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ABSTRACT Plasma fibronectin binds saturably and reversibly to substrate-attached fibroblasts 
and is subsequently incorporated into the extracellular matrix (McKeown-Longo, P. J., and D. 
F. Mosher, 1983, J. Cell Biol., 97:466-472). We examined whether fragments of fibronectin 
are processed in a similar way. The amino-terminal 70,000-mol-wt catheptic D fragment of 
fibronectin bound reversibly to cell surfaces with the same affinity as intact fibronectin but 
did not become incorporated into extracellular matrix. The 70,000-mol-wt fragment blocked 
binding of intact fibronectin to cell surfaces and incorporation of intact fibronectin into 
extracellular matrix. Binding of the 70,000-mol-wt fragment to cells was partially abolished by 
cleavage into 27,000-mol-wt heparin-binding and 40,000-mol-wt gelatin-binding fragments 
and more completely abolished by reduction and alkylation of disulfide bonds. Binding of the 
70,000-mol-wt fragment to cells was not blocked by gelatin or heparin. When coated onto 
plastic, the 70,000-mol-wt fragment did not mediate attachment and spreading of suspended 
fibroblasts. Conversely, fibronectin fragments that had attachment and spreading activity did 
not block binding of exogenous fibronectin to substrate-attached cells. These results indicate 
that there is a cell binding site in the 70,000-mol-wt fragment that is distinct from the previously 
described cell attachment site and is required for assembly of exogenous fibronectin into 
extracellular matrix. 

In vivo, fibronectin is a large, dimeric glycoprotein of plasma 
and most body fuids, and an insoluble constituent of loose 
connective tissue and basement membranes. It is synthesized 
by a wide variety of cell types in culture and is found in 
culture medium and in the insoluble extracellular matrix 
around cultured cells (22, 34, 47). The fibronectin in the 
matrix of cultured fibroblasts is found in fibrillar structures 
that are 5-10 nm in diameter (7, 12, 19, 23, 51). Similar 
structures have been identified in granulation tissue of skin 
wounds (52). Although there are structural differences be- 
tween fibronectin purified from plasma and fibronectin syn- 
thesized by cultured cells (2, 16), fibronectin of the extracel- 
lular matrix is derived from both plasma (or serum) and local 
cells (l 8, 32, 38). Furthermore, both plasma (32) and cellular 
(5, 8, 21, 25, 31, 57) flbronectin are present in the matrix as 
high molecular weight, disulfide-bonded multimers. Multi- 
merization of plasma flbronectin probably occurs by disulfide 
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exchange in the 70,000-mol-wt amino-terminal region of the 
molecule (33). 

Fibronectin is believed to mediate cell-matrix adhesion. 
When coated onto plastic or glass substrata, fibronectin pro- 
motes the attachment and spreading of cells. The cell adhesive 
activity of fibronectin has been localized, first to increasingly 
smaller regions within the fibronectin subunit (15, 43, 44), 
and then to a specific tetrapeptide sequence (42). It has been 
postulated that cells in suspension interact with this region of 
the fibronectin molecule by means of a specific receptor 
present on the cell surface. Cell surface gangliosides (27, 60), 
proteins (1, 40, 55), and wheat germ agglutinin receptors (39) 
have all been suggested as cell surface molecules important in 
the attachment and adhesion of cells to fibronectin-coated 
substrata. 

We recently described a presumptive receptor for soluble 
fibronectin on substrate-attached flbroblasts. This receptor 
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appeared to be different from the presumptive receptor on 
suspended fibroblasts that allows adhesion of cells to sub- 
strate-bound fibronectin (32). We proposed that the receptor 
on substrate-attached fibroblasts mediates the assembly of 
soluble fibronectin into the insoluble fibrils of  the extracellular 
matrix. To learn more about the interaction of soluble fibro- 
nectin with this receptor, we have tested the binding and 
blocking activities of  various proteolytic fragments of  fibro- 
nectin. In this paper, we describe several fragments that bind 
to substrate-attached cells. One of these fragments, derived 
from the amino-terminal third of the fibronectin subunit, was 
studied in greater detail. It blocked assembly of intact plasma 
fibronectin into extracellular matrix, although it itself was not 
assembled into the matrix. 

MATERIALS AND METHODS 

Materials: Medium for cell culture was from Oibco Laboratories (Grand 
Island, NY). Fetal bovine serum was from Sterile Systems (Logan, UT). Human 
embryonic skin cells (Detroit 551) and human embryonic lung cells (IMR-90) 
were from the American Type Culture Collection (Rockville, MD). Cathepsin 
D, heparin, and 1,4-diazabicyclo[2.2,2loctane were from Sigma Chemical Co. 
(St. Louis, MO). L-l-tosylamido-2-phenylethyl choromethyl ketone-trcated 
trypsin was from Worthington Diagnostics Div. (Freehold, NJ). Na ~=51 was 
from New England Nuclear (Boston, MA). Type l collagen was purified from 
fetal bovine skin (4). Cyanogen bromide fragment CB-7 of the a-l(1) collagen 
chain (26) was a gift from Dr. Hynda Kleinman, National Institute of Dental 
Research. Heparan sulfate (bovine kidney, super special grade) was from Miles 
Laboratories (Elkhart, IN). Fluorescein isothiocyanate was from Cappel Labo- 
ratories (Cochranville, PA). Materials for autoradiography were from Kodak 
(Rochester, NY). Gel electrophoresis supplies were from Bio-Rad Laboratories 
(Richmond, CA). 

Cell Culture: Human embryonic skin cells (S132) were of locally 
established strains (Dr. Michael Gould, University of Wisconsin) and cultured 
in Ham's F-12 nutrient medium supplemented with 10% fetal calf serum, 100 
U/ml penicillin, and 50 #g/ml streptomycin. Detroit 551 cells were cultured in 
Eagle's minimal essential medium containing 1.0 mM sodium pyruvate sup- 
plemented with 10% fetal calf serum. IMR-90 cells were cultured in Eagle's 
minimal essential medium supplemented with 10% fetal calf serum. Cells for 
passage were customarily split 1:5 every 7 d. All experiments were performed 
on confluent cell monolayers. Fibronectin and 70,000-mol-wt fragment binding 
studies were similar for all three cell strains. 

Purification of Human Plasma Fibronectin and Fibronectin 
Fragments: Human plasma fibronectin was purified from a fibronectin- 
and fihrinogen-rich by-product of Factor VIII production (36). The plasma 
fraction was dissolved in 0.01 M Tris and 0.4 M sodium chloride (pH 7.4). 
Fibrinogen was precipitated by heating at 56°C for 3 rain. The solution was 
clarified by centrifugation and chromatographed on DEAE-cellulose. The fi- 
bronectin peak was pooled, and the protein was precipitated with ammonium 
sulfate, dialyzed against Tris-buffered saline (TBS), ~ and frozen at -70°C until 
used. 

The 70,000-mol-wt, amino-terminal, gelatin-binding fragment of fibronectin 
was purified from cathepsin D digests by a modification of Balian's procedure 
(3). 310 tag/ml cathepsin D was preincubated with l #g/ml soybean trypsin 
inhibitor, and 14 mM phenylmethylsulfonyl fluoride in 0.1 M Tris (pH 7.4) to 
inhibit contaminating serine proteases. 2 mg/ml fibronectin was digested by 1- 
8 #g/ml cathepsin D for 12 h at 37°C in 50 mM sodium acetate (pH 3.5). The 
digestion was terminated by addition of pepstatin to a final concentration of 
0.3 uM. The mixture was dialyzed against three changes of TBS and applied to 
a column of gelatin-agarose, 0.8 ml bed volume/rag of starting fibronectin, 
equilibrated, and washed with TBS. The 70,000-mol-wt fragment was eluted 
with 3 M guanidine hydrochloride in TBS, dialyzed against TBS, and clarified 
by centrifugation at 8,800 g for 20 min. At this point, the preparation was 
~90% pure as judged by SDS PAGE, containing a small amount of 40,000- 
mol-wt gelatin-binding fragment. This fragment was presumably generated by 
trace amounts of a contaminating protease still present in the cathepsin prep- 
aration. In some preparations, the 40,000-mol-wt fragment was separated from 
the 70,000-mol-wt fragment by chromatography on DEAE-cellulose. The pres- 
ence of contaminating 40,000-mol-wt in the 70,000-mol-wt preparations had 

Abbreviations used in this paper. Cam, carboxyamido- 
methyl; TBS, Tris-buffered saline (0.14 M sodium chloride, 10 mM 
Tris, pH 7.4). 

no detectable effect on the cell binding activity of the 70,000-mol-wt fragment. 
The yield of 70,000-mol-wt fragment in several preparations was 16-22%, 
approximately two-thirds of the expected yield of 33%. 

The tryptic amino-terminal 27,000-mol-wt fragment of fibronectin was 
purified as described previously (35). The gelatin-binding 160,000- to 180,000- 
mol-wt tryptic fragments were purified as described previously (37). The final 
160,000- to 180,000-mol-wt preparation consisted of both fragments in ap- 
proximately equal amounts. The tryptic carboxyl-terminal 31,000-mol-wt frag- 
ment was purified as described by Smith et al. (54). 

Modification of disulfides in types I and It homology regions of fibronectin 
greatly increases the susceptibility of the regions to trypsinization (59). Using 
this strategy, large ~fingerless" fragments of fibronectin (i.e., fragments lacking 
the type I homology "fingers') were produced by disulfide modification fol- 
lowed by mild trypsinization. Fibronectin was reduced with l0 mM dithiothre- 
itol in 0.15 M sodium chloride, 0.15 M Tris (pH 7.4), at 22°C for 3 h and 
alkylated with 60 mM iodoacetic acid for 1 h at 22°C in the dark. Excess 
reagents were removed by extensive dialysis against TBS. Modified fibronectin 
(3.6 mg/ml) was then digested with trypsin (1 vg/ml) for 15 min at 37°C. The 
digestion was terminated by adding soybean trypsin inhibitor to a final concen- 
tration of 5 #g/ml, and the digestion mixture, l0 ml, was applied to a 3- x 70- 
cm column of Sepharose 6B equilibrated and eluted with TBS. The initial peak 
was concentrated by ultrafiltration. Approximately 13 mg of a mixture of 
fragments with molecular weights of -170,000, 160,000, and 150,000 were 
obtained from 35 mg of the starting material. The fragments bound to heparin- 
agarose but did not bind to gelatin-agarose under conditions in which an equal 
quantity of intact fibronectin bound completely to both affinity supports (59). 

Ttypsinization and Carboxyamidomethylation of the 70,000- 
mol-wt Fragment: To cleave the 70,000-mol-wt fragment into 27,000- 
mol-wt heparin-binding and 40,000-mol-wt gelatin-binding domains, we incu- 
bated 500 #g/ml of 70,000-mol-wt fragment with 4 ug/ml trypsin for 2 min at 
37°C in TBS. The reaction was stopped with 20 ug/ml soybean trypsin inhibitor. 
SDS PAGE demonstrated complete conversion of the 70,000-mol-wt fragment 
into the two smaller fragments. More extensive trypsinization was accomplished 
b.y incubation with 20 #g/ml trypsin for l0 rain at 37°C. SDS PAGE with and 
without reduction indicated that the 27,000- and 40,000-mol-wt fragments had 
been cleaved within disulfide-bonded loops. To form carboxyamidomethylated 
(Cam)-70,000-mol-wt fragment, we alkylated the fragment (450 ug/ml) with 
iodoacetamide in the presence of l0 mM dithiothreitol as described above for 
intact fibronectin. Cam-70,000-mol-wt fragment was dialyzed against TBS. 
SDS PAGE demonstrated that Cam-70,000-mol-wt fragment migrated the 
same with and without reduction, whereas unmodified 70,000-mol-wt fragment 
migrated further in the absence than in the presence of reducing agent because 
of extensive disulfide bonding. 

Iodination of Fibronectin or Fibronectin Fragments: 400 #g 
of purified plasma fibronectin, 100 ~tg of 70,000-mol-wt fragment and 400 #g 
of 160,000-180,000-mol-wt fragments were iodinated with l gCi Na t251 using 
50 #g of chloramine T in 400 ul of 0.04 M phosphate buffer (pH 7.4). After 60 
s, 5 mg of bovine albumin was added to the mixture, and labeled proteins were 
purified on gelatin-agarose. J251-Fibronectin and the J251-160,000-180,000-mol- 
wt fragments were eluted from the column with l M sodium bromide in 50 
mM sodium acetate (pH 5.0). 12~I-70,000-mol-wt fragment was eluted with 3 
M guanidine hydrochloride in TBS. Labeled proteins were then dialyzed against 
TBS and frozen in portions at -70°C until used. The specific activities of ~25I- 
fibronectin, ~251-70,000-mol-wt fragment, and ~2~I-160,000-180,000-mol-wt 
fragments were 300 #Ci/mg, 140 #Ci/mg, and 40 #Ci/mg, respectively. Purities 
on the labeled proteins were assessed by SDS PAGE with and without reduction 
followed by autoradiography. 

The 31,000-mol-wt carboxyl-terminal tryptic fragment was iodinated by a 
similar method except that albumin was not added, and the labeled protein 
was separated from free isotope by gel filtration on Sephadex G-25. 

Binding of ~251-1abeled Fibronectin or Fibronectin Fragments 
to Cultured Cells: Binding of iodinated proteins to cell layers was done 
in F-12 binding medium supplemented with 10% fibronectin-depleted human 
serum (32) or in F-12 supplemented with 0.2% bovine albumin. Cultures were 
rinsed twice with Hank's balanced salt sodium before addition of labeled 
medium. After incubation with labeled medium at 370C, cultures were rinsed 
four times in Hank's balanced salt sodium, and cell layers were either sequen- 
tially extracted in 1% deoxycholate followed by 4% SDS or scraped directly 
into l N sodium hydroxide. The sequential extraction procedure was used to 
distinguish cell surface-associated radioactivity (deoxycholate-soluble, Pool I) 
from radioactivity incorporated into the extracellular matrix (deoxycholate- 
insoluble, Pool II) (32). Degradation of labeled protein was assessed by SDS 
PAGE of medium containing labeled protein and by quantification of the 
percentage of labeled protein soluble in 10% trichloroacetic acid. Electropho- 
retic analysis of proteins in the absence of reducing agent was used to assess 
formation of disulfide-bonded multimer of the labeled protein. 
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To determine specifc binding of iodinated molecules, we incubated cell 
layers with ~2Sl-fibronectin or ~2Sl-70,000-mol-wt fragment for 30 min in the 
absence (total binding) or presence (nonspecific binding) of unlabeled fibronec- 
tin or fragment (200 ~g/ml). Specific binding of 70,000-mol-wt fragment in 
several experiments was 70-80%. Specific binding of intact fibronectin was 60- 
70%. 

Cell Attachment Assay: For quantification of cell attachment and 
spreading on substrata coated with fibronectin, 70,000-mol-wt fragment, or 
fingerless fragment, plastic tissue culture plates were incubated for 1 h at room 
temperature in TBS containing 5, 10, or 25 ug/ml of these three molecules or 
of bovine albumin. This was followed by a second l-h incubation at room 
temperature in 0.2% bovine albumin in TBS. The plates were then rinsed three 
times with TBS and incubated with a l-ml suspension of human fibroblasts 
(Detroit 551, 1.5 x l0 s cells/ml) in Dulbecco's modified Eagle's medium for 1 
h at 37"C. Plates were then shaken on a rotary shaker (180 strokes/min) for 1 
min. The medium was removed and the plates were rinsed three times with 
TBS. For visualization and counting, the attached cells were fixed with 3% 
paraformalydehyde for 10 min and stained with Coomassie Brilliant Blue. This 
method was based on the assay described by Grinnell et al. (14). 

Incorporation of Fluoresceinated Fibronectin or 70,000- 
mol-wt Fragment into Cell Cultures: I mg/ml fibronectin or 1 mg/ 
ml 70,000-mol-wt fragment was dialyzed against 50 mM carbonate buffer (pH 
9.5) containing 0.15 M sodium chloride. 500 ug fluorescein isothiocyanate in 
1 ml of carbonate buffer was added to a final concentration of 10 ug/ml. The 
protein-fluorescein solution was left for 1 h at room temperature with constant 
stirring. Fluoresceinated fibronectin or 70,000-mol-wt fragment was separated 
from free fluorescein by chromatography on Sephadex G-25 in phosphate- 
buffered saline (pH 7.4). 

Binding of fluoresceinated proteins was done on cultures of human skin 
fibroblasts (Detroit 551) grown on glass coverslips. Equimolar amounts of 
fluoresceinated fibronectin or 70,000-mol-wt fragment (1 x 10 -7 M) were 
incubated with cells in F-12 supplemented with 0.2% bovine albumin. After 
15 min or 24 h, medium was removed. Cell layers were rinsed three times, 
fixed with 3.5% paraformaldehyde for 30 min, rinsed, mounted on glass slides 
in 50% glycerine-phosphate-buffered saline containing 1 mM 1,4-diazabicy- 
clo[2.2.2]octane, and photographed on a Nikon microscope equipped with 
epifluoreseence and phase-contrast. 

PAGE: SDS PAGE was performed on slabs of either 6% or 10% poly- 
acrylamide and 3.3% polyacrylamide stacking gels using a discontinuous buffer 
system (28). Ma1"ker proteins were visualized by staining with Coomassie 
Brilliant Blue. For visualizing ~2Sl-labeled proteins, slabs were dried and auto- 
radiographed with Kodak X-Omat R x-ray film. 

RESULTS 

Binding of Fibronectin Fragments to Cell Layers 

Treatment of fibronectin with various proteases results in 
fragments that retain specific binding activities. These frag- 
ments, therefore, contain one or more of the "binding do- 
mains" of fibronectin. Recent studies have described three 
different types of amino acid sequence homologies, I, II, and 
III, that make up more than 90% of the amino acid sequence 
of fibronectin (41, 48, 53). The type I and type II homology 
units all contain a pair of disulfide bonds. The loops of 
polypeptide chain defined by these bonds have been called 
"fingers." The type III homology region of the molecule does 
not contain disulfide bonds, but does contain the two free 
sulfhydryls per subunit that are found in plasma fibronectin 
(48, 54, 56). Cell adhesive activity is located in the type III 
homology region. The model in Fig. 1 illustrates some of the 
more well-characterized "binding domains" of fibronectin, 
identifies the type(s) of amino acid homologies found in each, 
and localizes the catheptic D and tryptic fragments that are 
important in the present study. 

Fragments of fibronectin prepared by limited tryptic or 
catheptic D digestion of human plasma fibronectin were 
tested for their ability to bind to cell monolayers of cultured 
human fibroblasts and, once bound, to be transferred to the 
deoxycholate-insoluble extracellular matrix. Digestion of ~25I - 
fibronectin with cathepsin D resulted in eight radiolabeled 
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FIGURE 1 Diagram of plasma fibronectin dimer. The two subunits 
are depicted as two arms. Amino-termini are to the left; carboxyl- 
termini are to the right. The two arms are joined through disulfide 
bonds at their extreme carboxyl-termini. All except the region 
shown as dashed lines have been analyzed by protein sequencing 
(41, 53) or cDNA sequencing (48). The 45-residue type I homology 
units are shown as small beads, the S0-residue type II homology 
units are shown as slightly larger beads, and the 90-residue type III 
homology units are shown as large beads. Because of their distinc- 
tive pattern of disulfide loops, the type I homology units have been 
called "fingers" (41). A protease-sensitive insertion in the type III 
homology region is shown as a peanut. Free sulfhydryls are indi- 
cated by dots; the exact location of the free sulfhydryl in the dashed 
region is not known. The following binding activities are localized: 
for fibrin (Fib), for heparin (Hep), for Staphylococcus aureus cell 
surface (Sta), for collagen and gelatin (Co/), and for cell adhesion 
(Adh). The plasma transglutaminase (XIIla) cross-linking site is also 
depicted. Sites of important cleavages by trypsin (T) or cathepsin D 
(C) are indicated by arrows, and the resulting fragments are indi- 
cated by brackets. The preparation of a "fingerless" fragment con- 
taining the type III homology units is described in the text. 

fragments with molecular weights ranging from 20,000 to 
140,000. Only one fragment, the 70,000-mol-wt gelatin-bind- 
ing fragment, bound when cell layers were incubated for 30- 
60 min with these fragments (data not shown). Of the frag- 
ments generated by mild trypsin digestion, fragments with 
molecular weights of 180,000 and larger bound preferentially 
to cells (data not shown). As illustrated in Fig. 1, the 70,000- 
mol-wt fragment contains the 27,000-mol-wt amino-terminal 
heparin- and fibrin-binding domain as well as the adjacent 
40,000-mol-wt gelatin-binding domain (3, 46). The 180,000- 
mol-wt fragment contains all of the binding domains except 
those of the 27,000-mol-wt amino-terminal region (17, 49, 
54). It also does not contain the extreme carboxyl-terminai 
region of the subunit and is monomeric rather than dimeric, 
because it lacks the interchain disulfide bonds. 

To characterize the interaction of these fragments with cells 
over a longer time course, we purified the 70,000-mol-wt ca- 
theptic D fragment and a mixture of 180,000- and 160,000- 
mol-wt tryptic fragments from digestion mixtures by chro- 
matography on gelatin-agarose, radiolabeled them with 125I, 
and incubated them with fibroblasts for up to 24 h. Fig. 2 
shows the time courses, performed in parallel, of binding of 
t25I-labeled fibronectin, 70,000-mol-wt fragment, and mixture 
of 160,000- and 180-000-mol-wt fragments to cell layers. 
Amounts of labeled protein bound to the deoxycholate-solu- 
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FIGURE 2 Time course of binding 12Sl-fibronectin (FN), 1251-70,000- 
mol-wt fragment (70), and 1251-160,000-180,000-mol-wt fragments 
(160 180) to cell layers. Confluent monolayers of human embryonic 
skin cells ($132) in 35-mm diameter dishes incubated with 1 ml of 
binding medium containing 0.2% bovine albumin and equimolar 
concentrations (5 x 10 -a M; specific activity 10 ~,Ci/nmol) of 1251- 
fibronectin, 12Sl-70,000-mol-wt fragment, or 1251-160,000-180,000- 
mol-wt fragments. At the designated time points, binding in Pool I 
(deoxycholate soluble, O) and Pool II (deoxycholate-insoluble, O) 
was determined. Dimeric fibronectin was assumed to contain two 
binding sites per molecule and therefore was assigned a molecular 
weight of 200,000. The mixture of 160,000-180,000-mol-wt frag- 
ments was assigned a molecular weight of 170,000. Determinations 
represent the average from duplicate cultures. 

ble, cell-surface pool (Pool I) and the deoxycholate-insoluble, 
extracellular matrix (Pool II) were quantified. The behavior 
of '2sI-fibronectin was as described previously (32). Initial 
binding was to Pool I (Fig. 2 a). This reached a steady state 
after 6 h. After a 30-min lag period, fibronectin began to bind 
to Pool II. After 24 h, 2.1 pmol of fibronectin per plate had 
accumulated in the extracellular matrix. Binding of the 
70,000-mol-wt fragment in Pool I reached a steady state by 1 
h and was ~70% of the level of intact fibronectin when 
compared on a mole basis at 24 h (Fig. 2 b). There was very 
little binding of the 70,000-mol-wt fragment to Pool II. Bind- 
ing of labeled 160,000-180,000-mol-wt fragments to Pool I 
also reached a steady state at 1 h, and binding at 24 h was 
-25% of the binding of intact fibronectin (Fig. 2c). More 
labeled 160,000-180,000-mol-wt fragments than labeled 
70,000-mol-wt fragment accumulated in Pool II, but the 
160,000-180,000-mol-wt fragments did not accumulate to 
the extent that intact fibronectin did. Binding of all three 
labeled proteins was inhibited by excess unlabeled ligand. 
There was little degradation of the labeled proteins by the 
cells; after 24 h of incubation with the cell layer, <2.0% of 
the added radioactivity was soluble in 10% trichloroacetic 
acid. 

To investigate the possibility that trace contaminants in the 
preparations of '25I-labeled fragments accounted for the Pool 
II binding found after 24 h, we extracted cell layers and 
analyzed them by SDS PAGE (Figs. 3 and 4). 

Fig. 3 shows the results with the 70,000-mol-wt fragment. 
The labeled protein in Pool I (lane 2) consisted mostly of 
labeled 70,000-mol-wt fragment whereas Pool II (lane 3) also 
contained labeled intact fibronectin. Labeled intact fibronec- 
tin could not be detected in the starting material (lanes 1 and 
4), and therefore its presence in Pool II represented a substan- 
tial enrichment. The small amount of labeled 40,000-mol-wt 
gelatin-binding fragment that was present in the original 
preparation (lanes 1 and 4) was not present in the cell layer 

MCKEOwN-LONGO AND MOSHER 

FIGURE 3 Autoradiograph of 12Sl-70,000-mol-wt fragment bound 
to cell layers after 24 h. 12Sl-70,000-mol-wt fragment extracted from 
cells at the 24-h time point shown in Fig. 2 was analyzed by SDS 
PAGE. Material from Pool I (lane 2) or Pool II (lanes 3 and 5) was 
electrophoresed into 10% acrylamide gels in the presence (lanes 2 
and 3) or absence (lane 5) of reducing agent. Lanes 1 and 4 
contained the preparation of 12Sl-70,000-mol-wt fragment used in 
the experiment, analyzed with (lane 1) or without (lane 4) reduction. 
The arrows on the right mark the tops of the stacking and separating 
gels. Molecular weights of reduced protein standards are shown on 
the left. The 200,000-mol-wt standard was human plasma fibronec- 
tin. Equal amounts of radioactivity were electrophoresed in each 
lane. 

at 24 h (lanes 2, 3, and 5). In the absence of reduction (lane 
5), a considerable proportion of the radiolabeled protein in 
Pool II did not penetrate the stacking gel. This material 
represents disulfide-bonded multimers (32, 33). It is not 
known how much of the multimeric material was derived 
from intact labeled fibronectin and how much was derived 
from labeled 70,000-mol-wt fragment. 

Fig. 4 shows the results with the labeled 160,000-180,000- 
mol-wt preparation (lanes 3, 4, 7, and 8) and, for comparison, 
labeled fibronectin (lanes 1, 2, 5, and 6). The 160,000- 
180,000-mol-wt preparation (lanes 3 and 7) contained small 
amounts of contaminants that migrated close to the position 
of the subunit of intact fibronectin when analyzed with re- 
duction (lane 3), but were both monomeric and dimeric when 
analyzed without reduction (lane 7). The monomeric poly- 
peptide probably represents fibronectin that has been cleaved 
only at the extreme carboxyl terminus (see Fig. 1). Analysis 
of labeled 160,000-180,000-mol-wt material extracted from 
Pool I (not shown) demonstrated the 180,000-mol-wt frag- 
ment, none of the 160,000-mol-wt fragment, and only traces 
of polypeptides with molecular weights larger than 180,000. 
In contrast, approximately equal amounts of the larger pro- 
teins and the 180,000-mol-wt fragment were extracted from 
Pool II (lane 4). In the absence of reducing agent, some of the 
labeled proteins in Pool II migrated as disulfide-bonded mul- 
timers (lane 8). Thus, these results indicate that the cells 
selectively bind and accumulate molecules with weights of 
180,000 and greater from the mixture in the labeled 160,000- 
180,000-mol-wt fragment preparation. 

In a single experiment, specific binding of J25I-labeled 
31,000-mol-wt fragment to Pool I was demonstrated (data not 
shown). The 31,000-mol-wt fragment represents the differ- 
ence between the 180,000- and 160,000-mol-wt fragments 
(17, 49, 54; see Fig. 1). 

Binding of the 70,O00-mol-wt Fragment to Pool I 
Reversibility of binding of the 70,000-mol-wt fragment and 

fibronectin to cells was tested by incubation of cell layers for 
20 min at 37"C with '251-70,000-mol-wt fragment or '251- 
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FIGURE 4 Autoradiograph of '251-fibronectin and '2Sl-160,000- 
180,000-mol-wt fragments bound to Pool II after 24 h. The prepa- 
rations of iodinated proteins used in the experiment shown in Fig. 
2 and labeled proteins extracted from Pool II at the 24-h time point 
were analyzed by SDS PAGE on 6% gels in the presence (lanes I -  
4) and absence (lanes 5-8) of reducing agent. Lanes I and 5, ~2Sl- 
fibronectin; lanes 2 and 6, Pool ll-bound 'ZSl-fibronectin; lanes 3 
and 7, 1251-160,000-180,000-mol-wt preparation; and lanes 4 and 
8, Pool ll-bound 12Sl-160,000-180,000-mol-wt fragments. The ar- 
rows on the right indicate the tops of the stacking and the separating 
gels. The arrows on the left indicate bands corresponding to intact 
fibronectin and 180,000- and 160,000-mol-wt fragments. Equal 
amounts of radioactivity were electrophoresed into each lane. 

fibronectin, washing away of unbound protein, and further 
incubation of cell layers in medium without ligand (Fig. 5). 
After 3 h, >70% of the bound 70,000-mol-wt fragment was 
chased from the cell layer. In the same experiment, only 50% 
of the bound fibronectin was chased from the cell layer. Some 
of the fibronectin that remained associated with the cell layer 
after the 3-h chase probably represented bound fibronectin 
that had transferred into Pool II. Pool II binding is irreversible 
(32). 

Inhibition of Binding of 1251-Fibronectin to Pool I 
by' Fibronectin Fragments 

Binding of l:SI-fibronectin to cells was inhibited by the 
presence of increasing concentrations of unlabeled 70,000- 
mol-wt fragment or fibronectin (Fig. 6). Half maximal inhi- 
biiton (K~) of ~:~I-fibronectin binding was obtained at concen- 
trations of 2.5 x 10 -8 M for both fibronectin and the 70,000- 
mol-wt fragment. This indicates that the 70,000-mol-wt frag- 
ment is as effective as fibronectin in preventing the binding 
of 125I-fibronectin to Pool I. 

In other experiments, the mixture of 160,000- and 180,000- 
mol-wt fragments and the 31,000-mol-wt fragment generated 
from the carboxyl-terminal region by tryptic cleavage (Fig. 1) 
were also found to be inhibitory. The KI of these fragments 
were not determined. However, the fragments were less inhib- 
itory than the same molar concentrations of 70,000-mol-wt 
fragment (data not shown). 

Cell Attachment Assay Using the 
70,000-mol-wt Fragment 

As described in the beginning of this paper, the cell adhesive 
site of fibronectin is the region that mediates the attachment 
of suspended cells to fibronectin-coated substrata and has 
been localized to a tetrapeptide in the type III homology 
region (Fig. 1). Our data, however, indicated that efficient 
binding of fibronectin to substrate-attached cells required a 
number of type I homology finger sequences. To separate 
more definitively the two types of binding phenomena, we 
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FIGURE 5 Reversibility of binding of 1251-fibronectin and ~2Sl- 
70,000-mol-wt fragment to Pool I. Confluent monolayers of human 
embryonic skin fibroblasts (Detroit 551) in 60-mm diameter dishes 
were incubated with 2 ml of binding medium containing 0.2% 
bovine albumin and equimolar (1 x 10 -8 M; specific activity 10 #Ci/ 
nmol) concentrations of 12Sl-fibronectin (FN) or '2Sl-70,000-mol-wt 
fragment (70). Incubations were at 37°C for 20 rain. After 20 rain, 
the plates were rinsed, and the medium was replaced with F-12 
containing 0.2% bovine albumin. At the designated time points, 
cell layers were scraped into I ml of I N sodium hydroxide, and 
the amount of 12Sl-fibronectin (O) or 12Sl-70,000-mol-wt fragment 
(A) remaining in the cell layer was determined. Determinations 
represent the average from duplicate cultures. 

'°° t o - - o  FN 

70 

m 
_ 'o o 
c 
o 
t..) 

5 0  o'. 

............ o 

d 

2'.s ,L5 ~'5 
M x l O  e 

FIGURE 6 Inhibition of '2Sl-fibronectin binding to Pool I by 70,000- 
mol-wt fragment. Confluent monolayers of human embryonic skin 
fibroblasts (Detroit 551) in 35-mm diameter dishes were incubated 
with 12sl-fibronectin (450 ng, 106 cpm)in 0.9 ml of binding medium 
containing 0.2% bovine albumin and increasing concentrations of 
unlabeled fibronectin (O) or 70,000-mol-wt fragment (A). Medium 
of control plates contained only albumin. Cultures were incubated 
for 30 rain at 37°C, rinsed, and scraped into 1 ml of 1 M sodium 
hydroxide. Determinations represent the average from duplicate 
plates. So that binding affinities could be compared with previous 
data (32), fibronectin has been assigned a molecular weight of 
400,000, rather than 200,000 as in Fig. 2. 

compared fibronectin, the 70,000-mol-wt fragment that does 
not contain the cell adhesion site, and fingedess fragments 
that contain the cell adhesion site but not intact disulfide- 
looped fingers (59, see Fig. 1), for their ability to promote cell 
attachment and spreading (see Fig. 7 and Table I). The results 



FIGURE 7 Cell attachment to f ibronectin, fingerless fragments and 
70,000-moJ-wt fragment. Human embryonic skin cells (Detroit 551) 
in suspension (2 x 103 cells/ml) were al lowed to attach to plastic 
tissue culture dishes coated with (a) f ibronectin (10 #g/ml), (b) 
fingerless fragments (10 #g/ml), (c) 70,000-mol-wt fragment (25 #g/ 
ml), or (d) bovine albumin (25 #g/ml). Attachment was for 1 h at 
37°C. Cells were fixed and stained with Coomassie Brilliant Blue 
before photography. 

TABLE I 

Effect of Preadsorption of Fibronectin or Fibronectin Fragments 
on Cell Attachment and Spreading on Tissue Culture Plastic 

Cells per sq mm 
(X _+ SEM, n = 10)* 

Concentra- 
t ion of coat- Attached Attached 

Protein coating ing (#g/ml) only and spread 

Fibronectin 

Fingerless fragments 

70,O00-mol-wt fragment 

Bovine albumin 

5 <1 59 + 10 
10 <1 86 -- 15 
25 <1 100 + 10 

5 <1 5 0 +  3 
10 <1 105 --+ 15 
25 <1 7t _+ 8 

5 9 + 2  <1 
10 1 5 + 4  <1 
25 23 - 4 <1 

5 14 +- 5 <1 
10 5+--2 <1 
25 5 +- 1 <1 

* The numbers of trypsinized human skin fibroblasts attached or attached 
and spread after a 1-h incubation period were counted in 10 different areas 
chosen at random on two different plates (five areas per plate). 
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presented in Table I demonstrate that both fibronectin and 
the fingedess fragment promote cell attachment and spread- 
ing, although cells were slightly less spread on fingedess frag- 
ments as compared with fibronectin (Fig. 7). Attachment of 
cells to 70,000-mol-wt fragment was similar to the control 
levels of attachment obtained with albumin (Table I). At the 
highest coating concentration, cells attached to 70,000-mol- 
wt fragment in some regions of the plate (Fig. 7c). However, 
these cells were not spread, and the same attachment was seen 
with albumin coating (Fig. 7 d). 

Inhibition of Incorporation of Fibronectin 
into the Extracellular Matrix by the 
70,000-mol-wt Fragments 

Previous studies have suggested that the assembly of fibro- 
nectin into the extracellular matrix (Pool II) requires the 
participation of the presumptive cell surface receptors that 
mediate binding to Pool I (32). To verify this hypothesis, we 
tested the 70,000-mol-wt fragment that bound to cells pri- 
marily in Pool I (Fig. 2) and competed for binding of intact 
fibronectin to Pool I (Fig. 6) for its ability to block the binding 
of fibronectin in Pool II. Confluent cultures were incubated 
for 4 h with ~2sI-fibronectin in the presence of increasing 
concentrations of unlabeled 70,000-mol-wt fragment or, as a 
control, fingedess fragments. Inhibition of ~25I-fibronectin 
binding to Pool I was accompanied by a corresponding inhi- 
bition of binding to Pool II (Fig. 8). This result indicates that 
Pool I binding of fibronectin is required for its subsequent 
incorporation into the matrix. The fingerless fragment of 
fibronectin had no effect on ~25I-fibronectin binding to either 
pool. This is further evidence that the ability of fibronectin to 
bind to cell surfaces of substrate-attached cells is independent 
of its cell adhesive activity for cells in suspension. 
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FIGURE 8 Inhibit ion of incorporation of f ibronectin into extracel- 
lular matrix by 70,000-mol-wt fragment. Confluent monolayers of 
human embryonic skin fibroblasts (Detroit 551) in 35-ram diameter 
dishes were incubated with 1.0 m[ of binding medium containing 
0.2% bovine albumin, 12Sl-fibronectin (400 ng, 5 x 10 s cpm) and 
increasing concentrations of unlabeled fingerless fragment (FG, A 
and &) or 70,000-mol-wt fragment (70, 0 and @). Medium in control 
plates contained only albumin and 12Sl-fibronectin. Cultures were 
incubated for 4 h at 37°C, rinsed, and binding to Pool I (open 
symbols) and Pool II (closed symbols) was determined as described 
in Materials and Methods. Determinations represent the average 
from duplicate cultures. 
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Effects of Collagen and Heparin on Binding of 
70,O00-mol-wt Fragment and Fibronectin 
to Pool I 

Because the 70,000-mol-wt fragment of fibronectin con- 
tains both collagen- and heparin-binding activities, it was of 
interest to learn whether these molecules had any effect on 
the binding of fibronectin or its 70,000-mol-wt fragment to 
cells. When ~25I-fibronectin was preincubated with type I 
collagen, gelatin, or cyanogen bromide fragment 7 (CB-7) of 
the a- 1(I) chain of type I collagen (this is the collagen fragment 
which has greatest affinity for fibronectin [26]), binding of 
125I-fibronectin and ~:51-70,000-mol-wt fragment to cells was 
enhanced (Table II). Collagen and gelatin enhanced binding 
of J25I-fibronectin 1.5- to 2-fold. Lesser enhancement was 
noted with the CB-7 fragment. Binding of ~2~I-70,000-mol-wt 
fragment to cells was only slightly enhanced by the collagen- 
ous molecules. Heparin enhanced binding to J25I-fibronectin 
by 30%, but had no effect on binding of the ~251-70,000-mol- 
wt fragment. Heparan sulfate had little effect on binding of 
either 125I-fibronectin or ~251-70,000-mol-wt fragment. 

Effects of Modification of the 70,O00-mol-wt 
Fragment on Its Binding to Cells 

To determine which region of the 70,000-mol-wt fragment 
was binding to the cell surface, we tested purified 27,000- and 
40,000-mol-wt tryptic fragments of fibronectin for their ability 
to inhibit the binding to ~251-70,000-mol-wt fragment to cells. 
As shown in Table III, the 27,000-mol-wt fragment was sixfold 
more effective than the 40,000-mol-wt fragment in preventing 
the binding of the ~251-70,000-mol-wt fragment to the cell 
surface but fourfold less effective than the 70,000-mol-wt 
fragment in the inhibition assay. Mild trypsinization of the 
70,000-mol-wt fragment into the 27,000- and 40,000-mol-wt 
fragments resulted in a fourfold decrease in inhibitory activity 
(Table III). Thus, the inhibitory activity of the mixture of 
fragments was similar to that of the 27,000-mol-wt fragment. 

TABLE II 

Effect of Fetal Calf Skin Collagen, Gelatin, Cyanogen Bromide 
lragment 7 of Alpha-l(I) Collagen Chains (CB-7), Heparin, or 
Heparan on Binding of 125l-Fibronectin or ~251-70,000-mol-wt 
Fibronectin Fragment 

% Contro l  bound 

1251_70,000- 

Mo lecu le  ~g/ml 1251-Fibronectin mol -wt  

Col lagen 5 150 117 
25 216 129 

Gelat in 5 192 129 
25 159 136 

CB-7 5 126 119 
25 129 127 

Hepar in  5 133 102 
25 135 97 

Heparan 5 106 105 
25 105 96 

Confluent monolayers of human embryonic skin cells (Detroit 551) (collagen 
experiments) or human embryonic lung cells (IMR-90) (heparin and heparan 
experiments) were incubated with 12Sl-fibronectin (900 ng, 3 x 10 ~ cpm) or 
~2Sl-70,OO0-mol-wt fragment (200 ng, 8 x 10 s cpm) in 1 ml of binding 
medium containing 20 mM HEPES (pH 7.4), 0.2% bovine albumin without 
(control) or with the designated concentration of protein or polysaccharide. 
Determinations represent the average from duplicate plates. 
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TABLE III 

Inhibition by Trypsinized 70,O00-mol-wt Fragment, Cam- 70,000- 
mol-wt Fragment, and 27,000- or 40,000-mol-wt fragment of 
Binding of 12Sl-70,000-mol-wt Fibronectin Fragment to Cells 

Concent ra t ion  requi red for half  
Fragment maximal inh ib i t ion 

(M x 108) 
70,000-mol -wt  2.5 
Trypsinized 70,000-mol -wt  11 
Cam-70,000-mol -wt  > 6 0  
27,000-mol -wt  10 
40,000-mol -wt  65 

Confluent monolayers of human embryonic skin cells (Detroit 551) were 
incubated with t ml of binding medium containing ~2sl-70,000-mol-wt (200 
ng, 7 x 105 cpm), 0.2% bovine albumin, and increasing concentrations of 
unlabeled 70,000-mol-wt fragment, trypsinized 70,000-mol-wt fragment, 
Cam-70,000-mol-wt fragment, or 27,000- or 40,000-mol-wt fragment. In- 
cubations were for 30 min at 37°C. Cell layers were rinsed and scraped 
into 1 N sodium hydroxide for radioactivity determinations. Maximal inhi- 
bition was defined as the inhibition obtained with 70,000-mol-wt fragment, 
50 ~g/ml (7 x 10 -7 M). 

The 27,000-, 40,000-, and 31,000-mol-wt regions all con- 
tain several units of Type I amino acid sequence homology. 
The secondary structure of the units is undoubtedly main- 
tained by disulfide bonds. To test whether the integrity of 
these disulfides is needed for binding to cells, we reduced the 
70,000-mol-wt fragment and alkylated it with iodoacetamide 
(to form the carboxyamidomethyl- or Cam- derivative). Cam- 
70,000-mol-wt fragment did not compete for binding of ~25I- 
70,000-mol-wt fragment to cells (Table III) at concentrations 
30-fold greater than the K~ of unmodified 70,000-mol-wt 
fragment. As further evidence that intact fnger regions are 
important for effective binding of the 70,000-mol-wt fragment 
to cells, vigorous trypsinization of the 70,000-mol-wt frag- 
ment, resulting in cleavages within fingers, produced greater 
decreases in inhibitory activity than that observed when the 
70,000-mol-wt fragment was simply cleaved into 27,000- and 
40,000-mol-wt fragments (data not shown). 

Localization of Fibronectin and the 70,O00-mol- 
wt Fragment in Cell Layers 

Fluorescein-labeled fibronectin or 70,000-mol-wt fragment 
was incubated with cell layers for 15 min or 24 h and localized 
by fluorescence microscopy. After 15 min of binding, both 
molecules were detected in fine linear patterns that appeared 
to be between cells (Fig. 9, a and c). When viewed at higher 
magnification (not shown), linear fluorescence was localized 
to the extreme edges of the cells. After 24 h (Fig. 9 b), there 
was extensive accumulation of fluorescein-labeled fibronectin 
by the cells (note the fivefold shorter exposure time). Fluores- 
cence was in fibrils that were coarser and thicker than those 
observed at the earlier time and formed an extensive extra- 
cellular meshwork that completely surrounded the ceils. This 
was the same pattern seen when the cell layers were stained 
for endogenous fibronectin matrix by indirect immunofluo- 
rescence using antifibronectin antibodies (not shown). In con- 
trast, there was no accumulation of fluorescein-labeled 
70,000-mol-wt fragment by the cell layers at 24 h (Figure 9 d). 
The fluorescence was distributed in a linear pattern. When 
viewed at a higher magnification (Fig. 10), the fluorescence 
was localized to the edges of cells. When one focused up and 
down, there was no evidence of fluorescence underneath or 
on top of the cells. 



FIGURE 9 Localization of cell layer-bound fibronectin and 70,000-mol-wt fragment by fluorescence microscopy. Fluorescein- 
labeled derivatives of fibronectin and 70,000-mol-wt fragment (1 x 10 -7 M) were incubated with confluent cell layers of cultured 
human fibroblasts for either 15 min or 24 h. Cell layers were rinsed, fixed, and viewed under the fluorescent microscope. (a) 
Fibronectin, 15-rain incubation; (b) fibronectin, 24-h incubation; (c) 70,000-mol-wt fragment, 15-rain incubation; and (d) 70,000- 
mol-wt fragment, 24-h incubation. Exposure times were as follows: (a) 147 s; (b) 30 s; (c) 180 s; and (d) 185 s. x 300. 

FIGURE 10 Localization of 70,000-mol-wt fragment bound to the cell layer after 24 h. Fluorescein-labeled 70,000-mol-wt 
fragment (1 x 10 -7 M) was incubated with cell layers for 24 h. Cell layers were rinsed, fixed, and 70,000-mol-wt fragment was 
visualized by (a) fluorescent and (b) phase-constrast microscopy, x 7,50. 
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DISCUSSION 

In a previous communication, we reported that soluble 
plasma fibronectin binds to monolayers of cultured human 
fibroblasts (32). Two pools of bound fibronectin in cell layers 
were defined on the basis of their differential solubility in 1% 
deoxycholate. The deoxycholate soluble pool, Pool I, was 
proposed to represent fibronectin binding to receptors on the 
cell surface, and the deoxycholate insoluble pool, Pool II, was 
proposed to represent fibronectin incorporated into the deter- 
gent-insoluble extracellular matrix. It seemed likely that Pool 
I binding of fibronectin represented binding to a receptor 
present on the cell surface because binding to Pool I was 
specifc and saturable, and fluorescence microscopic localiza- 
tion indicated that Pool I binding occurred at the edges of the 
cells and not in the fibrils of the extracellular matrix (see also 
Figs. 9 and 10). Furthermore, Pool I binding seemed to be 
required for transfer of fibronectin to Pool II because fibro- 
nectin did not accumulate into the matrix in the absence of 
cells (32). 

Binding studies presented here using the 70,000-mol-wt 
fragment indicate that a principal cell binding site on fibro- 
nectin is in the amino-terminal one-third of the molecule. In 
these studies, the binding affinities of fibronectin and the 
70,000-mol-wt fragment appeared similar, as judged by con- 
centrations needed for half maximal inhibition of binding, K~ 
= 2.5 x l0 -8 M. This is in good agreement with previous 
binding studies, analyzed by the method of Scatchard, that 
gave a dissociation constant for fibronectin and its receptor 
of 3.8 x 10 -8 M (32). 

Preincubation of ~25I-fibronectin or ~251-70,000-mol-wt frag- 
ment with collagen or heparin did not inhibit binding to the 
cells. Thus, the cell binding site present on the 70,000-mol- 
wt fragment appears to be independent of the heparin and 
collagen binding sites. Both heparin and collagen enhanced 
the binding of fibronectin to cells over 30 min. This is in 
agreement with a previous report in which collagen was shown 
to enhance the accumulation of soluble fibronectin in cell 
layers over a longer period (45). The binding of CB-7 to 
fibronectin in solution has been reported to cause the amino- 
terminal part of fibronectin to be more mobile (58). Thus, 
the increased binding seen in the presence of collagen may be 
due to increased accessibility of the 27,000-mol-wt region of 
fibronectin to cell receptors. Heparin enhanced the binding 
of fibronectin, but not the 70,000-mol-wt fragment, to the 
cells. Binding of heparin to the more carboxyl-terminal of the 
heparin binding sites (see Fig. 1) may also mobilize the amino- 
terminal end of the molecule. Alternatively, the heparin may 
bind several fibronectin molecules that subsequently attach 
to the cell surface. Both collagen and heparin conceivably 
could enhance binding of fibronectin to cell layers by first 
complexing to fibronectin and then binding to cell surface 
receptors for collagen (13) or heparin. Heparan sulfate had 
no effect on fibronectin binding. This is consistent with the 
observation by Sekiguchi et al. (50) that heparan sulfate does 
not bind to intact fibronectin under physiological conditions. 

Although the 70,000-mol-wt fragment was bound into Pool 
I, very little was incorporated into the extracellular matrix 
over a 24-h period (Fig. 2). The 180,000-mol-wt fragment did 
accumulate in the matrix but to a lesser extent than intact 
fibronectin (Fig. 2). Previously, it was shown that only intact 
fibronectin becomes associated with connective tissue mat- 
rices when injected in vivo (38). These results suggest that, 
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although fragments of fibronectin bind to cell surface recep- 
tors, only intact molecules are effectively assembled into the 
matrix. That binding of fibronectin to these receptors is 
required for matrix assembly was shown by the finding that 
the 70,000-mol-wt fragment that bound to Pool I and was 
transferred poorly to the matrix blocked the incorporation of 
fibronectin into the extracellular matrix (Fig. 7). Fluorescence 
microscopy (Figs. 9 and 10) indicated that binding sites are 
not uniformly distributed over the cell surface, but are re- 
stricted to the edges of the cell. Consistent with this observa- 
tion, indirect immunofluorescence using antifibronectin an- 
tibodies has shown that the formation of fibronectin fibrils by 
newly seeded cells begins at the outer edges of the cell (6). 

The "cell binding site" present in the 70,000-mol-wt frag- 
ment is distinct from the previously characterized "cell at- 
tachment" or "cell adhesion site" (42-44). The cell adhesion 
site of fibronectin has been characterized using cell attach- 
ment assays in which cells in suspension attach and spread 
on fibronectin adsorbed onto plastic or glass substrata. Inhi- 
bition of cell adhesion with soluble fibronectin has resulted 
in the characterization of low affinity receptors (KD = 10 - 7  to 
10 -5 M) for fibronectin (24, 30, 61). Cell binding studies using 
fibronectin adsorbed onto latex beads (30) probably also 
represent a variation of the cell attachment assay. Our studies 
indicate that there is a "matrix assembly site" on fibronectin 
for a "matrix assembly receptor" on substrate-attached cells 
and a cell adhesion site on fibronectin for a cell adhesion 
receptor on suspended cells. The cell adhesion receptor and 
the matrix assembly receptor can be distinguished by several 
criteria. The matrix assembly receptor recognizes preferen- 
tially the part of the fibronectin molecule present in the 
70,000-mol-wt fragment. The 70,000-mol-wt cell binding 
fragment did not exhibit cell adhesion activity (Fig. 7 and 
Table I). Fragments that contained the cell adhesion site and 
mediated cell adhesion did not bind to the matrix assembly 
receptor (Fig. 8). HT-1080 fibrosarcoma cells attached and 
spread on substrate-adsorbed fibronectin but did not bind 
fibronectin in either Pool I or Pool II (32). It is likely that the 
cell adhesion receptor is functional in these transformed cells 
but the matrix assembly receptor is not. The matrix assembly 
receptor exhibited relatively high affinity for soluble fibronec- 
tin (Fig. 6) when compared to the cell adhesion receptor (24, 
30, 61). 

We were unable to localize the matrix assembly site une- 
quivocally to a site within the 70,000-mol-wt fragment. Be- 
cause all three regions of fibronectin that contain type I 
homology units seem to contribute to binding (i.e., the 70,000- 
mol-wt fragment inhibited better than the 27,000- or 40,000- 
mol-wt fragment, and the 180,000-mol-wt fragment that con- 
tained the 40,000- and 31,000-mol-wt regions bound better 
than the 160,000-mol-wt fragment that contained only the 
40,000-mol-wt region), binding to the matrix assembly recep- 
tor may be a general property of the type I sequence. Inhibi- 
tion studies using tryptic fragments derived from the 70,000- 
mol-wt fragments, however, suggest that the principal binding 
site is within the 27,000-mol-wt amino-terminal region. Al- 
though the 27,000-mol-wt fragment was significantly less 
active than the 70,000-mol-wt fragment in blocking the bind- 
ing of labeled 70,000-mol-wt fragment to cells (Table III), in 
high enough concentration it did block completely. In addi- 
tion, the 27,000-mol-wt fragment was considerably more 
effective than the 40,000-mol-wt fragment in blocking the 
binding of labeled 70,000-mol-wt fragment. If the matrix 



assembly site is contained wholly in the 27,000-mol-wt region, 
the isolated 27,000-mol-wt fragment may not bind to the 
receptor with the same affinity as the 70,000-mol-wt fragment 
because of conformational changes mediated by the adjacent 
40,000-mol-wt region. Alternatively, the binding site may 
span both the 27,000- and 40,000-mol-wt regions of the 
molecule, with sites in both regions requried for optimal 
binding. Finally, there may be another site in the 31,000-mol- 
wt region that also interacts with cells and allows efficient 
transfer of  intact bound molecules into extracellular matrix. 

Previous studies have suggested that a 60,000-mol-wt chy- 
motryptic fragment from horse serum fibronectin contains a 
binding site for intact fibronectin (10, 11). The 60,000-mol- 
wt fragment appears to be quite similar to the 70,000-mol-wt 
catheptic fragment. This suggests the possibility that the ma- 
trix assembly receptor for fibronectin is fibronectin itself. Such 
a possibility seems unlikely for several reasons: (a) Very little 
plasma fibronectin binds to isolated extraceUular matrix (32). 
(b) Early binding of fibronectin or the 70,000-mol-wt frag- 
ment was to restricted areas on or near the cell surface and 
not to the entire fibronectin-containing extracellular matrix. 
(c) Pretreatment of cells with trypsin, under conditions in 
which 90% of  the extracellular fibronectin was removed, has 
no effect on binding of fibronectin to Pool I (unpublished 
observations). (d) Pretreatment of cells with cycloheximide 
for several hours to clear the cells of  newly synthesized fibro- 
nectin has no inhibitory effect on fibronectin binding (unpub- 
lished observation). Nevertheless, fibronectin-fibronectin in- 
teractions probably occur during assembly of disulfide- 
bonded multimers (33), and further studies are needed to 
describe more fully the molecular interactions at the cell 
surface. 

Proteolytic fragments of  fibronectin have effects on cellular 
metabolism that are not shared by the intact molecule. Ca- 
thepsin D digests of  bovine plasma fibronectin have been 
shown to stimulate the synthesis of  DNA in quiescent fibro- 
blast cultures (20). Gelatin-binding fragments of  plasmin- or 
cathepsin G-treated human plasma fibronectin enhance mor- 
phological cell transformation of Rous sarcoma virus-infected 
chick embryo fibroblasts (9). Trypsin and plasmin digests of  
fibronectin accelerate the formation of tubular structures in 
endothelial cell cultures (29). Our experiments indicate that 
fibronectin fragments can interact with cells in a manner that 
is different from intact fibronectin, i.e., the fragments can 
bind to the presumptive matrix assembly receptor but are not 
assembled into extracellular matrix. It will be of  interest to 
learn whether the effects of  fibronectin fragments described 
above are modulated by interactions of  the fragments with 
the presumptive matrix-assembly receptor. 
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