ξ must be 1. The remaining values were
uniformly distributed for the overdamped and high-overdamped cases.

The simulations were run, and the key points of the dynamic response and the values
of ξ and ωn were saved.

Once the database is completed, its data are filtered and all storage data without a finite
response or with an establishing time longer than 100 s (22,234 data vectors) are removed.
Subsequently, the architecture of the ANN was defined. The architecture depends mainly
on four main parameters: the number of inputs and outputs, the number of hidden layers,
the number of neurons, and the activation functions. Therefore, the next step is to select
the inputs and outputs. The built database has several variables; the use in the ANN is
described in Table 2.

Table 2. Variables of the database and its use in the ANN.

tr Mp tp td ts ξ ωn

Input1 Input2 Input3 Input4 Input5 Output1 Output2

Based on the tests and the equations of the dynamic response, it was decided to
use independent networks for each of the outputs, that is, one BP-ANN for ξ estimation
and one BP-ANN for ωn. Additionally, a pair of networks was used for critical damped,
overdamped, and heavily overdamped systems and a different pair of networks for under-
damped systems.

The division was carried out in this way because the overshoot is an important variable
in underdamped systems. However, it will always be zero in other types of systems. Thus
it cannot be considered a valid input for the critical damped, overdamped, and heavily
overdamped network. Therefore, in this network, entry overshoot is removed from the
network. There are several options for choosing the appropriate values for the remaining
parameters of the architecture. However, it is necessary to carry out tests to analyze the
performance of each proposed architecture.
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Offline training was carried out using the filtered database. For this stage, the data
were randomly divided to use 60% for training (886,670), 25% for validation (369,441),
and 15% to carry out the performance tests (221,655). The training stage is crucial to
determine the performance of the network. Training a Neural Network consists of adjusting
each of the weights of the inputs of all neurons that are part of the Neural Network.
Therefore, the responses of the output layer fit as closely as possible to the data we know.
Typically, it is done by constructive methods, which allow the selection of the number of
hidden neurons within the training process by evaluating the convenience of adding or not
a new parameter to the network, depending on whether it increases the performance of
the network.

The initial value of neurons was taken using the geometric pyramid rule. Later,
the near values were evaluated according to the performance of the networks. The per-
formance of the ANNs for this work was measured using the mean square error (MSE).
The stop training conditions are 10,000 epochs, 30 validation checks, or gradient minor to
1 × 10−7.

Several architectures were tested during the hidden layers, the numbers of neurons
per layer, and the activation functions. Transfer functions tested were Hyperbolic Tangent
Sigmoid (Tansig), the Log-sigmoid (Logsig), and the Linear transfer function (Purelin).
The most relevant tests for the architecture selection are shown in Table 3 for the system
without overshoot. The overall performance of the pair of the networks is the average of
MSE of both networks.

Table 3. Relevant tests for determining the architecture of ANNs for critical damped, overdamped,
and heavily overdamped systems.

Network Neurons Activation MSE MSE MSE
in HL Functions ωn ξ Average

N1a 3 Tangsig-Purelin 4.529% 1.990% 3.260%
N2a 5 Tangsig-Purelin 4.138% 1.968% 3.280%
N3a 8 Tangsig-Purelin 4.421% 1.987% 3.204%
N4a 16 Tangsig-Purelin 4.506% 1.942% 3.224%
N6a 16 Tangsig-Tangsig 4.465% 1.990% 3.227%
N7a 16 Tangsig-Logsig 6.176% 15.871% 11.023%
N8a 5-3 Tangsig-Tangsig-Purelin 4.612% 1.987% 3.229%
N9a 12-8 Tangsig-Tangsig-Purelin 3.672% 1.987% 3.053%

N10a 8-12 Tangsig-Tangsig-Purelin 3.832% 1.994% 5.494%
N11a 10-16 Tangsig-Tangsig-Purelin 3.374% 1.989% 2.681%
N12a 10-16 Logsig-Logsig-Purelin 4.227% 1.994% 2.810%
N13a 10-16 Tangsig-Tangsig-Logsig 6.667% 15.79% 11.22%
N14a 14-20 Tangsig-Tangsig-Purelin 3.923% 1.980% 2.952%

As seen in the previous Table, the N11a network has the architecture with the best
performance in average. Therefore, the network used for systems without overshoot con-
sists of two hidden layers with 10 and 16 neurons, respectively, with Tansgi-Tansig transfer
functions for the hidden layers and Purelin for the output layer. Although architectures
such as N12a offer similar performance with the same number of layers and neurons,
the combination with these transfer functions offers the most considerable reduction in
MSE, obtaining a 2.81% error in this architecture. On the other hand, the same tests were
repeated for systems with overshoot. The results are summarized in Table 4.
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Table 4. Relevant tests for determining the architecture of ANN in underdamped systems.

Network Neurons Activation MSE MSE MSE
in HL Functions ωn ξ Average

N1b 3 Tangsig-Purelin 1.001% 4.1 × 10−3% 0.502%
N2b 5 Tangsig-Purelin 0.105% 2.4 × 10−3% 0.054%
N3b 8 Tangsig-Purelin 2 × 10−3% 2.1 × 10−3% 0.002%
N4b 16 Tangsig-Purelin 0.070% 1.8 × 10−3% 0.036%
N6b 16 Tangsig-Tangsig 0.304% 1.9 × 10−3% 0.153%
N7b 16 Tangsig-Logsig 6.250% 4.180% 5.125%
N8b 5–3 Tangsig-Tangsig-Purelin 9 × 10−3% 1.9 × 10−3% 0.005%
N9b 12–8 Tangsig-Tangsig-Purelin 3 × 10−3% 1.9 × 10−3% 0.002%

N10b 8–12 Tangsig-Tangsig-Purelin 1.7 × 10−3% 3.25 × 10−4% 8.4 × 10−4%
N11b 10–16 Tangsig-Tangsig-Purelin 2 × 10−3% 1.9 × 10−3% 0.002%
N12b 10–16 Logsig-Logsig-Purelin 1.4 × 10−3% 8.8 × 10−4% 0.001%
N13b 10–16 Tangsig-Tangsig-Logsig 4.209% 4.915% 4.562%
N14b 14–20 Tangsig-Tangsig-Purelin 4.182% 4.150% 4.166%

The network N10b has the best performance considering the previous table. As in the
previous case, the architecture with the lowest MSE was selected, in this case, 8.4 × 10−4%;
for this they used two hidden capable with 8 and 12 neurons and Tansig transfer functions-
Tansig between the hidden layers and Purelin for the output layer. A lower MSE can also
be observed in general in networks used for systems with overshoot. Therefore, it was used
for all subsequent tests when the system was underdamped. The previous results show
an adequate performance of the network in estimating the Transfer Function parameters
with reduced MSE values for ωn and ξ parameters. However, it is desired to validate the
inputs and their influence on the ANN to discard unnecessary or redundant entries since
not necessarily all the listed characteristics impact the calculation of the parameters of the
Transfer Function. Therefore, the network is retrained by deleting one input at a time to
discover the effect of the inputs in the ANNs performance. The results of these tests in
both sets of ANNs are shown in Table 5.

Table 5. Test for validation of the inputs of the ANN.

Input Removed MSE Average MSE Change MSE Average MSE Change
for N11a in N11a for N10b in N10b

ts 3.071% +0.39% 1.6 × 10−3% +7.6 × 10−4%
Mp - - 2.39 × 10−2% +2.3 × 10−2%
tp 2.994% +0.313% 9.59 × 10−4% +1.19 × 10−4%
tr 3.563% +0.090% 3.5 × 10−3% +2.7 × 10−3%
td 3.081% +0.400% 1.4 × 10−3% +5.83 × 10−4%
Vf 3.393% +0.019% 3.1 × 10−3% +2.2 × 10−3%

According to the results, the entry that contributes the most to MSE reduction is ts
for overdamped systems and Mp in underdamped systems. On the other hand, the most
negligible impact on the network is Vf with only 0.19% reduction to an error in over-
damped systems and the td in underdamped systems. However, its use is maintained since,
in general terms, it benefits the ANNs and provides a positive effect even if it is small.

In concordance with the tests, the whole system used was the ANN N11a for critical
damped, overdamped, and heavily overdamped systems with five inputs and two inde-
pendent outputs and the ANN N10b for underdamped systems with six inputs and two
separate outputs.
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4. ANNs Evaluating Performance with Simulated Systems

The previous section only analyzes the error in the magnitude of the estimation of the
parameters. However, it is necessary to examine how these errors in the Transfer Function
parameters estimation affect the dynamic response from the point of view of the signals.
Therefore, this section has explored the differences between signals produced by the set of
ANNs and signals of simulated systems.

Two typical and well-known engineering systems were selected to test the ANNs
signals. The Transfer Functions of an overdamped and underdamped system were taken
into account. The overdamped system is the second-order electrical circuit shown in
Figure 4a. The underdamped system is DC motor which is a widely used second-order
electromechanical system, and its diagram is depicted in Figure 4b. The selected examples
can be represented with their respective dynamic model. However, it is common to see
them represented with their corresponding Transfer Function.

(a) Overdamped system represented by an
RLC circuit.

(b) Underdamped system represented by a
DC motor.

Figure 4. Systems used for the ANNs tests with real systems.

Figure 4a represents a second-order system and its Transfer Function, with the output
as the voltage in the capacitor and the input as the voltage, is described by Equation (5).

Vc(s) =
1

LCs2 + CRs + 1
a
s

(5)

where Vc is the voltage in the capacitor, L is the value of the inductor, and R is the value
of the resistor. For the electromechanical system shown in Figure 4b, the output was
considered as the angular velocity and the input is the voltage applied to the motor, and the
Transfer Function is expressed in Equation (6).

ω(s) =
Km

LJs2 + (RJ + LB)s + (RB + KmKa)

a
s

(6)

where V(t) is the voltage, R is the armature resistance, I(t) is the current in the mesh, Ke and
Km are the constant electrical and mechanical, respectively, L is the armature inductance, J
is the momentum of inertia, and B is the friction coefficient. In practice, the constants Ke
and Km are similar and can be considered an equal constant of magnitude K. Therefore,
Equation (6) can be rewritten as Equation (7):

ω(s) =
K

LJs2 + (RJ + LB)s + (RB + K2)

a
s

(7)
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The corresponding simulations were carried out to obtain the step response of each
of the plants described above. The two systems were simulated by Simulink using the
time and the values expressed in Table 6 and Equations (5) and (7). The outputs of both
systems were saved, and the key points of the dynamic responses were extracted from
these signals to use as ANNs sets inputs. The comparison between the signal calculated
with the coefficients estimated by the ANNs and the simulated signals is shown in Figure 5.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

0

0.2

0.4

0.6

0.8

1

V
c

 (
V

)

S mulink signal

ANNs siganl

0.05 0.1 0.15

0.85

0 9

0.95

1

(a) Overdamped system.

(b) Underdamped system.

Figure 5. Systems used for testing the ANN with real systems.
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Table 6. Values used for simulate the plants.

Plant Parameters Values Time Simulation Step Amplitude

RLC circuit R = 20 Ω; L = 0.47 mH 2 s 1 V
C = 100 µF

DC motor R = 3.13 Ω; L = 13.07 mH 2 s 1 V

B = 169 gm2

s2 ; J = 9.0 µNm
K = 0.0487

The tests showed an MSE between signals of 0.45% for the overdamped system and
1.44% for the underdamped system. These results suggested that the parametric estimation
can be given with a precision of less than 1.5% despite being of a different nature. The DC
motor has a particularity of the Vf that is greater than the magnitude of input a, but the
use of the Final Value Theorem is helpful to process these types of systems.

Further, the results indicated that the errors in the estimation of the parameters in
the Transfer Function are not significant in the response of the proposed system. It is also
observed that the set of networks designed to estimate the parameters of systems with
overshoots has a slightly better performance than the set of networks used for systems
without overshoot. Although, this was an expected effect since in the network design
phase this behavior was always shown.

5. Experimental Results

The system has been tested with simulated signals with satisfactory results. However,
to verify the efficiency of the proposed method, the ANN performance is analyzed against
a real signal. The DC motor shown in Figure 4b was taken as a reference to verify the
performance of the proposed method with real systems. It was considered a Mavilor brand
motor model CML 050 with the nominal parameters shown in Table 6.

The acquisition brings with it uncertainty problems due to the measurement hardware.
In this case, the acquisition was made with the ADC (Analogue to Digital Converter) of the
PIC18F4550 to measure the voltage input and a quadrature encoder to measure the angular
velocity of the rotor.

The system is excited with a step input with a magnitude of 10.5 V to obtain the
dynamic response and measured with the ADC, getting the signal shown in Figure 6a.
For that, its speed data are sampled at a frequency rate of 1 kHz. Due to the ADC operating
range, a signal conditioning stage is required since the motor operates with up to 24 V.

Each part of the conditioning and acquisition stage adds noise into the signal measured.
The added noise is multifactorial and can be due to a low resolution in the sampling,
the precision of the measuring instrument, or personal failures in using the instruments.
Although noise can be reduced with more precise and accurate hardware, the real signals
will always contain added noise that can also be reduced via software. Therefore, the work
with real signals must consider filtering and averaging stages. In this sense, the original
speed signal passed through a Chevicheb I filter. The result of the acquired signals is
displayed in Figure 6b. On the other hand, to calculate the final or maximum values,
the mean values were taken from three contiguous samples of the signal.

The key characteristics of the dynamic response are extracted from the filtered speed
signal (Table 7) and are used as inputs in the set of networks N11b. The result of the
estimation is shown in Figure 7, where it is observed that the network provides an adequate
response regardless of the step input magnitude with which the test is performed.
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(a) Real acquired voltage signal applied to a DC motor and sampled by an ADC.

(b) Real speed signal acquired using a quadrature encoder vs. signal with an Chebyshev filter.

Figure 6. Systems used for test the ANN set with real systems.

Table 7. Variables of the dynamic response in real signal.

tr Mp tp td ts Vf

0.05 s 0.0241% 0.0430 s 0.010 s 0.004 s 178 rad/s
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Figure 7. Simulation used for obtaining the variables of the step response.

The error increases if it is compared with the data obtained in the simulation stages.
This effect is also normal and was expected. However, the increase is due to the noise
in the signals. Therefore, the system can be considered valid and capable of adapting
to real work signals even with high noise. Nevertheless, it must be considered that the
estimation precision depends not only on the network set precision but also on the accuracy
of the measurement and adequate filtering of the signal. Table 8 compares the parameters
obtained, the MSE between the original signal, and the signal estimated by the network
developed to summarize the numerical results.

Table 8. Summary of the results.

RLC Simulated DC Motor Simulated DC Motor Real

ξ estimated 46.141 0.8238 s 0.8225
ωn estimated 5.9 × 103 137.06 160.1
General MSE in ANNs 2.681% 8.4 × 10−4% 8.4 × 10−4%
MSE between signals 0.014% 1.44 × 10−4% 0.1%

The MSEs for the DC motor shown in the previous table are normalized since their
magnitude is different in each case. Hence, it goes through a normalization process to
make an adequate comparison between the different MSEs.

6. Conclusions

In this work, a neural system was developed to estimate the parameters of a Transfer
Function from the step response of the open-loop stable systems. Multiple tests were
performed with different architectures to evaluate the best combination. Four BPNNs were
used: two for the underdamped system and two for the overdamped systems.

The results indicate that the system can estimate coefficients of Transfer Functions
in tests with simulated systems and real signals with an average error of 0.007% for the
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simulated signals and 0.1% for the real signal. According to Tables 3, 4, and 8, there is a
better performance for the set of networks in systems with overshoot because there is more
information on the dynamic response than in systems without overshoot where it is just
eliminated. Figures 5 and 7, together with Table 8, show that the network reconstructions
through the parameters estimated have an MSE of less than 1% for all cases.

The methodology presented in this work has the advantage of minimizing calculation
time when the system is used online. Additionally, it is adaptable to any stable system,
and the input is known (the same as in traditional parametric estimation). However, it has
the disadvantages of the need for a database and training time for each network.

Unlike heuristic and metaheuristic methods, the parametric estimation was performed
using only the characteristics of the respective dynamics of the system, avoiding comparing
point to point to make a linear regression, allowing for the estimation of the performance
of any system remotely even if its mathematical model is not known. BP-ANNs can
correctly estimate underdamped and overdamped functions. This system can be adapted
to practically any response signal with a larger database adapted to the expected ranges.
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