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Abstract

Ageing and chronic diseases lead to muscle loss and impair the regeneration of skeletal

muscle. Thus, it’s crucial to seek for effective intervention to improve the muscle regenera-

tion. Tid1, a mitochondrial co-chaperone, is important to maintain mitochondrial membrane

potential and ATP synthesis. Previously, we demonstrated that mice with skeletal muscular

specific Tid1 deficiency displayed muscular dystrophy and postnatal lethality. Tid1 can inter-

act with STAT3 protein, which also plays an important role during myogenesis. In this study,

we used GMI, immunomodulatory protein of Ganoderma microsporum, as an inducer in

C2C12 myoblast differentiation. We observed that GMI pretreatment promoted the myo-

genic differentiation of C2C12 myoblasts. We also showed that the upregulation of mito-

chondria protein Tid1 with the GMI pre-treatment promoted myogenic differentiation ability

of C2C12 cells. Strikingly, we observed the concomitant elevation of STAT3 acetylation (Ac-

STAT3) during C2C12 myogenesis. Our study suggests that GMI promotes the myogenic

differentiation through the activation of Tid1 and Ac-STAT3.

1. Introduction

Skeletal muscle, wrapped with the connective tissues, constitutes of myotubes that bundles

into myofibrils. It comprises about 40% to 45% of our body weight and enables our body to

maintain the posture and to perform a wide range of movements, motions and stability [1,2].

Skeletal muscle possesses regenerative capability against minor injury, where the satellite cells

differentiate into myoblasts followed by fusion of myoblast into multinucleated myotubes to
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replace the injury myofibers [1,3,4]. However, ageing or chronic diseases such as atrophy,

cachexia and sarcopenia will lead to muscular loss and the deficiency to maintain or restore

the normal structure and function of the impaired muscle [2,5,6]. Hence, muscle regeneration

and transplantation of myogenic cells is an essential therapy for the muscular dystrophies.

Skeletal muscle differentiation is a multi-stage highly-regulated process that includes myo-

blast division, elongation, and fusion [7]. Along with myogenesis process the expression of

stem cell markers such as Pax7 is gradually lost. Meanwhile, appearance of differentiation

markers, such as myogenin, myosin heavy chain (MyHC) and muscle-regulatory factor 4

(Mrf4) are gradually increase [8]. Apart from this, previous studies demonstrated that interleu-

kin 6 (IL-6) a pro-inflammatory cytokine, is elevated in response to muscle contraction [9].

IL-6 is found to participate in muscle regeneration in muscular dystrophy [10]. Additionally, it

has been reported that IL-6 promote myogenic differentiation of C2C12 via signal transducer

and activator of transcription 3 (STAT3) axis. Knockdown of IL-6 and STAT3 in C2C12 differ-

entiating cells suppress the expression of the myogenic markers myogenin and MyHC, conse-

quently, resulting the inhibition of myotube fusion. Furthermore, primary muscle cells

isolated from IL-6 knockout mice feature a significant reduction of MyHCIIb positive cells

[11].

Tumorous imaginal disc 1 (Tid1) is a mammalian mitochondrial DNAJ/HSP40 co-chaper-

one protein homolog to the Drosophila tumor suppressor protein Tid56 [12]. Tid1 protein

contains a conserved J-domain by which to interact with heat shock protein 70 (HSP70) family

members via stimulation of ATPase activity [13]. Tid1 transcripts are expressed in two alterna-

tively splicing isoforms, Tid1-long form (Tid1-L) and Tid1-short form (Tid1-S). Interestingly,

Lu et al. reveal that Tid1-L exhibit higher cytosolic stability and a slower rate of mitochondrial

import in comparison with Tid1-S. Further, they report that Tid1 interacts with the HSP70

substrate proteins, STAT1 and STAT3 [14].

Tid1 has been identified as a tumor suppressor [15–19]. Previously, we have demonstrated

that cell proliferation is inhibited in Tid1 overexpressed head and neck squamous cell carci-

noma (HNSCC) cells. Conversely, Tid1 gene knockdown enhances cancer cell malignancy

such as cell migration and invasion in vitro, and tumorigenicity in vivo [15]. Additionally,

Tid1 abrogates the Galectin-7/TCF3/MMP9 axis to repress the cancer metastasis [16]. We also

report the participation of Tid1 in early embryogenesis [20], T cells development [21], muscu-

lar development and mitochondrial biogenesis [22] in normal development. We observe the

elevation of Tid1 protein in differentiated C2C12 myoblast. In opposite, Tid1 gene knockdown

impairs the differentiation ability of C2C12 myoblasts. Concurrently, we perceive the reduc-

tion of intracellular ATP amounts and mitochondrial activity which results in energy imbal-

ance and promotion of cells apoptosis. Moreover, our established HSA-Tid1f/f and HSA-Tid1f/

+ transgenic mice (mice with Tid1 deficiency specifically in skeletal muscle) show severe mus-

cular dystrophy with reduced motor activity, accompanied with impairment of activity of ATP

sensor (p-AMPK) and mitochondrial biogenesis protein, peroxisome proliferator activated

receptor gamma coactivator-1 alpha (PGC-1α) [22]. Thus, activation of Tid1 is important to

maintain the integrity of mitochondrial and myogenesis of skeletal muscle.

Ganoderma is a genus of polypore fungi widely used as medicinal purposes for centuries,

particularly in China, Japan and Korea [23], and commonly called as Lingzhi. In accordance

with the theory of traditional Chinese medicine, Ganoderma possesses the ability to strengthen

body resistance and consolidate the constitution [24]. GMI, an immunomodulatory protein

cloned from G. microsporum, is found to exhibit anti-inflammatory effect. GMI has also been

studied in a broad-spectrum application for the anti-cancerous treatment through the regula-

tion of immune system. GMI inhibits tumor necrosis factor alpha (TNFα)-mediated matrix

metallopeptidase 9 (MMP-9) expression and migration in A549 cancer cells [25].
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Furthermore, Hsin et al. shows that GMI has the ability to inhibit tumorigenicity and induce

autophagy cell death in non-small lung cancer cell lines [26–29]. The anti-cancerous roles of

GMI have also been studied in urothelial carcinoma cells [30], oral carcinomas stem cells

(OCSCs) [31] and human fibrotic buccal mucosal fibroblasts (fBMFs) [32]. Despite these, the

biological function of GMI is seldom been discussed in normal circumstances.

Inflammatory responses are critical in skeletal muscle myogenesis process. Previous study

has reported that the transition of M1 to M2 macrophage releases the anti-inflammatory cyto-

kines to promote skeletal muscle differentiation [33]. Moreover, for IL-10 knockout mice, with

the deficiency of the well-known anti-inflammatory cytokine, display muscle loss and develops

muscle weakness [34]. However, this frail model is reversed by up taking grape seed extract

[35], which is known for its anti-oxidative and anti-inflammatory effect [36,37].

Since GMI is found to possess the anti-inflammatory effect; therefore, in this study, we

explored the promotion of GMI in skeletal muscle myogenesis. Indeed, treatment of GMI in

C2C12 myoblast promoted the differentiation of myoblast and fusion into myotubes. Addi-

tionally, we observed the elevation of Tid1, PGC-1α, and Acetylated-STAT3 (Ac-STAT3) pro-

teins in the differentiated myoblast. Our findings provide a new insight of GMI treatment to

promote C2C12 myoblast differentiation via activation of Tid1 mitochondria co-chaperon and

Ac-STAT3.

2. Materials and methods

2.1 Myoblast cell line and myogenesis induction

Mouse C2C12 myoblasts (BCRC, 60083) were obtained from Bioresourse Collection and

Research Center (Hsinchu, Taiwan). The cells were expanded in growth medium of Dulbec-

co’s Modified Eagle Medium (DMEM), 10% fetal bovine serum (FBS), 1% L-glutamine and

1% Penicillin-Streptomycin Amphotericin (PSA) at 37˚C under 5% CO2. When cells reached

90% -100% confluence, the growth medium was replaced with differentiation medium consist-

ing of DMEM, 2% horse serum (#16050–130, Thermo Fisher Scientific, New Zealand), and 1%

PSA. Cell culture media and supplements were purchased from biological industries (BI,

Israel).

2.2 Generation of the skeletal muscle specific Tid1 deletion mice

Tid1 floxed mice were generated according to previous study [20]. Mice with Tid1 gene homo-

zygous or heterozygous deletion specifically in skeletal muscle were generated by crossing

Tid1f/f or Tidf/+ mice with transgenic HSA-Cre mice. The genotyping of the HSA-Cre trans-

gene and the Tid1-deficient mice (HSA-Tidf/f or HSA-Tidf/+) was performed by polymerase

chain reaction (PCR) using genomic DNA isolated from the tail.

2.3 GMI protein

GMI protein was manufactured by MycoMagic Biotechnology Company Ltd (Taipei, Taiwan).

During experimental conduction, the GMI sample was dissolved in differentiation medium to

reach different concentrations.

2.4 Isolation and culture of murine primary myoblast

Primary myoblasts were isolated as described as previous study [38]. Skeletal muscle tissues

were minced and digested with digestion medium (high glucose DMEM, 1% PSA, 2.5%

HEPES, and 400 U/ml collagenase II). The digested tissues were centrifuged, and the muscle

pellet was subsequently resuspended with neutralizing/isolation medium (NIM, high glucose
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DMEM, 10% FBS, and 1% PSA). The muscle pellet mixtures were filtered twice, firstly through

the 70 μm strainer and followed by 30 μm strainer to get the cell mixture. The cell mixture was

centrifuged and resuspended in myoblast growth medium (MGM, F-10 media, 20% FBS, 1%

PSA, and 10 ng/ml fibroblast growth factor). After 72 hours cultured on a 10% matrigel-coated

dish, the cells were trypsinized and passaged until the cells >95% myoblast purity was

achieved.

2.5 Cell cytotoxicity assay

C2C12 myoblasts were counted and approximately 5.5 x 104 cells per well were seeded in a

24-well plate. The cells were expanded in growth medium of Dulbecco’s Modified Eagle Medium

(DMEM), 10% fetal bovine serum (FBS), 1% L-glutamine and 1% Penicillin-Streptomycin

Amphotericin (PSA) at 37˚C under 5% CO2. When cells reached 90% -100% confluence, the

growth medium was replaced with differentiation medium consisting a series concentrations of

GMI (0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 20 and 30 μg/ml). Three replicates were made for each mea-

surement. The cells we pre-treated with GMI for 24 hours. 1/10 of the CCK-8 reagent (Dojindo,

Japan) was added into each well, and O.D at 450 nm was measured using Spark1Multimode

Microplate Reader (Tecan Trading AG, Switzerland) after 2 hours incubation at 37˚C.

2.6 Immunoblot analysis

The cells crude proteins were extracted with RIPA buffer. The protein concentration was

quantified through the Protein Assay Dye Reagent (Bio-Rad, USA). The extracted proteins

were loaded onto SDS-polyacrylamide gels for electrophoresis and then transferred to nitrocel-

lulose membranes. The nitrocellulose membranes were blocked with TBST containing 5%

skimmed milk for 1 hour at room temperature followed by incubation with the corresponding

primary antibodies and secondary antibodies. The signals were visualized by the enhanced

chemiluminescence system as described by the manufacturer (Millipore, Germany) in con-

junction with in LAS-4000 image analyzer (GE Healthcare, Japan). Mouse anti-MyoD (MA1-

41017) and rabbit anti-Acetyl-STAT3 (Lys685) (PA5-17429) were purchased from Thermo

Fisher Scientific (USA). Mouse anti-Tid1 (RS13) (sc18819) and rabbit anti-IL6 (M-19) (sc-

1265) were purchased from Santa Cruz (USA).

Mouse anti-MyHC (05–716), mouse anti-PGC-1α (ST1202) were from Sigma-Aldrich,

USA, rabbit anti-p-STAT3 (Tyr705) (Cell Signaling, USA). Rabbit anti-total STAT3 [C3]

(GTX104616) and rabbit anti-beta actin (GTX109639) were purchase from GeneTex (USA).

The signals collected from immunoblots were quantified by using Image Studio™ Lite

Software.

2.7 Enzyme linked immunosorbent assay analysis

5.5 x 104 C2C12 myoblasts were seeded per well in a 24-well plate. When reached 90% -100%

confluence, the myoblasts were pre-treated with differentiation medium consisting a series

concentration of GMI (0, 0.01, 0.05, 0.1, 0.5, 1, 5 and 10 μg/ml). The cultured medium were

collected at different time points (24, 48 and 72 hours), and the levels of IL-6 were determined

using ELISA kits (R&D Systems) according to the manufacturer’s instructions, and then quan-

tified by Spark1Multimode Microplate Reader (Tecan, Switzerland) at O.D 450 nm.

2.8 Statistical analysis

The statistical analysis was performed by using GraphPad Prism 6 (GraphPad Software, Cali-

fornia, USA). The datasets with multiple groups were analyzed by One-way ANOVA. The
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presented data are mean± SEM of three independent experiments (n = 3) the probability val-

ues less than 0.05 (p<0.05) were considered statistically significant.

3. Results

3.1 Induced myogenesis of C2C12 cells and primary myoblasts in vitro
C2C12 cells and the isolated mice primary myoblast were grown under the differentiation

medium and went on morphological change from mesenchymal cell type to extended

stretched cell type as a myoblast along with cell fusion and elongation (Fig 1A). Immunoblot-

ting analyses demonstrated that the expression profile of those known myogenesis markers,

including MyoD, MyHC and STAT3 (both total- and phosphor-STAT3), which is similar to

the previous findings [22] (Fig 1B). Strikingly, we observed the upregulation of acetylated-

STAT3 in all the differentiated myoblasts (C2C12) and primary myoblasts (wild type and

HSA-Tid1f/+), which has never been reported thus far (Fig 1B). Further, Tid1, a known mito-

chondrial protein acting as a tumor suppressor, was also up regulated in the differentiated

C2C12 cells and the isolated primary myoblasts. However, the protein levels of Tid1 and

MyHC in differentiated HSA-Tid1f/+ myoblasts were lower than that of wild-type differenti-

ated myoblasts (Fig 1B). As shown in Fig 1A the number of isolated primary myoblasts from

the HSA-Tid1f/+ mice were fewer than that isolated from the wild type mice. Of note, we

observed that the expression level of MyoD and IL-6 of the C2C12 were less than that of wild

type primary myoblasts (on both day 0 and day 4). In addition, we observed less total PGC-1α
protein in the differentiated cell (C2C12 and primary myoblasts (wild type and HSA-Tid1f/+).

This findings suggest that Tid1 protein is upregulated during myogenesis, and the Tid1 hetero-

zygous deficiency leads to dysfunction of muscle tissue and these findings were consistent with

our previous publication [22].

3.2 The cytotoxic effect of GMI on C2C12 myoblast

Cytotoxicity is defined as the toxicity caused due to the action of drugs on living cells. There-

fore, we tested the cytotoxic effect of GMI on the cell viability of C2C12 myoblasts. The con-

centration of GMI applied to the C2C12 myoblast were 0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 20 and

30 μg/ml, respectively. After treatment with GMI for 24 hours, we visualized the cells morphol-

ogy changes under microscopic (Fig 2A). We also observed that high concentration (> 10 μg/

ml) of GMI affected the cell viability. Consequently, we determined the cell viability after treat-

ment with GMI by using CCK-8 assay. The analytical results were consistent with the cells

morphology changes, at which the high concentration of GMI (20 μg/ml and 30 μg/ml) caused

a dramatic cell death (Fig 2B). The cell viability ratio of C2C12 myoblasts at 20 μg/ml and

30 μg/ml were 32 ± 5.42% and 27 ± 6.00% respectively. Contrary, GMI at lower concentration

(0.01, 0.05, 0.1, 0.5 μg/ml) induced cell proliferation.

3.3 GMI pre-treatment promoting induced myogenesis in myoblast

To assess the effects of GMI on promoting induced myogenesis in vitro, C2C12 cells of 90%-

100% confluence were replaced with differentiation medium containing 0, 0.01, 0.05, 0.1, 0.5,

1, 5, 10, 20, 30 μg/ml of GMI for 24 hours. The GMI pre-treated C2C12 cells were set for fur-

ther differentiation for 5 more days (Fig 3A). The morphology of C2C12 cells with GMI pre-

treatment was recorded daily (data not shown). We observed that pre-treatment with GMI at

high concentration, such as 20 and 30μg/ml, caused significant cell death (Fig 2). Nevertheless,

pre-treatment of 0.05. 0.1, 0.5 and 1 μg/ml of GMI promoted the morphological change of

C2C12 myoblast with cell fusion and elongation.

PLOS ONE GMI promotes myogenesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0244791 December 31, 2020 5 / 17

https://doi.org/10.1371/journal.pone.0244791


Fig 1. Differentiation of C2C12 and primary myoblast. (A) The representative phase contrast images of C2C12 cells

and primary myoblasts under induced differentiation at different time intervals (Day 0, 4 and 6). White arrows
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Crude cell extract proteins of GMI pre-treated C2C12 cells were collected on day 6. Immu-

noblotting analyses showed that GMI pretreatment with low concentration (0.01, 0.05, 0.1 and

0.5 μg/ml) inhibited the expression of IL-6 in differentiated C2C12 cells whereas pre-treatment

with high dose of GMI (1, 5, 10 and 20 μg/ml) enhanced the expression of IL-6 (Fig 3B). We

also observed that the expression profile of phosphorylated STAT3 and PGC-1α displayed a

similar pattern as that of IL-6 (Fig 3B). Interestingly, pretreatment with GMI enhanced the

expression of mitochondrial protein Tid1 and acetylated STAT3 (Ac-STAT3) in a dose-depen-

dent manner (Fig 3B), especially at the lower concentration of GMI (0.01, 0.05, 0.1 and 0.5 μg/

ml). Additionally, the specific myogenesis marker, MyHC, was also up regulated within the

GMI pretreated C2C12 cells in a dose-dependent manner. Overall, the above results demon-

strated that pretreatment of GMI can vary the activity of IL-6 and phosphor-STAT3 along

with the up regulation of mitochondrial protein (Tid1) and biogenesis marker (MyHC).

We next determined the IL-6 secretion from GMI pre-treated C2C12 myoblasts using

ELISA assays. The secretions of IL-6 were assessed at 24, 48 and 72 hours after GMI treatment

(GMI (0, 0.01, 0.05, 0.1, 0.1, 0.5, 1, 5 and 10 μg/ml). The results revealed that there was not sig-

nificant IL-6 secretion from cells treated with GMI for 24 hours. Nevertheless, we observed sig-

nificant increment of IL-6 secretion of cells in a dose-dependent manner after 48- and 72

hours treatment of GMI, particularly at 0.1, 0.5 and 1 μg/ml (p< 0.0001) (Fig 3C). These data

supported the notion that secretion of IL-6 was enhanced during C2C12 myoblasts differentia-

tion after 48- and 72 hours at low dose of GMI treatment.

4. Discussion

Mammalian adult skeletal muscle is defined as stable tissue and possesses a remarkable ability

to initiate a rapid and extensive repairing process to prevent the loss of muscle mass during

injury [1–3]. Currently, many studies have proposed the use of human recombinant growth

factors to induce the regeneration of skeletal muscle [39–41]. Insulin-like growth factor-1

(IGF-1) is found highly mitogenic for myoblasts [42–44]. Overexpression the human IGF-1

display muscle hypertrophy [45]. In addition, basic fibroblast growth factors (bFGF) and plate-

let-derived growth factors (PDGF), demonstrated a potent stimulating effects on satellite cell

proliferation [40,41]. However, these growth factors may induce the production of transform-

ing growth factor-beta (TGF-β1) which acts as deleterious agent for skeletal muscle myogen-

esis [46]. Recently, Shin and colleagues have shown that Red Ginseng extract induced the

mitochondrial biogenesis and ATP production, consequently, promoting the differentiation of

C2C12 myoblast [47]. Red Ginseng, a medicine herb, has been reported to possess the ability

to protect muscle damage after strenuous exercise, relief fatigue and to upregulate the energy

metabolism [48,49]. GMI, an immunomodulatory protein from G. microsporum is a tradi-

tional medicine and has been used for thousand years. Recently, most of the studies report the

use of GMI in anti-tumor progression, inhibition of the proliferation of cancer cells and anti-

inflammation. GMI inhibits epidermal growth factor (EGF)-induced metastasis through

autophagy signaling and cause the cell death in lung cancer cells. GMI also been reported as a

suppressor agent for oral carcinomas stem cells and, inhibit migration and invasion of lung

cancer cell [26,27,29]. Concurrently, a study shows GMI could induce apoptosis in urinary

bladder urothelial carcinoma cells [30]. Although the functions of GMI are well define in anti-

cancerous, the study of GMI is rarely been countered on normal cells condition. In this study,

indicating the myotube formation. (B) Immunoblot analyses showing the expression profile of myogenesis and

mitochondrial biogenesis markers of C2C12 and primary myoblasts under induced differentiation (p-STAT3,

phosphorylated STAT3; Ac, acetylated STAT3 and t-STAT3, total STAT3).

https://doi.org/10.1371/journal.pone.0244791.g001
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Fig 2. The cytotoxicity of GMI on C2C12 myoblasts. (A) C2C12 cells were treated with different dosage of GMI (0, 0.01,

0.05, 0.1, 0.5, 1, 5, 10, 20 and 30 μg/ml) for 24 hours and the morphological changes were visualized. (B) The cell viability

of GMI pre-treated C2C12 was determined by using CCK-8 assay. Statistical analyses were performed by One-way

ANOVA. ���, p< 0.001 and ���� p< 0.0001.

https://doi.org/10.1371/journal.pone.0244791.g002
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Fig 3. Promoted C2C12 myogenic differentiation with GMI pretreatment. (A) The representative phase contrast images of

induced differentiated C2C12 with pretreatment of GMI (0, 0.01, 0.05, 0.1, 0.5, 1, 5,10 and μg/ml) on day 6. Immunoblot
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we explored the promotion of GMI on myoblast myogenesis. We observed that pre-treatment

with GMI successfully induced the C2C12 myoblast differentiation. We also observed the

upregulating of specific myogenesis marker. Apart from that, we found upregulation of mito-

chondria protein Tid1, mitochondria biogenesis marker PGC-1α, and Ac-STAT3.

Regeneration of skeletal muscle is a highly synchronized process involving the activation of

various cellular responses. Firstly, necrosis of damaged tissue and a cascade of inflammatory

are activated, subsequently, followed by activation of myogenic cells to proliferate, differentiate

and fuse to generate a new myofiber formation [2,3]. Many studies have reported that vary sig-

naling factors are released during myogenesis of skeletal muscle. During skeletal muscle myo-

genesis, a continuous series of myogenic lineage is regulated by the positive or negative signals.

Firstly, MyoD, the transcriptional activators of the myogenic regulatory factor family, is the

upregulated [50–52]. Elevation of MyoD induces the proliferation of myoblast, subsequently

follow by the downregulation of Pax7, a paired box transcription factor of satellite cells [4,53–

55]. Kablar and colleagues have reported the total loss of skeletal muscle in MyoD -/- and Myf-

5-/- double knockout mice. Along with the myogenesis process, the proliferating myoblasts

withdraw from the cell cycle and terminate the differentiation of myoblast. Consequently, the

muscle-specific gene, myosin heavy chain (MyHC) is upregulated, where the terminally differ-

entiated myoblasts fuse together and elongate to form a multinucleated muscle fiber [56–58].

Here, our data (Figs 1 and 3) showed the consistency with the previous publications.

In present study, we found that IL-6 signal was upregulated along with the myogenesis pro-

cess (Fig 1B). Additionally, high dose GMI pre-treatment was able to increase the expression

of intracellular IL-6 (Fig 3A) but low doses of GMI (0.1, 0.5 and 1 μg/ml) significantly induced

the secretion of IL-6 (Fig 3B). Upregulation of IL-6 is essential for satellite cells proliferation

[59]. Apart from that, IL-6 participates in myoblast differentiation and fusion. Hence, IL-6 is

playing a dual role in myogenesis. For instance, the depletion of IL-6 reduces the extent of

myoblast differentiation and fusion. In opposite, genetic overexpression of exogenous IL-6

induced the myogenesis with elevation of expression of muscle specific genes expression. Myo-

blasts derived from IL-6 null mice show inhibited differentiation and reduced fusion abilities.

Although IL-6 is essentially needed in promoting differentiation, it also been reported that the

activation of its downstream signaling molecule STAT3 is necessary to promote differentiation

of myoblasts [11]. Wang et al. has reported the importance of JAK2/STAT2/STAT3 pathway

in myogenic differentiation. They show that by individually knockdown the endogenous

JAK2, STAT2, and STAT3, the differentiation of C2C12 myoblast is inhibited [60]. However,

via the JAK1/STAT1/STAT3 pathway it could promote the myoblast differentiation [61]. In

this study, we showed that the p-STAT3 is elevated when pre-treated with GMI. Nevertheless,

upregulation of p-STAT3 was not dose-dependent. Surprisingly, we found the Ac-STAT3 sig-

nal was augmented with a dose-dependent manner along with GMI pre-treatment, particularly

in low concentration of GMI (0.01, 0.05, 0.1 and 0.5 μg/ml), during C2C12 induced

differentiation.

As abovementioned, the role of p-STAT3 in myogenesis is widely discussed. However, the

role of STAT3 acetylation in myoblast myogenesis has never been determined. Acetylation of

K685 STAT3 has been reported to facilitate the STAT3 dimerization and full transcriptional

activity [62,63]. STAT3 acetylation is found to regulate the proliferation of cancer cell. CD44 is

a type I transmembrane glycoprotein, through its C- terminal, to interact with N-terminal

analyses showing the expression profile of myogenesis, mitochondrial biogenesis and pro-inflammatory markers of GMI

treated C2C12 (B) crude cells lysate. (C) IL-6 secretion from C2C12 cells with GMI pre-treatment afterward 24, 48 and 72

hours was determined by ELISA assays. Data are means ± SEM. �P<0.05, ��, p< 0.01 ���, p< 0.001 and ���� p< 0.0001.

https://doi.org/10.1371/journal.pone.0244791.g003
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coiled-coil domain (NTD) of STAT3, then to alleviate the binding of p300 and to drive the

STAT3 acetylation at K658. Subsequently, STAT3 acetylation activates Cyclin D1 promoter

and induces the tumor proliferation [64]. STAT3 acetylation has been found to promote DNA

methyltransferase 1 interactions (Dnmt1) expression in MEF cells [65]. In addition, DNMT1

is playing an important role in myogenic differentiation and cell fate transition [66]. A recent

study shows that acetylated STAT3 is able to shuttle between cytosolic and mitochondria of

lung cancer cells. Further, the constitutively acetylated STAT3 could translocate into mito-

chondrial and regulate the pyruvate metabolism for TCA cycle that helps to maintain the mito-

chondrial membrane potential and ATP synthesis [67].

Tid1 is expressed in two alternatively splicing isoforms, Tid1-L and Tid1-S which differ at

the C- terminal tail. Interestingly, Lu et al. have highlighted the key differences between the

subcellular localization dynamics of Tid1-L and Tid1-S. They also reveal that Tid1-L exhibit

higher cytosolic stability and a slower rate of mitochondrial import compared with Tid1-S.

They also reported that the interaction between Tid1 and STAT3 [14]. Furthermore, in our

previous publication, we have reported the essential role of Tid1 in maintaining the integrity

of mitochondrial and myoblast myogenic capacities. Tid1 deficiency can cause dysfunction of

muscle tissue of transgenic mice in vivo. We also found that the 8-day old HSA-Tid1f/f null

mice showed Lordokyphosis phenotype and became postnatal lethality at postnatal day 8 to

10. Depletion of Tid1 suppresses C2C12 cell differentiation in vitro, which reduces the myo-

tube formation. Moreover, Tid1 deletion impairs the mitochondria activity. The mitochon-

drial mass and membrane potential are abolished. Apparently, the mitochondrial biogenesis

protein, PGC-1α is downregulated [22]. Above mentioned, isolated primary HSA-Tidf/+ myo-

blasts were poor differentiated and the myoblast numbers were fewer compared to the wild-

type primary myoblasts (Fig 1A). Together, we postulated that upregulation of Tid1 along with

its interacting protein, STAT3, undergoing acetylation during the myogenesis induced by

GMI. In this study, we observed the expression of mitochondrial protein Tid1 were upregu-

lated in GMI pre-treatment differentiated myoblast. Hence, Tid1 plays a pivotal role in myo-

genic process and muscle regeneration.

PGC-1α is required for the induction of many antioxidant-detoxifying enzymes and acts as

a modulator to coordinate the skeletal muscle for adaption of exercise [68,69]. Skeletal muscle

specific overexpression PGC-1α mice demonstrates enrichment of type I myofibers, a fast gly-

colytic muscle and facilitates the switch of oxidative metabolism, consequently, that promotes

the muscle performance and reduces the muscle fatigue [35]. PGC-1α also has been reported

to regulate skeletal muscle mass, particularly in condition of muscle atrophy [70]. Nevertheless,

we did not observed the upregulation of PGC-1α protein level during C2C12 differentiation.

Hence, we speculated that the limited detection of PGC-1α protein may be caused from

unknown post-translational modification.

Sarcopenia, an age-related skeletal muscle loss and dysfunction is public health issue since

the average life span is increasing these years. As ageing progresses, mitochondria dysfunction

in skeletal muscle reduced the capabilities of muscle regeneration [71]. Thus ageing results the

impairment of muscle contractile and muscular atrophy [72,73]. Moreover, during ageing, the

abnormalities of metabolic or endocrines bring to chronic inflammation. The pro-inflamma-

tory mediator such as TNF-α and nuclear factor-κB (NF-κB) induce the apoptotic cell death

and reduce the myogenesis capabilities [74,75]. Above mentioned, GMI possess the anti-

inflammatory effect, thus might suppress the ageing-related inflammation response. In addi-

tional, we had demonstrated that application of low concentration of GMI could induce myo-

blast differentiation and along with the upregulation of the mitochondrial protein Tid1.

Collectively, our findings suggest that GMI may have the utility of skeletal muscle

regeneration.
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In summary, our results demonstrate that Tid1 might play a pivotal role in regulating GMI

induced myoblast differentiation. We propose that pre-treatment of GMI promotes the myo-

genic differentiation via upregulation of Tid1 and Ac-STAT3 (Fig 4).

Fig 4. Schematic depicts that GMI pretreatment promotes C2C12 myogenic differentiation via activation of Tid1 and Ac-STAT3.

https://doi.org/10.1371/journal.pone.0244791.g004
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