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Abstract

Background: Insects have been among the most widely used model systems for studying the control of locomotion by
nervous systems. In Drosophila, we implemented a simple test for locomotion: in Buridan’s paradigm, flies walk back and
forth between two inaccessible visual targets [1]. Until today, the lack of easily accessible tools for tracking the fly position
and analyzing its trajectory has probably contributed to the slow acceptance of Buridan’s paradigm.

Methodology/Principal Findings: We present here a package of open source software designed to track a single animal
walking in a homogenous environment (Buritrack) and to analyze its trajectory. The Centroid Trajectory Analysis (CeTrAn)
software is coded in the open source statistics project R. It extracts eleven metrics and includes correlation analyses and a
Principal Components Analysis (PCA). It was designed to be easily customized to personal requirements. In combination
with inexpensive hardware, these tools can readily be used for teaching and research purposes. We demonstrate the
capabilities of our package by measuring the locomotor behavior of adult Drosophila melanogaster (whose wings were
clipped), either in the presence or in the absence of visual targets, and comparing the latter to different computer-
generated data. The analysis of the trajectories confirms that flies are centrophobic and shows that inaccessible visual
targets can alter the orientation of the flies without changing their overall patterns of activity.

Conclusions/Significance: Using computer generated data, the analysis software was tested, and chance values for some
metrics (as well as chance value for their correlation) were set. Our results prompt the hypothesis that fixation behavior is
observed only if negative phototaxis can overcome the propensity of the flies to avoid the center of the platform. Together
with our companion paper, we provide new tools to promote Open Science as well as the collection and analysis of digital
behavioral data.
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Introduction

Controlling behavior is probably the most fundamental and

ancestral function of nervous systems. A long tradition of

entomologists studied how the insect thoracic ganglia, like the

vertebrate spinal cord, can establish basic motor control [2], and

how it is then further regulated by the brain [3]. The behavioral

analysis of locomotion is greatly facilitated by automated or semi-

automated methods for recording the position of an animal (or its

body parts) over time. For example, our understanding of honey

bee foraging and dance communication was boosted by the use of

radar systems [4] and high-throughput software was developed to

record locomotion in Drosophila [5]. Currently, there are a number

of sophisticated free programs available that can track single or

multiple individual walking flies from movie files. We can cite for

instance Ftrack, (www.chronux.org), Ctrax (http://ctrax.

sourceforge.net) or Flytrax, (http://code.astraw.com/projects/

motmot). Ctrax and Flytrax provide full, open source access to

their code. Together with our companion paper [6], we add to this

arsenal of open source software tools for tracking larval and adult

insect locomotion. Specifically, we provide here a straightforward

method for online tracking of the centroid of a single adult fly

without requiring the storage of any video information. Using the

analysis software we also provide, our package is sufficient to

describe a fly’s locomotor activity in Buridan’s paradigm [7,1].

In recent years, the genetic toolbox for the Drosophila model

system proved extremely useful in the search for the genetic and

neuronal bases of behavioral control [8]. In pursuit of this

research, different behavioral tests were developed to study fly

locomotion [9]. One of the simplest of these tests is Buridan’s

paradigm [1,7], where the flies walk between two inaccessible

targets (stripes) in an otherwise homogeneously illuminated

surrounding. By analyzing the walking speed of different mutant

and transgenic flies, it was shown that the central complex [9–14]

but not the mushroom body [15] neuropil regions need to be
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intact for the animal to have a normal walking speed. Some

regions reveal their function in locomotor control during walking,

while others only during development [16]. The behavior with

regard to the stripes was quantified [17,12,13], and shown to

depend on the peripheral retinula cells 1 to 6 [18]. Working

memory was studied in a similar setup [19]. On the other hand,

endogenous locomotion (without explicit stimuli) was studied in a

circular arena [13,20,21] or in a square box [22].

Despite its apparent simplicity, Buridan’s paradigm has failed to

gain wider popularity. Among the obstacles encountered are the

difficulties in setting up a tracking system and performing the

necessary trajectory analysis. The most commonly used tracking

software package for walking flies [5] (http://ctrax.sourceforge.

net, http://code.astraw.com/projects/motmot) requires the ac-

quisition and storage of the images at high resolution using one

software and a further analysis of the video with another; and the

metadata corresponding to each experiment need to be written

independently. Moreover, many of the available tracking/analysis

combinations require the commercial software Matlab (Math-

works, MA, USA). Here, we provide the community with an all in

one, easily operable, open source tracking software that allows the

experimenter to record the trajectory of one single animal in a

circular arena, using inexpensive hardware without storing the

video.

We build on mathematical tools developed in the free open

source statistics package R (http://r-project.org) for field studies

[23,24], in order to analyze the trajectories of animals confined to

a small platform. We also provide an easily operable interface,

such that the analysis can be run with basic computer skills. In

contrast to the tracking software, the analysis software is not

devoted exclusively to Buridan’s paradigm, but will be adapted to

analyze any trajectory dataset.

In addition to this software package, we provide raw data and

documentation files to ease the installation and encourage

modifications of the software. In combination with inexpensive

and readily available hardware (blueprints are provided along with

the software online at http://buridan.sourceforge.net), this open

source package enables the trajectories of walking flies to be

gathered and analyzed. In order to demonstrate the potential of

these tools, we compared in vivo (fly endogenous locomotion, or fly

behavior in Buridan’s paradigm) to in silico trajectories. Thus,

together with the companion paper [6], we present a battery of

new, open tools for improved animal behavior analysis.

Materials and Methods

Fly handling
Two- to five-days-old female flies of the Canton S strain (reared

at 25uC, in a 12/12 hours light/dark regime at 60% relative

humidity) had their wings clipped under CO2 anesthesia. They

were then left undisturbed to recover overnight within individual

containers, with access to water and sugar (local store), before

being transferred to the experimental setup (modified from [7]) by

gently tapping the opened individual containers. The experiment

duration was set to 900 seconds. If the fly jumped into the water,

tracking was automatically interrupted and the fly returned to the

platform using a brush (see below).

Experimental setup
The setup consists of a round platform of 117 mm in diameter,

surrounded by a water-filled moat placed at the bottom of a

uniformly illuminated white cylinder, 313 mm in height (Fig. 1).

The setup was illuminated with four circular fluorescent tubes

(Osram, L 40w, 640C circular cool white). Alternating current at

.1 kHz was provided by an electronic control gear (Osram

Quicktronic QT 1640/230, discontinued, replacement product:

QT-M 1626–42). The four fluorescent tubes are located outside of

a cylindrical diffuser positioned at a distance of 147.5 mm from

the arena center. The temperature on the platform during the

experiment was 27uC, and the luminosity ranged from 7.5 to

8 klx, with high intensity light from 370 to 850 nm. Except in the

experiments where the flies were walking without explicit visual

stimuli (‘endogenous locomotion’), stripes of black cardboard,

either 30 or 50 mm wide, 313 mm high and 1 mm thick were

taped on the inside of the diffuser. The retinal size of the stripes

depended on the position of the fly on the platform and ranged

from 57 to 74u in height (65u in the center of the platform). For

narrow stripes, the width ranged from 8.4 to 19.6u (11.7u in the

center of the platform); while the wide stripes were seen as 14 to

32u objects (20u in the center of the platform).

Online downloadable tools
The free software package, its source code and the blueprints for

the hardware setup are available for download at http://buridan.

sourceforge.net. The enclosed documentation explains how to

install the software, while a second file explains the structure of the

analysis software and provides information to facilitate its

modification and extension by users. Any modification can thus

be easily performed with minimal computer skills.

BuriTrack: a tracker for experiments in Buridan’s
paradigm

The movement of flies was visualized via a standard commercial

video camera (web cam). Any camera with a resolution of

6406480 or better will work (we used a Logitech Quickcam Pro

9000). The position of the fly is determined and recorded online

(capture rate is determined by the speed of the computer). We

obtained a mean resolution of one pixel for 0.35 mm (with a range

of 0.31 to 0.4 mm). The user can observe the quality of the

tracking via on-screen crosshairs placed on the image of the fly

(Fig. 1). An alert is sounded and the recording stopped when the

specified experiment duration is reached. The tracker was written

in C++ using OpenCV (Willowgarage, http://opencv.

willowgarage.com/) and Qt (Nokia, http://qt.nokia.com) libraries

and operates as follows. Contrast and luminosity are set by the

Figure 1. Inexpensive Hardware for Buridan’s paradigm. The fly
walks on a 117 mm platform surrounded by a water moat. The arena is
homogenously illuminated, while stripes can be positioned on the
inside of the arena wall. The fly is filmed from above and each frame is
then treated by the tracking software.
doi:10.1371/journal.pone.0042247.g001
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experimenter such that the fly appears as a dark spot on a

homogenously bright background. Color information is discarded

and a black-and-white image is generated using a user-adjustable

threshold. The image is then inverted and a Gaussian blur is

applied. The brightest dots are then determined (above a given

threshold) and the brightest point in each dot is taken as the

putative position of the fly. The parameters of the Gaussian and

the threshold are adjusted in the interface (different parameters

should be used for different spot sizes). If multiple points are

located, the one closest to the position of the fly in the previous

frame is taken (for the first frame, the brightest spot is taken). The

coordinates of this point, which approximates to the centroid of

the fly, is then saved along with the time stamp and the so-called

burst number. The burst number is incremented and the tracking

stops whenever the position of the fly is outside the platform limits

or cannot be detected at all. In these instances, the recording is

interrupted and an acoustic alert is played. Once the experimenter

puts the fly back on the platform using a brush (or changes the

camera settings) the recording can be resumed. The trajectory

data is saved in an ASCII text file with four rows, separated by

tabs: time (in ms), the two coordinates (X, Y in pixels), and the

burst number (Fig. 2).

The user can modify thresholds and is asked to enter

information about the experiment before it starts. In particular,

the position of the platform is semi-automatically determined, by

simply clicking on three points on the platform edge, spaced as far

apart as possible. Any tilt of the camera can be visually detected

and must be avoided during this step (the round platform has to fit

the circle drawn by the software). This makes tilt correction [20]

unnecessary. The information entered by the user (fly label, data

file name, duration of experiment, stripes width and position,

platform size and position, date and time at the start of the

experiment and resolution of the camera capture) is saved in a

separate text file (Fig. 2, encoded using the Extended Markup

Language, XML). In order to sort individual experiments into

experimental groups, the user lists the XML file name together

with a group label in a separate text file.

CeTrAn Centroid Trajectories Analysis software
CeTrAn, the analysis software, is written in the open source

statistics package R (http://r-project.org) and can be used without

computing knowledge thanks to a user-friendly interface written in

RGG (R Graphical user interface Generator, http://rgg.r-forge.r-

project.org). This interface allows the user to set different variables

and to browse the disk to find the location of the three relevant

entries: the folder containing the data, the group text file and an

output folder into which the package will write its outputs (Fig. 2).

In practice, data files are often dispatched in different folders; one

then sets the ‘‘folder containing the data’’ to the parent folder, and

adds the subfolder into the XML file name (for example:

‘‘experiment_1/fly_1.xml’’). CeTrAn then imports and analyzes

the data before drawing output graphs.

1. Importing trajectories. Via the information specified in

the group text file, CeTrAn reads the information contained in the

data file and the corresponding XML metadata file. The

information is then processed in the following steps: First, a table

referring to each experiment is produced, tagging each fly with an

identity (‘‘id’’) and a group tag. Then, the XML file corresponding

to each experiment is read and its information is saved into the

environment variable ‘‘env’’. The corresponding trajectory is

imported, transformed into elements of the ltraj class (one element

for each burst) using the adehabitat package for R [23], and

labeled with the fly identity. The coordinates are then transformed

into an orthogonal coordinate system with its origin at the center

of the platform and a unit of 1 mm, using the information

contained in ‘‘env’’.

The trajectories are down-sampled to achieve an evenly time-

spaced trajectory of 10 data points per second (interpolated using a

linear function). To reduce false positive movements due to

camera noise or fly grooming, every movement smaller than

Figure 2. Software schematics. The experimenter enters information (in red) about the fly and the platform (semi-automatically) into the tracker
application (BuriTrack). The tracker saves this information along with a time stamp in an XML file. Online analysis of the video leads to the extraction
of the position of the fly over time, which is directly saved to the data file. The analysis software (CeTrAn) then reads a text file indicating the path to
the XML file and the fly grouping information. It then automatically imports the data, transforms it into an easily workable class of data (ltraj) and
performs the analyses following different variables the experimenter can set (in red). As outputs, CeTrAn writes R workspaces (before and after the
analysis), a csv file of the computed parameters and pdf files where those metrics are plotted against the group factor.
doi:10.1371/journal.pone.0042247.g002
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0.8 mm is discarded (i.e. larger than two pixels, see results section).

A slightly modified version of the ‘‘mindistkeep’’ [23] function was

used for this purpose. If the threshold distance is not reached, the

data point is rewritten to be on the same spot as the previous one,

and the distance to the next data point is recalculated. This

threshold can be manually set, and was set to 0.8 mm if not noted

otherwise.

2. Extracting metrics. The ltraj class provides easy access to

several manipulations of the trajectories and facilitates the process

of data analysis. For instance, one has direct access to the distance

between two consecutive data points, the angle of the velocity

vector, as well as the turning angle, i.e. the angle between two

consecutive velocity vectors (Fig. 3).

Median speed. Dividing the distance traveled by the time

(always 0.1 s in our case, both given in the ltraj objects) gives the

instant speed of each movement (in mm/s). We then report the

median speed for each fly. Speeds exceeding 50 mm/s are

considered to be jumps and are not included in the median speed

calculation [21].

Walking distance. Adding up every movement length over

the whole experiment yields the total distance traveled by each fly

(in mm).

Turning angle. This parameter is directly read from the ltraj

trajectories (Fig. 3). The median turning angle is calculated for

each fly (in degrees).

Meander. The ‘meander’ is a measure of the tortuosity of the

trajectories and is calculated by dividing the turning angle by the

instantaneous speed [22]. Again, the median is calculated for each

fly (in degrees6s/mm).

Centrophobism indices. We divided our circular arena into

a smaller disk and an outer ring of equal surface (taking a disk of a

radius !2 times smaller than the platform radius). The software

then determines the proportion of time spent in each subdivision,

treating data points while the animal is in motion independently

from data points where the animal was stationary. The

centrophobism indices for moving and for sitting (respectively)

are then calculated as the difference between the number of data

points outside and inside of the center area, divided by the sum of

the two numbers. Therefore, an index of 1 means that the fly spent

the entire experiment in the outer area, 21 is when the fly spent

the entire experiment in the center and 0 denotes an equal

distribution between outside and inside.

Stripe deviation. This metric corresponds to the angle

between the velocity vector and a vector pointing from the fly

position toward the center of the front stripe (Fig. 3). For each

displacement, the vectors going from the fly position toward both

stripes (situated at p(0,+/2146.5 mm) in the new coordinates

centered in the platform center) are calculated and the respective

angles between the velocity vector and each of those vectors are

measured. Finally, the smaller of the two angles is chosen as output

(corresponding to the angle with the stripe most in front of the

animal, labeled ‘beta’ in Fig. 3, one stripe during one walk, and the

other stripe during the next walk). The median of all deviation

angles is reported for each fly (in degrees). Smaller values then

correspond to a path directed toward the stripes.

Number of walks. This metric corresponds to the number of

times the fly walked from one stripe to the other (closer than 80%

of the platform radius toward the stripe, Fig. 3). The software

detects when the fly enters one of the two areas and increments the

count by one when it enters the opposite area. This process is

reiterated until the trajectory ends.

Activity metrics. From the speed profile of the trajectory

(instantaneous speed over experimental time), there are different

ways to determine an activity pattern. Our first computation (time-

Figure 3. Calculation of angles and number of walks. A. The
inner circle represents the platform, while the outer circle represents
the arena and the light source (to scale). The bars represent the stripes
(wide or narrow). Considering the movement from P0 to P1, a0 is the
absolute movement angle (similarly a21 is the absolute movement
angle of the movement P21 to P0). The turning angle c can be
calculated as a0 - a21, it represents the change in direction at time 0. b
is the ‘‘stripe deviation’’ angle, the angle from the movement to a
vector going straight toward the middle of the stripe that is in the
direction of the movement. In the ‘‘ltraj’’ object, a is assigned to P0, b to
P1. Gray areas denote the sectors used to start and end a walk between
stripes: a walk is counted for each passage from one gray area to the
other. B. Trajectory example, zoomed on the platform size. The
disposition of the stripes are at 90 and 290u as in A. Dots represent the
position of the fly during the three first minutes of a test with narrow
stripes, after down sampling to 10 Hz.
doi:10.1371/journal.pone.0042247.g003
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threshold: indices labeled with (TT)) considers every movement as

activity and every absence of movement lasting longer than 1 s as

a pause (shorter periods of rest are considered as active periods).

Changing this threshold from 1 to 0.5 or 1.5 s had little effect on

the results (data not shown), such that we arbitrarily chose 1 s as

standard.

In a second approach, we used the distance traveled by the fly in

a sliding window of 1 second duration, measuring its mean

velocity during that second (speed threshold: indices labeled with

(ST)). When the speed was above the higher of two threshold

(2.7 mm/s) the fly was classified as walking and when the speed

was below the lower threshold (1 mm/s) the fly was classified as at

rest. When the velocity was between the two thresholds, the fly

maintained its previous classification until the second threshold

was crossed [22]. In order to set these thresholds, we plotted a

histogram of distance traveled in one second on a logarithmic scale

(merging data from 60 wild type flies in the different stripe

situations) and arbitrarily chose a value situated before the first and

after the last minima of the histogram, respectively (Fig. S1).

Setting threshold values to 1.15 and 2.5 mm did not alter the

results (data not shown). The chosen values (1 and 2.7 mm)

appeared to be very similar to the one chosen in another study, in

order to fit the manually determined activity pattern (1 and

2.5 mm in one second) [21].

For both activity computations, we calculated for each fly the

total activity time (in seconds), the number and median duration of

the pauses and the median duration of bouts of activity (in

seconds). For the median duration of activity (TT), we made a

second calculation considering only activity bouts leading to larger

displacement (.1 cm).

3. PCA analysis. Built-in functions are used to perform a

Principle Components Analysis (PCA; using the correlation matrix

calculated with Pearson’s method [25]). Correlation plots for each

group of flies, indicating how the different metrics are correlated,

are also generated. The activity metrics calculated with the speed

threshold were discarded before performing the PCA (see result

section). Although a PCA is automatically computed by the

analysis package, the graphics presented in this paper were

produced using a simpler graphical user interface (GUI) for R. We

loaded the output workspace, restricted the number of groups or

the number of variables taken into account, and produced 2D and

3D plots. Both scripts are available with the software in the

‘‘other_codes’’ folder. 3D objects were produced using rgl (http://

rgl.neoscientists.org), from which snapshots or video files were

generated.

4. Outputs. The analysis software provides five different

outputs. The first one is the workspace of the loaded trajectories,

which can be reloaded into the analysis package. It allows the user

to redo the analysis changing different variables without reloading

the raw data, which is very useful to debug any novel analysis. The

second output is the workspace resulting from the analysis. This

can be loaded in R to perform further analysis, for instance,

creating 3D plots of the PCA. The third output is a csv file

including all metrics values for each fly. The table can then be

imported into any statistical software. The fourth output is a pdf

file in which the scores are plotted: Barplots representing means

and standard errors for each group are given for each metrics. In

addition, transition plots are drawn: the density of passage of the

flies (every trajectory in a given group is taken into account) at

each arena position (divided into 60660 hexagons) is calculated

and displayed via a color code. Its scale starts at 0 (blue) and

increases to a value given by the 95%-quantile of the count-

distribution (red). This scale makes small differences clearly visible

and leaves only a few spots (5%), which are above the scale. One

plot is generated for each group of flies tested, and a Gaussian blur

of the data is added for a better visualization of the result

(weights = 21, 16, 4, 1; the blur is done before the color scale is

calculated). Finally, for the fifth output, a separate pdf file

containing the analysis for each individual fly is generated. It gives

the trajectory and a speed over time plot for each fly.

Computer-generated data
We modified R code from the adehabitat package in order to

generate trajectories staying within the bounds of the platform; we

also added simulations of activity/inactivity patterns. We pro-

duced two types of data samples using different types of trajectory

generation (‘correlated walk’ and ‘Lévy-walk’). In both cases the

direction is set following a correlated walk rule (also in the Lévy-

walk simulation): the first angle is chosen randomly, the next one is

generated following a wrapped normal distribution around the

previous angle. The correlation strength between two consecutive

turning angles is determined by the variable ‘‘r’’. The two types of

computer-generated data differ in the way the walking speed is

simulated: a step length for the 8999 movements (900 seconds at

10 Hz) was created by multiplying a Boolean variable simulating

pauses (1 or 0, randomly generated using a uniform distribution

with adjustable frequency ‘‘f’’) with a speed value that was either

created by drawing from a Chi distribution around a mean value

‘‘h’’ (correlated walk) or by drawing from a Lévy distribution:

Speed~lo �U ð̂1= 1�muð ÞÞ,

where U is a uniform distribution between 0 and 1, mu was set to

2.6.

The position is then calculated iteratively, starting at the center

of the arena. When the position lands out of bounds, it is replaced

by the nearest point within the arena limits and the angle sequence

is recalculated taking the first angle randomly. Accordingly, the

next movement will lie outside of the platform with a probability

.0.5.

We then fitted the variables in order to approach the fly

endogenous locomotion data. We set the frequency ‘‘f’’, the angle

correlation ‘‘r’’ and the speed variables ‘‘h’’ or ‘‘lo’’ in order to fit

the activity time (TT, about 33% of the time active), the turning

angle (8.3u) and the median speed (13.8+/20.4 mm/s). Since

these variables interact, we had to adjust them iteratively. We

finally set for our correlated walk: f = 15%, r = 0.9965,

h = 0.760.3; and for our Lévy-walk: f = 12%, r = 0.9963,

lo = 0.860.4. The frequency is low because any short pauses are

considered as active periods. The angle correlation is high because

turning angles are calculated only between two velocity vectors,

while the angle correlation calculates an angle difference also

when the speed is zero (85% of the time for correlated walk). The

speed variables were set to vary in order to fit the median speed

variability and to get some variation between the 20 artificial

walks, which is necessary for a correlation analysis (13.9+/

20.6 mm/s for Lévy-walk, 13.4+/20.4 mm/s for correlated

walk).

Statistics
Calculated metrics for individual flies were either single values

(for instance for the total distance traveled) or the median of

multiple values (for example for the median of all instant speed

values). We chose to use medians instead of means to describe

these latter locomotion characteristics because their histograms

clearly showed non-normal distributions. The analysis package

then plots the means and standard errors of these medians, since

Software for Tracking and Analysis Fly Locomotion
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their distribution across flies appeared to approximate a Gaussian

distribution. We performed a MANOVA test on the entire dataset,

in order to look for significant differences.

Results

Video tracking accuracy
We used readily available hardware (Fig. 1) and a custom-coded

open source free software package (Fig. 2) in order to study the

locomotion of fruit flies which were rendered flightless by clipping

their wings. As for the larval tracker system presented in the

companion paper [6], one individual animal is tracked while

moving in an open field environment. Since we did not eliminate

the background image (no background subtraction is performed),

the tracker works only with a uniform white background in its

present form and special care has to be taken in order to optimize

the contrast and luminosity of the input image. In addition, the

level of water in the moat must be adjusted to prevent the platform

edge from appearing as dark spots. Online comparison of the fly

movement and the recorded coordinates, which are both visible in

the image provided by the tracking software (see Fig. 1), allowed us

to visually confirm that the quality of the recording was sufficient

for our experiments. Analysis of the trajectories also showed that

the spatial resolution needed to be further restricted to avoid false

positive movement (see below).

Since the fly centroid may move without the fly actually walking

(due for example to camera noise or fly grooming), the tracker

records small false positive movements. Low-pass filtering of the

data is not sufficient to get rid of these artifacts, as can be observed

by looking at the distribution of ‘‘speed angles’’ (a in Fig. 3), where

we noticed bumps at multiples of 22.5u (data not shown, probably

due to 2 pixels wide displacement of the recorded position). We

eliminated these artifacts offline in CeTrAn, by setting a threshold

of 0.8 mm (one pixel is less than 0.4 mm wide, a fly is about 2 mm

long) under which a movement is discarded. The ‘‘total distance

traveled’’ metric is not affected by this procedure, while the

‘‘median speed’’ is (see Material and Methods).

Similar activity metrics yielded by time and speed
thresholds computations

Different algorithms can be used to decipher the activity pattern

of a fly. We used one independent of the fly speed and one used in

previous studies. We used either a time threshold for pauses

(absence of movement for more than one second is considered as a

pause, every movement starts an activity period) or two speed

thresholds for activity (displacement length during one second

determines whether the middle data point is considered as active

following a two thresholds rule, see Materials and Methods

[22,21]). The two activity calculations lead to clearly comparable

metrics (Fig. 4): differences between groups appear independent of

the calculations used (Fig. 4 and data not shown). In contrast, the

correlation analysis (see below) revealed differences in the two

computations. This validates the use of our speed-independent

calculation. Furthermore, the discovery of mutant flies showing

differences in activity patterns or in which the two metrics would

differ, may help to design better algorithms.

Computer-generated data as random walks
The most effective way to test the analysis software is to feed it

with data of known characteristics. We therefore modified R

adehabitat functions [23], in order to generate both ‘Lévy-walks’

and ‘correlated walks’ restricted to the platform area (see Materials

and Methods). These trajectories proved to be essential for

determining the chance level for the stripe deviation metric and

the centrophobism indices, the theoretical chance values of which

are difficult to calculate (the stripe deviation angles can vary from

0 to 120u depending of the position of the fly, and only the use of

computer generated data allowed us to set the chance value for

their median to 45u). In addition, we used these trajectories to give

an estimate of the mathematical correlation of the different

metrics. For the latter purpose, we fitted the computer-generated

data such that the total activity time (TT), the median turning

angle and the median speed would approach values obtained from

flies’ endogenous locomotion (while the threshold for movement

Figure 4. Activity calculations using different computations
give similar results for endogenous locomotion and computer-
generated data (grouping codes given below the graph). Pause-
activity patterns were determined using either a speed- (left, labeled 1)
or a time threshold (right, labeled 2). A. Total activity time represents
the time the animal is considered active. A2 was set to be similar in the
computer-generated data. B. Duration of activity periods. Inset
represents the same calculation as in B2 but considers only activity
bouts leading to a displacement of 1 cm or more. C. Duration of the
pause periods. D. Number of pauses. Bars represent means and error
bars standard errors, n = 20 in each group.
doi:10.1371/journal.pone.0042247.g004
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was applied to all data types). We also introduced variability in the

speed, such that the error bars would also fit to fly error bars. This

allows the artificial data to be in the same range of values as the fly

data, allowing easier comparisons.

The use of two types of computer-generated data allowed us to

point to interesting features of the algorithms. Correlated and

Lévy-walks, albeit made to differ only in their speed pattern,

surprisingly show differences in other unrelated metrics: Lévy-

walks show a longer activity bout duration (Fig. 4B) and a longer

distance traveled than correlated walks (Fig. 5E). These results are

due (see Fig. S2) to the higher amount of small discarded

movements in correlated walks (that increase the number of small

pauses) and to the fact that Lévy-walks show more instances of

high speeds classified as jumps (these are not included in the

median speed calculation, but included in the total distance

traveled; importantly, our fly dataset does not contain any of these

jumps). The total distance traveled is still much shorter than that of

fly data (Fig. 5 E). The computer-generated data indeed contains

numerous short pauses not reaching the 1 s threshold value. The

correlation analysis is also affected by the discarding of small

movements, because the speed variable then affects the number of

non-moving points. Since Lévy-walks show so many jumps, we did

not use its correlation matrices. In addition, the main source of

variation in the computer-generated data is the speed variable (see

Materials and Methods), such that some weak correlations are

boosted. Therefore, the correlation matrix for computer-generated

data had to be analyzed with caution (see below).

Endogenous locomotion versus computer-generated
data

Three metrics of the computer-generated data were fitted to the

fly endogenous locomotion data (trajectories in the absence of

visual targets), and three additional variables were similar between

the computer and the fly data (i.e. no significant differences

between the three groups in a MANOVA): total activity time (ST,

Fig. 4 A1), meander (Fig. 5 A) and stripe deviation (Fig. 5B). None

of them was unexpected, since the meander is calculated from two

fitted parameters, the total activity time (ST) is highly dependent

on the fitted activity time (TT) and the stripe deviation should be

at chance level in all three groups. In contrast, the activity patterns

of the flies appear non-random: the duration of the activity and

pause periods is much larger than for the computer-generated data

(Fig. 4 B, C).

Besson and Martin have shown that flies trapped in a box walk

along the walls [26]. They interpreted this behavior as both

thigmotaxis (hugging the wall due to mechanosensory stimuli) and

centrophobism (avoidance of the center due to visual inputs) [26].

There is no wall in our setup, but flies nevertheless have the

propensity to walk at the platform edge, as previously reported

[20]; we thus called our quantification ‘‘centrophobism index’’,

although we cannot exclude touch as a relevant sensory input. We

independently calculate a centrophobism index for moving

(selecting position with positive displacement) and an index for

sitting (taking data points where the fly did not move). One cannot

a priori exclude that an increased probability of finding data points

at the periphery is not due to chance. Therefore, analyzing the

computer-generated data is instructive. Reaching the platform

border, the next computer-generated data point has indeed more

than a 50% chance to lie outside of the platform for the next data

point (see Materials and Methods). The trajectory may thus be

stuck at the platform border. However, this effect (higher

probability to stay at the border when reached) turns out to be

negligible and barely compensates for the initial start in the center

of the platform (Fig. 5 C, D). Chance levels for the centrophobism

indices appear to be zero and the positive indices of the fly data

have thus a biological cause.

We then uncovered the dependence of the different metrics on

each other. In order to differentiate between mathematical and

biological relationships between metrics, we compared the

correlations among them in the fly endogenous locomotion and

in the computer-generated correlated walks. To this end, we

generated correlation matrices of the trajectories either discarding

(Fig. 6A) or including (Fig. 6B) particularly small movements. In

the fly data analysis, the inclusion of these movements leads to a

positive correlation between the number of pauses and the turning

angle (Fig. 6B), which indicates that most of these movements are

indeed false positives. On the one hand, these movements split

pauses by introducing short activity periods, thereby increasing the

number of pauses, while on the other hand, their direction being

random, they increase the median turning angle. Interestingly, the

activity parameters computed via the speed threshold, but not the

ones computed via the time threshold, show correlation with the

median speed. In contrast, correlations between the number of

pauses and other activity metrics differ for the two calculations,

indicating that they are not equivalent. Using this cautious

approach, two interesting conclusions can be drawn from the

observations that some variables, independently generated in the

artificial data, show correlation in the fly trajectories (Fig. 6A, B):

Figure 5. Trajectory parameters of real flies and computer-
generated data (grouping codes given below the graph). Both
A. Meander (turning angle divided by speed) and B. stripe deviation are
similar in fly and computer-generated data. Red line denotes 45u, the
mean value for computer-generated data. C–D. Centrophobism score
for sitting (C) or for moving (D) is positive only for fly data. E. The
distance traveled is different between the three types of data. Bars
represent means and error bars standard errors, asterisks denote
significant differences after a MANOVA analysis, n = 20 in each group.
doi:10.1371/journal.pone.0042247.g005
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First, the total activity time (TT) is correlated with the duration but

not the number of activity periods (identical to the number of

pauses). Second, the median speed is correlated with the total

activity time (TT), suggesting that these two features (how often

and how fast to walk) are not independently controlled by the fly

nervous system,

In Fig. 7, transition plots are shown. They represent the

frequency of passage of flies at any location on the platform. The

centrophobic behavior of flies in endogenous locomotion can be

clearly seen, while they seem to move preferentially on one side of

the arena (Fig. 7B), suggesting that our environment was not

perfectly homogenous. It still needs to be tested whether this is due

to chance, to imperfections in the setup or to stimuli from the

experimental room.

Effect of visual targets on fly behavior
We also tested flies in Buridan’s paradigm, where narrow or

wide (11u and 20u, respectively) stripes form black targets on

opposite sides of the illuminated arena. In similar situations, flies

were reported to perform direct walks back and forth between the

two stripes, a behavior which was explained by alternating fixation

and antifixation of the stripes [1]. From the transition plots, this

stereotypic behavior is apparent only when narrow stripes are

present (Fig. 7), although both target types induce similar numbers

of walks (Fig. 8A). The behavior toward the stripes is best

described with the median stripe deviation metric, which is

significantly different in the two situations (Fig. 8B, MANOVA:

F = 4.3, p,0.05). Interestingly, the number of walks is not

correlated with the deviation from the stripe, but with the total

distance traveled (Fig. 6A, C). This difference between the effect of

narrow and wide stripes is reflected in the difference in the

correlation coefficient between stripe deviation and turning angle,

which is high only in the narrow stripes situation (Fig. 6C).

The centrophobism indices also reflect this response to the

stripes, albeit indirectly. While flies preferentially stay at the outer

half of the platform during their pauses in all three situations

(Fig. 8C), the centrophobism index for moving is reduced to

almost zero by the presence of narrow stripes but hardly affected

by wide stripes when compared to endogenous walk (Fig. 8D,

MANOVA, F = 0.8, p.0.3). However, this latter metric is then

correlated with the stripe deviation and the median speed (Fig. 6C)

while these correlations are absent in endogenous locomotion data

(Fig. 6A). This indicates that flies that are particularly responsive to

the wide stripes also enter the center area of the platform more

often.

We expected flies going straight towards the stripes to walk

faster. However, this correlation can be found only when wide

stripes are used (Fig. 6A, C), and the median speed appears largely

unaffected by the presence of the stripes (Fig. 8E, MANOVA,

F = 2.5, p.0.08). In addition, activity parameters are only

marginally affected (Fig. S3), with the number of pauses being

lower in the wide stripe situation (Fig. 8F, MANOVA; F = 7.4,

p,0.01). However, the fixation/antifixation behavior seen with

the narrow stripes seems to induce a coupling of speed and

duration of activity bouts (Fig. 6C). This may indicate that longer

activity bouts with faster walking speed are more frequent when

the fly is walking between stripes.

Principle components analysis
A PCA (principal component analysis) represents the data along

its most variable axes. This procedure allows the dimensionality of

the data to be reduced with a minimal loss in information content.

It is important to keep in mind that it does not optimize differences

between groups, but allows the user to visually compare the

different groups based on the totality of the metrics computed. In

order to avoid an overestimation of highly correlated metrics in

the PCA (for example, using the same variable multiple times

would overestimate its impact on the total data variance), we had

to discard one type of activity metrics. Since the calculation using

the speed thresholds are mathematically correlated with the fly

speed (see above), we chose to discard these parameters before

performing the PCA.

Performing a PCA on the fly trajectories in the three situations

(Fig. 9, Movie S1), the first principal component shows the highest

loadings for the activity variables (duration of activity bouts,

activity time, median speed, distance traveled and number of

walks), while the other variables contribute differently to the

second and third principal components. All three principal

components together explain 71% of the variability (41, 18, and

13%, respectively). Interestingly, the different groups differ only

slightly in PC1 (Fig. 9), confirming that the activity is only

marginally affected by the presence of the stripes. In contrast to

what one would conclude looking only at the transition plots, the

two groups with stripes are closer together in the reduced state

space of the PCA, while the endogenous locomotion group stands

alone.

Discussion

Using a sample of 20 female Canton S fly trajectories in each of

three different conditions (without visual targets, with narrow

stripes and with wide stripes), together with computer-generated

data on our new analyzing system, we were able to reproduce

published results as well as discover unexpected characteristics of

fly locomotion. Our tracker is able to follow the trajectory of a fly

with an adequate spatial (0.4 mm/pixel) and temporal (about

20 Hz) resolutions. Both resolutions were indeed restricted before

the analysis (0.8 mm and 10 Hz). By analyzing trajectories of flies

in the absence of visual targets, we could conclusively show that

the previously described centrophobism behavior [26] can also be

observed in flies with clipped wings and in the absence of walls.

Importantly, the analysis of artificial trajectories demonstrates that

positive scores cannot be explained by randomly generated stops

at the platform border. As expected from previous studies [27,28],

the activity pattern of the fly cannot be simulated via a simple

uniform proportion of pauses. A rough plotting of pause duration

frequency may indeed suggests that pause duration has a fractal

structure (data not shown), as previously stated [22,28]. Finally,

our correlation study indicates that the most active animals are

also the fastest, suggesting that the two trajectory properties may

be subjected to similar biological constraints.

In our setup, the flies modified their behavioral reaction to the

visual targets. This can be clearly seen in transition plots (Fig. 7)

and, even better, in the PCA representation (Fig. 9), which will

likely be a convenient means of comparing different fly strains. On

the other hand, plotting each metric independently allows for

more precise interpretations. Indeed, the transition plots suggest

that narrow but not wide stripes induce a strong fixation/

antifixation behavior (going straight toward and then away from

one stripe, toward the other stripe), as expected from previous

reports [1,29]. This is mirrored by the centrophobism index for

moving, which is reduced to zero only in the narrow stripe

situation. Interestingly, the centrophobism index for sitting is

unaffected, suggesting that this latter score can measure the

centrophobic behavior in flies engaged in Buridan’s paradigm.

The correlation analysis is another informative tool: for instance,

only strong fixation behavior seems to lead to a correlation
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between the median turning angle and the median stripe

deviation.

The effect of wide stripes on fly behavior was unexpected. It

appeared that it cannot fully overcome the centrophobism effect.

Previous studies simulating object targeting [30] postulated that

flies aim at the stripes’ edges. Indeed, the analysis of trajectories of

flies from a different species approaching a stripe showed that they

aimed for the stripe’s edge [31]. However, using a very similar

Figure 6. Correlation plot for the different groups of data. The order of the variables was set by clustering them for endogenous locomotion
data (A, lower left part). Only significant correlations are shown. Each matrix is divided into two halves representing the correlation in different groups
as indicated below and on their side. Movements smaller than 0.8 mm were discarded in A and C, but not in B, Tm -‘‘Thresholds for movement’’.
Positive correlations are represented by green dots, negative correlations by violet dots. The size and color of the dots represent the correlation
coefficient, as indicated. A. Correlation matrices of endogenous locomotion (lower left half-matrix) and computer generated correlated walk (upper
right half-matrix). B. Same as in A without discarding movements smaller than 0.8 mm C. Correlation matrices of fly data in Buridan’s paradigm, with
narrow (lower left half) and wide (upper right half) stripes. Highlights in A and B: Small red squares: The number of pauses is not correlated with
the total activity time in the real fly data. Elongated red rectangles: The median speed is correlated with the total activity time (TT) in the fly data.
Large red squares: The duration of activity bouts (TT but not ST) correlates with the total activity time (ST and TT) in the fly data. Highlights in A
and C: Small purple squares: The number of walks is not correlated with stripe deviation. Small red squares in C: The angle deviation and stripe
deviation are correlated only in the narrow stripes situation. Elongated purple rectangle in C: The median speed correlates with the duration of
activity periods in the narrow stripes situation. n = 20 flies for each group.
doi:10.1371/journal.pone.0042247.g006
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approach, we could not see any preference for the stripes’ edges

over the stripes’ center in our raw trajectory data. Although our

setup gives no direct information about the gaze of the fly, the

latter observation suggests that fruit flies may not target a specific

sector of the wide stripes. Consequently, in the wide stripe

situation, stripe fixation is severely degraded. Maybe, as was

previously hypothesized in another study [12], fixation behavior

arises from negative phototaxis, since wingless flies do lose their

positive phototaxis [32] (and unpublished results). Indeed,

experiments using wider stripes of different height and manual

recording of one single movement from the center of the platform

to its edge suggested that flies show both a preference for dark

against white areas, and a preference for the edges [29].

Interestingly, the presence of edge preference depends both on

the stripe width and height. For 60uhigh stripes, edge preference

seems to appear only with 70u wide stripes. One may postulate

that an interaction between negative phototaxis and centrophob-

ism might translate into strong fixation behavior only when stripes

are narrow, maybe because the larger bright area (the area not

covered by a stripe) is a stronger aversive stimulus, overcoming

centrophobism.

Freely moving animals have been shown to follow different

locomotion strategies depending on their goal. For instance, the

roundworm C.elegans changes its behavior from a correlated walk

towards a Lévy-walk after some time spent without finding food

(area-restricted search, [33]). In a first approach to analyze the fly

walking patterns, we produced artificial correlated walks and

Lévy-walks and compared them to each other and to fly

trajectories. The analysis revealed little difference between the

two computer-generated walks, while the differences to fly data

were informative with regard to the centrophobism of flies and

their activity patterns (see above). The algorithms we adapted from

the literature [23] for generating the walks vary the speed

according to different distributions, leaving the turning angle

calculation unaffected (a wrapped normal distribution). In order to

simulate Lévy-walks more accurately, one may have to work on

the generation of the turning angle, keeping the speed more

constant. Despite this caveat, the simulated data series proved

useful. They are excellent tools to debug evaluation algorithms and

to set chance values for the metrics, as well as for the metrics

correlations: they allowed us to exclude a mathematical cause for

the correlation between walking parameters.

Using a random walk algorithm (similar to the correlated walk

we used here if one set the correlation variable to zero), Götz and

Biesinger could reproduce the centrophobism effect [34]. The key

Figure 7. Transition plots for the different groups of data. The
relative frequency of the fly passage at each position is plotted (red
denotes a frequency above the 95% quantile value, dark blue means
flies were rarely present. White indicates that none of the flies ever
transitioned through this position). A. Computer-generated data (here
correlated walk, but Lévy-walk transition plot is nearly identical) B.
Endogenous locomotion. C. Buridan’s paradigm with narrow stripes
(11u). D. Buridan’s paradigm with wide stripes (20u). n = 20 in each
group.
doi:10.1371/journal.pone.0042247.g007

Figure 8. Fly trajectory metrics for endogenous locomotion
(gray bars), Buridan’s paradigm with narrow stripes (white
bars) or wide stripes (striped pattern). A. In the presence of visual
targets, the fly shows more walks between the stripes than in their
absence. B. Median stripe deviation is different in the three groups. Red
line denotes the value for random walks C. Centrophobism during
pauses is still present in all three groups. D. Centrophobism while
moving is eliminated by narrow stripes. E. Median speed is not
significantly affected by visual targets. F. The number of pauses is lower
in the wide stripe condition as compared to the two other conditions.
Asterisks denote significant differences after a MANOVA analysis. Bars
represent means and error bars standard errors, n = 20 in each group.
doi:10.1371/journal.pone.0042247.g008

Software for Tracking and Analysis Fly Locomotion

PLoS ONE | www.plosone.org 10 August 2012 | Volume 7 | Issue 8 | e42247



difference in their algorithm is its behavior while reaching the

platform border: while ours stops and produces a random angle,

theirs continues to walk at the border for the distance set by the

velocity vector. As stated by the authors, such simulations are not

very informative about the actual strategy used by flies; only a

careful study of the fly trajectory will yield better insight.

In the last decade, different tracking and analysis solutions have

been developed in order to test flies specifically in Buridan’s

paradigm, but unfortunately they were never made public using a

modern repository. Our package, consisting of BuriTrack, the

trajectory recorder, and CeTrAn, the analysis software, is open

source and cross-platform, i.e., it can be used under Linux, OSX,

or Microsoft Windows, and necessitates only inexpensive hard-

ware and no programming skills to be run. So far, BuriTrack

works only in a homogenously white environment (it does not

implement background subtraction), while CeTrAn was designed

to be used with any 2D trajectory data with little modification. In

order to facilitate such data sharing, we are working on the

importing and exporting functions of CeTrAn and on the

development of an open trajectory database using data sharing

platforms (http://figshare.com), where additional reference data

will be published.

Since R is widely used in the bioinformatics community, we are

confident we will see improvements to CeTrAn in the future. First,

we ourselves will implement additional algorithms previously used

in the analysis of Buridan’s paradigm experiments but not fitted

for the analysis of endogenous locomotion [9]. Second, with the

package, we provide a growing database of computer-generated

and fly walk examples (already available on http://buridan.

sourceforge.net), in order to facilitate the testing of new algorithms

even without access to hardware and/or flies. For instance,

mathematicians may study the putative fractal structure of pause

durations, which is beyond the mathematical competence of most

biologists [27].

In conclusion, we present here an open source free software

package that can easily be implemented in any laboratory for

teaching or research purposes. The paradigms described here can

uncover features of animal locomotion and its modulation by

external stimuli, like the dependence of the fixation/antifixation

behavior of flies in Buridan’s paradigm on stripe width. Together

with the larval trajectory tracker described in the accompanying

paper [6], we hope to further popularize the analysis of Drosophila

locomotion.

Supporting Information

Movie S1 Movie of the 3D representation shown in
Fig. 9B, see Fig. 9 legend for more information.

(AVI)

Figure S1 Histogram of speed frequency (on a logarith-
mic scale, speed is calculated on a sliding window of 1 s)
for all 60 flies tested. Bars denote the lower and upper

thresholds (1 and 2.7 mm/s, in red and green, respectively).

(EPS)

Figure S2 Distribution of speed values frequency in the
computer-generated data, when no threshold for move-
ment (Tm) is applied. Red bars represent the threshold for

movement (8 mm/s = 0.8 mm in 0.1 s) and for jumps (50 mm/s)

that delimit the grayed areas of discarded movements.

(EPS)

Figure S3 Activity in fly endogenous locomotion (gray
bars), in Buridan’s paradigm with narrow stripes (white
bars) or wide stripes (striped pattern). A. The number of

pauses is significantly different between the wide stripes situation

and the two other situations. B–D. No significant differences in the

total activity time (B), the median activity bout duration (C) and

the median pause duration (D) in the three situations, although a

trend for higher activity can be seen in the wide stripe situation.

Bars represent means and error bars standard errors, n = 20 in

each group.

(EPS)
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