

Received 23 December 2016 Accepted 29 December 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structures; 3-chloro-3-methyl-2,6-diphenyl-piperidin-4-ones; hydrogen bonds; C—H··· π interactions.

CCDC references: 1524979; 1524978; 1524977

Supporting information: this article has supporting information at journals.iucr.org/e

R. Arulraj,^a S. Sivakumar,^{a,b}* Manpreet Kaur,^c A. Thiruvalluvar^d and Jerry P. Jasinski^c*

^aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, ^bDepartment of Chemistry, Thiruvalluvar Arts and Science College, Kurinjipadi 607 302, Tamilnadu, India, ^cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and ^dPrincipal, Government College for Women (Autonomous), Kumbakonam 612 001, Tamilnadu, India. *Correspondence e-mail: sivakumar.phd2015@gmail.com, jjasinski@keene.edu

The syntheses and crystal structure of 3-chloro-3-methyl-*r*-2,*c*-6-diphenylpiperidin-4-one, $C_{18}H_{18}CINO$, (I), 3-chloro-3-methyl-*r*-2,*c*-6-di-*p*-tolylpiperidin-4-one, $C_{20}H_{22}CINO$, (II), and 3-chloro-3-methyl-*r*-2,*c*-6-bis(4-chlorophenyl)piperidin-4-one, $C_{18}H_{16}Cl_3NO$, (III), are described. In each structure, the piperidine ring adopts a chair conformation and dihedral angles between the mean planes of the phenyl rings are 58.4 (2), 73.5 (5) and 78.6 (2)° in (I), (II) and (III), respectively. In the crystals, molecules are linked into *C*(6) chains by weak $N-H\cdots O$ hydrogen bonds and $C-H\cdots\pi$ interactions are also observed.

1. Chemical context

The piperidine ring is a ubiquitous structural feature of many alkaloid natural products and drug candidates: Watson *et al.* (2000) asserted that during a recent 10-year period there were thousands of piperidine compounds mentioned in clinical and preclinical studies. Piperidin-4-ones are reported to possess analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anticancer and antimicrobial activities (Perumal *et al.*, 2001; Dimmock *et al.*, 2001). As part of our ongoing structural studies of piperidin-4-ones (Arulraj *et al.*, 2016), the syntheses and crystal structures of three 3-chloro-3-methyl-2,6-diarylpiperidin-4-ones are now reported.

CHa

research communications

Figure 1

A view of the molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level.

Figure 2

A view of the molecular structure of (II), showing displacement ellipsoids drawn at the 30% probability level.

Figure 3

A view of the molecular structure of (III), showing displacement ellipsoids drawn at the 30% probability level.

Table 1

Hydrogen-bond geometry (Å, °) for (I).

Cg2 and Cg3 are the centroids of the C6-C11 and C12-C17 rings, respectively.

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdotsO1^{i}$	0.83 (3)	2.49 (3)	3.257 (3)	154 (3)
$C9-H9\cdots Cg3^{ii}$	0.95	2.97	3.662 (3)	131
$C15 - H15 \cdots Cg2^{iii}$	0.96	2.98	3.861 (3)	155
$C18-H18A\cdots Cg2^{iv}$	0.98	2.73	3.497 (3)	136

Symmetry codes: (i) x - 1, y, z; (ii) x, y - 1, z; (iii) x - 1, y + 1, z; (iv) x + 1, y, z.

Table 2

Table 3

Hydrogen-bond geometry (Å, $^\circ)$ for (II).

Cg2 and Cg3 are the centroids of the C6-C11 and C12-C17 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O1^{i}$ $C18 - H18A \cdots Cg3^{ii}$ $C20 - H20A \cdots Cg2^{iii}$	0.85 (3) 0.98 0.97	2.27 (3) 2.92 2.81	3.057 (2) 3.686 (3) 3.724 (3)	154 (3) 135 156
0				

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z$; (ii) $-x - \frac{1}{2}, y + \frac{3}{2}, z + \frac{1}{2}$; (iii) $x + \frac{3}{2}, -y - \frac{1}{2}, z - 1$.

Hydrogen-bond geometry (Å, °) for (III).

Cg3	is	the	centroid	of	the	C12-C1	17 rin	g.
- 0-								~

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
N1-H1···O1 ⁱ	0.74 (3)	2.40 (3)	3.071 (3)	151 (3)
C10-H10···O1 ⁱⁱ	0.95	2.56	3.374 (3)	144
C18-H18C···Cg3 ⁱⁱⁱ	0.98	2.98	3.725 (3)	134

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, z$; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, z + 1$; (iii) $-x + \frac{1}{2}, y + \frac{3}{2}, z + \frac{1}{2}$.

2. Structural commentary

The title compound containing the 2,6-diaryl-piperidin-4-one moiety, C₁₈H₁₈NOCl, (I), crystallizes in the triclinic space group $P\overline{1}$ (Fig. 1) whereas compounds $C_{20}H_{22}NOCl$, (II) (Fig. 2) and C₁₈H₁₆NOCl₃, (III) (Fig. 3) both crystallize in the orthorhombic space group Pna21. The piperidin-4-one ring in all three compounds exhibits a distorted chair conformation [puckering parameters Q = 0.559 (3) Å (I), 0.568 (2) Å (II), 0.557 (3) Å (III); $\theta = 173.3$ (3)° (I), 168.5 (2)° (II), 167.8 (3)° (III) and $\varphi = 180 \ (2)^{\circ} \ (I), \ 156.9 \ (12)^{\circ} \ (II), \ 206.8 \ (13)^{\circ} \ (III)].$ The methyl substituent on position 3 of the piperidine ring takes up a syn-periplanar orientation [C18-C2-C1-O1 = $-3.4 (3)^{\circ}$ (I), $-7.4 (3)^{\circ}$ (II), 8.6 (4)° (III)] while the chloro substituent takes up an anti-clinical orientation [Cl1-C2- $C1-O1 = 113.3 (2)^{\circ}$ (I), 109.0 (2)° (II), -106.9 (3)° (III)] owing to the repulsion from a nearby oxygen atom. The phenyl rings bonded to the piperidine moiety occupy equatorial positions in all three compounds: the dihedral angles between the mean planes of the phenyl rings are 58.4 (2), 73.5 (5) and 78.6 (2) $^{\circ}$ in (I), (II) and (III), respectively. The increase in the dihedral angles between the phenyl rings from (I) to (III) might be attributed to the steric repulsion resulting from the substituents on the phenyl rings. The sum of bond angles around N1 in each structure [333.1° (I), 332.0° (II), 337.3° (III)] is consistent with sp³ hybridization (Beddoes et al., 1986).

research communications

A partial view along the *c* axis of the crystal packing for (I), showing the chains formed along [100] by a weak $N-H\cdots O$ hydrogen bond. H atoms not involved in this weak hydrogen-bonding activity have been omitted for clarity.

3. Supramolecular features

For each structure, the crystal packing is influenced by weak N1-H1···O1 hydrogen bonds, forming infinite chains along the *a* axis direction (Figs. 4, 5 and 6). In (III), additional weak C10-H10···O1 interactions are observed. Weak C-H··· π interactions are observed in all three compounds (Tables 1, 2 and 3). In all three compounds, π - π interactions must be extremely weak, with centroid-centroid separations greater than 4 Å.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.37, update February 2016; Groom et al., 2016) for the 2,6diphenylpiperidin-4-one skeleton gave 221 hits. Three closely related structures, viz. c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-one (CSD refcode: PUGNEL; Thenmozhi et al., 2009); r-2,c-6-bis-(4-chlorophenyl)-3,3-dimethylpiperidin-4one (CSD refcode: OGEJEQ; Ilango et al., 2008) and 3,3dimethyl-cis-2,6-di-p-tolylpiperidin-4-one (CSD refcode: PUFHAA; Gavathri et al., 2009) may be briefly compared to the three structures reported here: the distorted chair conformations of the piperidine rings are also observed in PUGNEL, OGEJEQ and PUFHAA. The packing in (I),(II) and (III) and and PUGNEL, PUFHAA and OGEJEQ all feature N-H···O hydrogen bonds and C-H··· π interactions. Both (III) and OGEJEQ also exhibit additional weak C-H···O interactions.

Figure 5

A partial view along the *c* axis of the crystal packing for (II) showing the chains formed along [100] by a weak $N-H\cdots O$ hydrogen bond. H atoms not involved in this weak hydrogen-bonding activity have been omitted for clarity.

Figure 6

A partial view along the *c* axis of the crystal packing for (III) showing the chains formed along [100] by a single weak $N-H\cdots O$ interaction, which is consolidated by a $C-H\cdots O$ bond. H atoms not involved in this weak hydrogen-bonding activity have been omitted for clarity.

5. Synthesis and crystallization

A mixture of ammonium acetate (0.1 mol, 7.71 g), the respective aldehvde (0.2 mol) (benzaldehvde/p-methylbenzaldehyde/p-chlorobenzaldehyde, 20.4 ml, 24.0 g and 28.1 ml) and 3-chloro-2-butanone (0.1 mol, 10.1 ml) in distilled ethanol was heated first to boiling. After cooling, the viscous liquid obtained was dissolved in diethyl ether (200 ml) and shaken with 100 ml concentrated hydrochloric acid. The precipitated hydrochloride of the 3-chloro, 3-methyl-r(6), c(6)diarylpiperidin-4-one was removed by filtration and washed first with a 40 ml mixture of ethanol and diethyl ether (1:1) and then with diethyl ether to remove most of the coloured impurities. The base was liberated from an alcoholic solution by adding aqueous ammonia and then diluted with water. Each compound was recrystallized twice from distilled ethanol solution: single crystals of (I), (II) and (III) were obtained after two days.

research communications

Table 4Experimental details.

	(I)	(II)	(III)
Crystal data			
Chemical formula	C ₁₈ H ₁₈ ClNO	C ₂₀ H ₂₂ ClNO	$C_{18}H_{16}Cl_3NO$
M _r	299.78	327.83	368.67
Crystal system, space group	Triclinic, $P\overline{1}$	Orthorhombic, Pna21	Orthorhombic, <i>Pna</i> 2 ₁
Temperature (K)	173	173	173
a, b, c (Å)	6.7150 (6), 10.9591 (13), 11.1704 (10)	13.0578 (2), 22.6513 (4), 5.93756 (8)	13.2430 (4), 22.3945 (6), 5.81947 (14)
α, β, γ (°)	72.162 (9), 79.721 (7), 76.873 (8)	90, 90, 90	90, 90, 90
$V(\dot{A}^3)$	756.80 (14)	1756.19 (5)	1725.88 (8)
Z	2	4	4
Radiation type	Cu Ka	Cu Kα	Cu Ka
$\mu (\mathrm{mm}^{-1})$	2.21	1.94	4.83
Crystal size (mm)	$0.26 \times 0.22 \times 0.06$	$0.32 \times 0.18 \times 0.08$	$0.34 \times 0.14 \times 0.14$
Data collection			
Diffractometer	Rigaku Oxford Diffraction	Agilent Xcalibur, Eos, Gemini	Agilent Xcalibur, Eos, Gemini
Absorption correction	Multi-scan CrysAlis PRO (Agilent, 2014)	Multi-scan CrysAlis PRO (Agilent, 2014)	Multi-scan CrysAlis PRO (Agilent, 2014)
T_{\min}, T_{\max}	0.609, 1.000	0.724, 1.000	0.646, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4920, 2847, 2456	11595, 2966, 2873	12474, 2602, 2494
R _{int}	0.030	0.050	0.033
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.615	0.615	0.615
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.057, 0.168, 1.05	0.034, 0.087, 1.07	0.032, 0.084, 1.02
No. of reflections	2847	2966	2602
No. of parameters	195	214	212
No. of restraints	0	1	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.68, -0.29	0.24, -0.21	0.45, -0.23
Absolute structure	-	Flack x determined using 1017 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)	Flack x determined using 695 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-	-0.010 (13)	0.135 (13)

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

3-Chloro-3-methyl-r(2),c(6)-diphenylpiperidin-4-one,

(C₁₈H₁₈CINO) (I) IR (KBr): 3333.64 (ν N-H), 3063.43, 3007.40 (ν C-H), 1713.51 (ν C=O), 1602.76, 1495.15 (ν C=C), 749.57 (ν C-Cl) cm^{-1. 1}H NMR (500 MHz, CDCl₃): δ 7.41-7.16 (*m*, aromatic protons), 4.00–3.97 [*dd*, H(6) proton], 3.87 [*s*, H(2) proton], 3.44–3.39 [*t*, H(5e) proton], 2.50–2.45 [*dd*, H(5a) proton], 1.66 (*s*, NH proton), 1.38 (*s*, CH₃ proton). ¹³C NMR (CDCl₃, 500 MHz): δ 202.69 (C=O), 142.27, 137.32 (aromatic *ipso* carbon atoms), 129.52–126.89 (aromatic carbon atoms), 72.02 (C-3 carbon), 69.88 (C-2 carbon), 61.49 (C-6 carbon), 45.60 (C-5 carbon), 22.25 (methyl carbon).

3-Chloro-3-methyl-*r***(2**),*c*(6)-di-p-tolyl-piperidin-4-one, (C₂₀H₂₂ClNO) (II) IR (KBr): 3332.57 (υN−H), 3095.35, 3007.79 (υC−H), 1715.40 (υC=O), 1615.57, 1513.79 (υC=C), 738.68 (υC−Cl) cm^{-1.} ¹H NMR (500 MHz, CDCl₃): δ 7.50-7.33 (*m*, aromatic protons), 4.06–4.03 [*dd*, H(6) proton], 3.93 [*s*, H(2) proton], 3.45–3.40 [*dd*, H(5e) proton], 2.54–2.51 [*dd*, H(5a) proton], 1.70 (*s*, NH proton), 1.43 (*s*, CH₃ proton at C-3), 2.45 (*s*, CH₃ protons attached to the phenyl ring). ¹³C NMR (CDCl₃, 500 MHz): δ 203.07 (C=O), 139.32, 138.56, 138.01, 134.32 (aromatic *ipso* carbon atoms), 129.69–126.76 (aromatic carbon atoms), 72.16 (C-3 carbon), 69.62 (C-2 carbon), 61.18 (C-6 carbon), 45.58 (C-5 carbon), 21.37 (methyl carbon at C-3), 22.22 (methyl carbon atoms attached to the phenyl ring).

3-Chloro-3-methyl-*r***(2**),*c***(6)-bis(p-chlorophenyl)piperidin-**4-one, (C₁₈H₁₆Cl₃NO) (III) IR (KBr): 3325.87 (ν N-H), 3047.68, 3009.09 (ν C-H), 1715.63 (ν C=O), 1596.88, 1491.72 (ν C=C), 799.88 (ν C-Cl) cm^{-1.} ¹H NMR (500 MHz, CDCl₃): δ 7.50–7.33 (*m*, aromatic protons), 4.06–4.03 [*dd*, H(6) proton], 3.93 [*s*, H(2) proton], 3.45–.40 [*dd*, H(5e) proton], 2.54–2.51 [*dd*, H(5a) proton], 1.70 (*s*, NH proton), 1.43 (*s*, CH₃ proton). ¹³C NMR (CDCl₃, 500 MHz): δ 201.73 (C=O), 140.41, 135.41, 134.67, 133.93 (aromatic *ipso* carbon atoms), 130.55–128.04 (aromatic carbon atoms), 71.31 (C-3 carbon), 68.92 (C-2 carbon), 60.54 (C-6 carbon), 45.24 (C-5 carbon), 21.92 (methyl carbon).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. In (I), all H atoms were placed in their calculated positions and then refined using a riding model with bond lengths of 0.95 or 1.0 Å (CH), 0.99 Å (CH₂), 0.98 Å (CH₃) or 0.83 Å (NH). In (II) and (III), atom H1 was

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility (SAIF), IITM, Chennai, India, for recording the NMR data and extend their thanks to the Principal, Dr P. Kathirvel, Chairman, Mr R. Sattanathan, and Treasurer, Mr T. Ramalingam, of Thiruvalluvar Arts and Science College, Kurinjipadi 607 302, Tamilnadu, India, for giving permission to carry out research work in the Chemistry Laboratory. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

Agilent (2014). CrysAlis PRO. Agilent Technologies. Agilent Technologies Ltd, Yarnton, England.

- Arulraj, R., Sivakumar, S., Thiruvalluvar, A., Kaur, M. & Jasinski, J. P. (2016). *IUCrData*, **1**, x161580.
- Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). *J. Chem. Soc. Perkin Trans.* 2, pp. 787–797.
- Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586– 593.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Gayathri, P., Ilango, S. S., Ponnuswamy, S., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, 02445.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B72, 171–179.
- Ilango, S. S., Ponnuswamy, S., Gayathri, P., Thiruvalluvar, A. & Butcher, R. J. (2008). Acta Cryst. E64, 02312.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Perumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). *Indian Drugs*, 38, 156–159.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Thenmozhi, M., Ponnuswamy, S., Umamaheshwari, J., Jamesh, M. & Ponnuswamy, M. N. (2009). *Acta Cryst.* E65, o2794.
- Watson, P. S., Jiang, B. & Scott, B. (2000). Org. Lett. 2, 3679-3681.

Acta Cryst. (2017). E73, 107-111 [https://doi.org/10.1107/S2056989016020661]

Crystal structures of three 3-chloro-3-methyl-2,6-diarylpiperidin-4-ones

R. Arulraj, S. Sivakumar, Manpreet Kaur, A. Thiruvalluvar and Jerry P. Jasinski

Computing details

For all compounds, data collection: *CrysAlis PRO* (Agilent, 2014); cell refinement: *CrysAlis PRO* (Agilent, 2014); data reduction: *CrysAlis PRO* (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

(I) 3-Chloro-3-methyl-r-2,c-6-diphenylpiperidin-4-one

Crystal data

C₁₈H₁₈ClNO $M_r = 299.78$ Triclinic, $P\overline{1}$ a = 6.7150 (6) Å b = 10.9591 (13) Å c = 11.1704 (10) Å a = 72.162 (9)° $\beta = 79.721$ (7)° $\gamma = 76.873$ (8)° V = 756.80 (14) Å³

Data collection

Rigaku Oxford Diffraction
diffractometer
Radiation source: Enhance (Cu) X-ray Source
Graphite monochromator
Detector resolution: 16.0416 pixels mm ⁻¹
ω scans
Absorption correction: multi-scan
CrysAlisPro (Agilent, 2014)
$T_{\rm min} = 0.609, T_{\rm max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.168$ S = 1.052847 reflections 195 parameters 0 restraints Z = 2 F(000) = 316 $D_x = 1.316 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 1924 reflections $\theta = 4.2-71.4^{\circ}$ $\mu = 2.21 \text{ mm}^{-1}$ T = 173 KPlate, colourless $0.26 \times 0.22 \times 0.06 \text{ mm}$

4920 measured reflections 2847 independent reflections 2456 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 71.6^{\circ}, \theta_{min} = 4.2^{\circ}$ $h = -5 \rightarrow 8$ $k = -13 \rightarrow 12$ $l = -13 \rightarrow 13$

Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1016P)^2 + 0.3319P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.68 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.29 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.84481 (9)	0.47065 (6)	0.39680 (5)	0.0398 (2)
01	1.0539 (3)	0.6618 (2)	0.10828 (18)	0.0419 (5)
N1	0.4811 (3)	0.6045 (2)	0.2321 (2)	0.0317 (4)
H1	0.366 (5)	0.597 (3)	0.221 (3)	0.030 (7)*
C1	0.8931 (4)	0.6412 (3)	0.1735 (2)	0.0329 (5)
C2	0.8483 (3)	0.5027 (2)	0.2271 (2)	0.0305 (5)
C3	0.6344 (3)	0.5032 (2)	0.1920 (2)	0.0301 (5)
Н3	0.6451	0.5259	0.0976	0.036*
C4	0.5174 (4)	0.7368 (2)	0.1683 (2)	0.0330 (5)
H4	0.5264	0.7524	0.0747	0.040*
C5	0.7243 (4)	0.7487 (2)	0.2022 (2)	0.0357 (5)
H5A	0.7597	0.8344	0.1527	0.043*
H5B	0.7110	0.7434	0.2932	0.043*
C6	0.5636 (3)	0.3733 (2)	0.2443 (2)	0.0307 (5)
C7	0.5880 (4)	0.2906 (3)	0.1680 (2)	0.0355 (5)
H7	0.6524	0.3150	0.0834	0.043*
C8	0.5196 (4)	0.1733 (3)	0.2141 (3)	0.0432 (6)
H8	0.5352	0.1183	0.1605	0.052*
C9	0.4285 (4)	0.1354 (3)	0.3377 (3)	0.0448 (6)
H9	0.3834	0.0541	0.3696	0.054*
C10	0.4040 (4)	0.2172 (3)	0.4142 (3)	0.0441 (6)
H10	0.3422	0.1915	0.4993	0.053*
C11	0.4687 (4)	0.3364 (3)	0.3680 (2)	0.0371 (5)
H11	0.4483	0.3928	0.4207	0.044*
C12	0.3394 (4)	0.8335 (2)	0.2104 (2)	0.0335 (5)
C13	0.2480 (4)	0.9433 (3)	0.1241 (3)	0.0422 (6)
H13	0.2997	0.9597	0.0368	0.051*
C14	0.0817 (5)	1.0298 (3)	0.1631 (3)	0.0479 (7)
H14	0.0217	1.1054	0.1031	0.057*
C15	0.0041 (4)	1.0049 (3)	0.2902 (3)	0.0463 (7)
H15	-0.1102	1.0630	0.3176	0.056*
C16	0.0935 (4)	0.8953 (3)	0.3769 (3)	0.0446 (6)
H16	0.0405	0.8783	0.4640	0.053*
C17	0.2606 (4)	0.8099 (3)	0.3375 (2)	0.0379 (6)
H17	0.3214	0.7349	0.3977	0.045*
C18	1.0159 (4)	0.4010 (3)	0.1837 (3)	0.0369 (5)
H18A	1.1507	0.4128	0.1957	0.055*
H18B	1.0120	0.4111	0.0938	0.055*
H18C	0.9931	0.3136	0.2335	0.055*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0387 (4)	0.0523 (4)	0.0297 (3)	-0.0089 (3)	-0.0114 (2)	-0.0087 (3)
01	0.0284 (9)	0.0543 (11)	0.0436 (10)	-0.0149 (8)	0.0023 (7)	-0.0132 (8)
N1	0.0201 (9)	0.0363 (11)	0.0398 (11)	-0.0026 (8)	-0.0084 (8)	-0.0110 (8)
C1	0.0272 (11)	0.0446 (13)	0.0297 (11)	-0.0073 (10)	-0.0107 (9)	-0.0098 (10)
C2	0.0235 (11)	0.0418 (13)	0.0261 (10)	-0.0037 (9)	-0.0071 (8)	-0.0087 (9)
C3	0.0233 (10)	0.0382 (12)	0.0292 (11)	-0.0037 (9)	-0.0087 (8)	-0.0083 (9)
C4	0.0286 (11)	0.0374 (12)	0.0330 (12)	-0.0035 (9)	-0.0077 (9)	-0.0094 (9)
C5	0.0309 (12)	0.0384 (13)	0.0397 (13)	-0.0097 (10)	-0.0037 (10)	-0.0114 (10)
C6	0.0206 (10)	0.0384 (12)	0.0347 (12)	-0.0022 (9)	-0.0090 (9)	-0.0115 (10)
C7	0.0250 (11)	0.0434 (13)	0.0395 (13)	-0.0024 (9)	-0.0065 (9)	-0.0146 (11)
C8	0.0356 (13)	0.0429 (14)	0.0568 (16)	-0.0010 (11)	-0.0131 (12)	-0.0223 (12)
C9	0.0362 (13)	0.0405 (14)	0.0582 (17)	-0.0109 (11)	-0.0142 (12)	-0.0069 (12)
C10	0.0397 (14)	0.0519 (16)	0.0413 (14)	-0.0172 (12)	-0.0058 (11)	-0.0069 (12)
C11	0.0324 (12)	0.0452 (14)	0.0358 (12)	-0.0106 (10)	-0.0039 (10)	-0.0120 (10)
C12	0.0273 (11)	0.0379 (12)	0.0377 (12)	-0.0069 (10)	-0.0071 (9)	-0.0113 (10)
C13	0.0419 (14)	0.0427 (14)	0.0406 (14)	-0.0041 (11)	-0.0101 (11)	-0.0093 (11)
C14	0.0411 (14)	0.0416 (14)	0.0591 (17)	0.0059 (11)	-0.0187 (13)	-0.0139 (13)
C15	0.0321 (13)	0.0481 (15)	0.0619 (18)	0.0014 (11)	-0.0083 (12)	-0.0246 (13)
C16	0.0360 (13)	0.0525 (16)	0.0468 (15)	-0.0072 (12)	-0.0004 (11)	-0.0192 (13)
C17	0.0328 (12)	0.0407 (13)	0.0381 (13)	-0.0037 (10)	-0.0055 (10)	-0.0095 (10)
C18	0.0265 (11)	0.0431 (13)	0.0427 (13)	-0.0021 (10)	-0.0075 (10)	-0.0151 (11)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cl1—C2	1.816 (2)	C8—C9	1.384 (4)
01—C1	1.215 (3)	С9—Н9	0.9500
N1—H1	0.83 (3)	C9—C10	1.383 (4)
N1—C3	1.454 (3)	C10—H10	0.9500
N1-C4	1.461 (3)	C10—C11	1.388 (4)
C1—C2	1.529 (4)	C11—H11	0.9500
C1—C5	1.507 (3)	C12—C13	1.385 (4)
C2—C3	1.553 (3)	C12—C17	1.389 (4)
C2-C18	1.520 (3)	C13—H13	0.9500
С3—Н3	1.0000	C13—C14	1.391 (4)
C3—C6	1.515 (3)	C14—H14	0.9500
C4—H4	1.0000	C14—C15	1.388 (4)
C4—C5	1.546 (3)	C15—H15	0.9500
C4—C12	1.517 (3)	C15—C16	1.381 (4)
С5—Н5А	0.9900	C16—H16	0.9500
С5—Н5В	0.9900	C16—C17	1.389 (4)
C6—C7	1.389 (3)	C17—H17	0.9500
C6—C11	1.393 (3)	C18—H18A	0.9800
С7—Н7	0.9500	C18—H18B	0.9800
C7—C8	1.381 (4)	C18—H18C	0.9800
С8—Н8	0.9500		

C3—N1—H1	109 (2)	С7—С8—Н8	119.8
C3—N1—C4	114.13 (19)	C7—C8—C9	120.5 (3)
C4—N1—H1	110 (2)	С9—С8—Н8	119.8
O1—C1—C2	121.0 (2)	С8—С9—Н9	120.4
O1—C1—C5	122.8 (2)	C10—C9—C8	119.3 (3)
C5—C1—C2	116.2 (2)	С10—С9—Н9	120.4
C1—C2—Cl1	103.69 (15)	C9—C10—H10	119.7
C1—C2—C3	108.02 (19)	C9—C10—C11	120.7 (3)
C3—C2—C11	111.52 (16)	C11—C10—H10	119.7
C18—C2—Cl1	107.95 (16)	C6—C11—H11	120.0
C18—C2—C1	113.27 (19)	C10—C11—C6	119.9 (2)
C18—C2—C3	112.11 (19)	C10-C11-H11	120.0
N1—C3—C2	109.95 (19)	C13—C12—C4	121.4 (2)
N1—C3—H3	107.4	C13—C12—C17	118.8 (2)
N1—C3—C6	110.15 (18)	C17—C12—C4	119.7 (2)
С2—С3—Н3	107.4	С12—С13—Н13	119.5
C6—C3—C2	114.24 (19)	C12—C13—C14	121.0 (3)
С6—С3—Н3	107.4	C14—C13—H13	119.5
N1—C4—H4	109.3	C13—C14—H14	120.2
N1—C4—C5	108.10 (19)	C15—C14—C13	119.5 (3)
N1—C4—C12	109.07 (19)	C15—C14—H14	120.2
С5—С4—Н4	109.3	C14—C15—H15	120.1
C12—C4—H4	109.3	C16—C15—C14	119.9 (3)
C12—C4—C5	111.7 (2)	C16—C15—H15	120.1
C1—C5—C4	110.3 (2)	C15—C16—H16	119.8
C1—C5—H5A	109.6	C15—C16—C17	120.3 (3)
C1—C5—H5B	109.6	C17—C16—H16	119.8
C4—C5—H5A	109.6	C12—C17—H17	119.8
C4—C5—H5B	109.6	C16—C17—C12	120.4 (3)
H5A—C5—H5B	108.1	C16—C17—H17	119.8
C7—C6—C3	120.2 (2)	C2C18H18A	109.5
C7—C6—C11	119.1 (2)	C2C18H18B	109.5
C11—C6—C3	120.7 (2)	C2C18H18C	109.5
С6—С7—Н7	119.7	H18A—C18—H18B	109.5
C8—C7—C6	120.5 (2)	H18A—C18—H18C	109.5
С8—С7—Н7	119.7	H18B—C18—H18C	109.5
Cl1—C2—C3—N1	60.5 (2)	C4—C12—C13—C14	178.5 (2)
Cl1—C2—C3—C6	-63.9 (2)	C4—C12—C17—C16	-177.9 (2)
O1-C1-C2-Cl1	113.3 (2)	C5—C1—C2—Cl1	-69.0 (2)
O1—C1—C2—C3	-128.2 (2)	C5—C1—C2—C3	49.4 (3)
O1—C1—C2—C18	-3.4 (3)	C5—C1—C2—C18	174.2 (2)
O1—C1—C5—C4	127.1 (2)	C5-C4-C12-C13	105.9 (3)
N1—C3—C6—C7	137.0 (2)	C5-C4-C12-C17	-76.4 (3)
N1—C3—C6—C11	-41.4 (3)	C6—C7—C8—C9	-1.0 (4)
N1-C4-C5-C1	53.2 (3)	C7—C6—C11—C10	1.3 (4)
N1-C4-C12-C13	-134.6 (2)	C7—C8—C9—C10	0.9 (4)

N1—C4—C12—C17	43.1 (3)	C8—C9—C10—C11	0.3 (4)
C1-C2-C3-N1	-52.8 (2)	C9—C10—C11—C6	-1.4 (4)
C1—C2—C3—C6	-177.23 (19)	C11—C6—C7—C8	-0.1 (3)
C2-C1-C5-C4	-50.6 (3)	C12—C4—C5—C1	173.2 (2)
C2—C3—C6—C7	-98.7 (2)	C12—C13—C14—C15	-0.9 (4)
C2-C3-C6-C11	82.9 (3)	C13—C12—C17—C16	-0.2 (4)
C3—N1—C4—C5	-62.7 (2)	C13—C14—C15—C16	0.6 (4)
C3—N1—C4—C12	175.60 (18)	C14—C15—C16—C17	-0.1 (4)
C3—C6—C7—C8	-178.5 (2)	C15—C16—C17—C12	-0.1 (4)
C3—C6—C11—C10	179.7 (2)	C17—C12—C13—C14	0.7 (4)
C4—N1—C3—C2	63.7 (2)	C18—C2—C3—N1	-178.29 (19)
C4—N1—C3—C6	-169.51 (18)	C18—C2—C3—C6	57.3 (3)

Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C6-C11 and C12-C17 rings, respectively.

D—H···A	D—H	H···A	D····A	D—H···A
N1—H1···O1 ⁱ	0.83 (3)	2.49 (3)	3.257 (3)	154 (3)
С9—Н9…Сд3іі	0.95	2.97	3.662 (3)	131
С15—Н15…Сд2ііі	0.96	2.98	3.861 (3)	155
C18—H18 A ···· $Cg2^{iv}$	0.98	2.73	3.497 (3)	136

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*, *y*-1, *z*; (iii) *x*-1, *y*+1, *z*; (iv) *x*+1, *y*, *z*.

(II) 3-Chloro-3-methyl-r-2,c-6-di-p-tolylpiperidin-4-one

Crystal data

C ₂₀ H ₂₂ ClNO
$M_r = 327.83$
Orthorhombic, <i>Pna2</i> ₁
<i>a</i> = 13.0578 (2) Å
<i>b</i> = 22.6513 (4) Å
<i>c</i> = 5.93756 (8) Å
$V = 1756.19 (5) Å^3$
Z = 4
F(000) = 696

Data collection

Agilent Xcalibur, Eos, Gemini diffractometer Radiation source: Enhance (Cu) X-ray Source Graphite monochromator $R_{\rm int} = 0.050$ Detector resolution: 16.0416 pixels mm⁻¹ $h = -15 \rightarrow 15$ ω scans $k = -24 \rightarrow 27$ Absorption correction: multi-scan $l = -6 \rightarrow 7$ CrysAlisPro (Agilent, 2014) $T_{\rm min} = 0.724, \ T_{\rm max} = 1.000$ Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$

 $D_{\rm x} = 1.240 {\rm ~Mg} {\rm ~m}^{-3}$ Cu *K* α radiation, $\lambda = 1.54184$ Å Cell parameters from 5659 reflections $\theta = 3.9 - 71.5^{\circ}$ $\mu = 1.94 \text{ mm}^{-1}$ T = 173 K, colourless $0.32\times0.18\times0.08~mm$

11595 measured reflections 2966 independent reflections 2873 reflections with $I > 2\sigma(I)$ $\theta_{\text{max}} = 71.4^{\circ}, \ \theta_{\text{min}} = 3.9^{\circ}$

 $wR(F^2) = 0.087$ S = 1.072966 reflections

214 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
1 restraint	$\Delta ho_{ m max} = 0.24 \ { m e} \ { m \AA}^{-3}$
Hydrogen site location: mixed	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of independent	Absolute structure: Flack x determined using
and constrained refinement	1017 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et</i>
$w = 1/[\sigma^2(F_o^2) + (0.0522P)^2 + 0.1354P]$	<i>al.</i> , 2013)
where $P = (F_o^2 + 2F_c^2)/3$	Absolute structure parameter: -0.010 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.54670 (4)	0.77906 (3)	0.75415 (12)	0.04218 (17)	
01	0.43096 (11)	0.75024 (7)	0.2382 (4)	0.0378 (4)	
N1	0.71897 (14)	0.72611 (7)	0.4371 (4)	0.0287 (4)	
H1	0.784 (3)	0.7255 (12)	0.419 (6)	0.034*	
C1	0.50913 (16)	0.74057 (10)	0.3414 (4)	0.0310 (4)	
C2	0.56797 (16)	0.79142 (10)	0.4558 (4)	0.0300 (4)	
C3	0.68295 (15)	0.78608 (8)	0.3965 (4)	0.0269 (4)	
H3	0.6902	0.7941	0.2317	0.032*	
C4	0.66920 (16)	0.68266 (9)	0.2913 (4)	0.0303 (5)	
H4	0.6745	0.6960	0.1312	0.036*	
C5	0.55566 (16)	0.68040 (10)	0.3595 (5)	0.0384 (6)	
H5A	0.5185	0.6526	0.2600	0.046*	
H5B	0.5496	0.6659	0.5163	0.046*	
C6	0.75100 (15)	0.82967 (9)	0.5206 (4)	0.0276 (4)	
C7	0.77498 (16)	0.88426 (9)	0.4254 (4)	0.0313 (4)	
H7	0.7474	0.8945	0.2826	0.038*	
C8	0.83845 (17)	0.92371 (9)	0.5363 (4)	0.0337 (5)	
H8	0.8530	0.9609	0.4694	0.040*	
C9	0.88100 (14)	0.90983 (9)	0.7432 (5)	0.0338 (5)	
C10	0.85823 (18)	0.85499 (10)	0.8368 (4)	0.0336 (5)	
H10	0.8873	0.8444	0.9778	0.040*	
C11	0.79398 (15)	0.81549 (9)	0.7278 (4)	0.0306 (4)	
H11	0.7792	0.7784	0.7953	0.037*	
C12	0.72266 (16)	0.62377 (9)	0.3163 (4)	0.0309 (5)	
C13	0.77964 (18)	0.60043 (11)	0.1403 (5)	0.0370 (5)	
H13	0.7821	0.6205	-0.0001	0.044*	
C14	0.83321 (19)	0.54782 (11)	0.1675 (5)	0.0403 (6)	
H14	0.8717	0.5325	0.0449	0.048*	
C15	0.83168 (18)	0.51738 (10)	0.3687 (5)	0.0374 (5)	
C16	0.7745 (2)	0.54068 (11)	0.5437 (5)	0.0424 (6)	
H16	0.7719	0.5203	0.6835	0.051*	
C17	0.7208 (2)	0.59322 (10)	0.5193 (5)	0.0388 (5)	

H17	0.6825	0.6084	0.6424	0.047*
C18	0.52313 (18)	0.85084 (10)	0.3942 (5)	0.0409 (6)
H18A	0.4509	0.8521	0.4390	0.061*
H18B	0.5285	0.8568	0.2311	0.061*
H18C	0.5609	0.8821	0.4725	0.061*
C19	0.9515 (2)	0.95208 (12)	0.8652 (6)	0.0476 (7)
H19A	1.0201	0.9500	0.7986	0.071*
H19B	0.9552	0.9412	1.0248	0.071*
H19C	0.9250	0.9924	0.8513	0.071*
C20	0.8889 (2)	0.46004 (11)	0.3978 (6)	0.0486 (7)
H20A	0.8438	0.4270	0.3588	0.073*
H20B	0.9111	0.4561	0.5547	0.073*
H20C	0.9489	0.4597	0.2987	0.073*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0344 (3)	0.0598 (3)	0.0323 (3)	-0.0046 (2)	0.0068 (3)	-0.0043 (3)
01	0.0232 (7)	0.0479 (8)	0.0423 (10)	0.0006 (6)	-0.0037 (8)	-0.0050 (9)
N1	0.0199 (8)	0.0283 (9)	0.0380 (11)	-0.0017 (6)	0.0002 (8)	-0.0030 (7)
C1	0.0205 (9)	0.0392 (11)	0.0334 (11)	-0.0025 (8)	0.0030 (8)	-0.0007 (9)
C2	0.0254 (9)	0.0353 (10)	0.0294 (11)	0.0014 (8)	0.0011 (9)	-0.0015 (9)
C3	0.0233 (9)	0.0293 (9)	0.0281 (12)	-0.0024 (7)	0.0014 (8)	-0.0005 (8)
C4	0.0291 (9)	0.0285 (9)	0.0333 (13)	-0.0022 (8)	-0.0022 (8)	-0.0017 (8)
C5	0.0271 (11)	0.0334 (11)	0.0548 (16)	-0.0071 (8)	-0.0067 (10)	-0.0025 (11)
C6	0.0222 (9)	0.0275 (9)	0.0332 (11)	-0.0001 (7)	0.0012 (8)	-0.0019 (9)
C7	0.0294 (10)	0.0313 (10)	0.0333 (12)	0.0007 (8)	0.0011 (9)	0.0033 (9)
C8	0.0308 (10)	0.0264 (9)	0.0439 (14)	-0.0020 (8)	0.0056 (9)	0.0001 (9)
C9	0.0252 (9)	0.0317 (9)	0.0445 (13)	-0.0017 (7)	0.0030 (11)	-0.0086 (10)
C10	0.0308 (10)	0.0352 (10)	0.0347 (11)	0.0008 (8)	-0.0046 (9)	-0.0016 (9)
C11	0.0294 (9)	0.0275 (9)	0.0350 (12)	-0.0011 (7)	-0.0007 (9)	0.0012 (9)
C12	0.0291 (10)	0.0288 (9)	0.0347 (13)	-0.0037 (8)	-0.0046 (8)	-0.0040 (8)
C13	0.0375 (12)	0.0398 (12)	0.0336 (13)	0.0007 (9)	-0.0012 (10)	-0.0021 (10)
C14	0.0371 (12)	0.0412 (12)	0.0427 (15)	0.0034 (10)	0.0001 (10)	-0.0104 (10)
C15	0.0328 (10)	0.0311 (10)	0.0483 (15)	-0.0024 (9)	-0.0098 (10)	-0.0062 (10)
C16	0.0504 (14)	0.0366 (12)	0.0401 (14)	0.0000 (10)	-0.0024 (11)	0.0040 (10)
C17	0.0433 (12)	0.0368 (11)	0.0363 (13)	0.0025 (9)	0.0039 (10)	-0.0025 (10)
C18	0.0307 (10)	0.0357 (11)	0.0561 (17)	0.0036 (9)	-0.0063 (11)	-0.0037 (11)
C19	0.0439 (13)	0.0416 (13)	0.0573 (18)	-0.0119 (10)	-0.0041 (12)	-0.0113 (13)
C20	0.0452 (13)	0.0371 (12)	0.0634 (19)	0.0069 (10)	-0.0101 (13)	-0.0063 (12)

Geometric parameters (Å, °)

Cl1—C2	1.815 (3)	C10—H10	0.9500	
01—C1	1.211 (3)	C10—C11	1.387 (3)	
N1—H1	0.85 (3)	C11—H11	0.9500	
N1—C3	1.458 (3)	C12—C13	1.388 (3)	
N1—C4	1.463 (3)	C12—C17	1.390 (4)	

C1—C2	1.542 (3)	С13—Н13	0.9500
C1—C5	1.496 (3)	C13—C14	1.391 (3)
C2—C3	1.547 (3)	C14—H14	0.9500
C2—C18	1.513 (3)	C14—C15	1.379 (4)
С3—Н3	1.0000	C15—C16	1.385 (4)
C3—C6	1.519 (3)	C15—C20	1.508 (3)
C4—H4	1.0000	C16—H16	0.9500
C4—C5	1.538 (3)	C16—C17	1.389 (4)
C4—C12	1.513 (3)	С17—Н17	0.9500
С5—Н5А	0.9900	C18—H18A	0.9800
C5—H5B	0.9900	C18—H18B	0.9800
C6-C7	1 395 (3)	C18 - H18C	0.9800
C6 C11	1.393(3)		0.9800
C7_H7	0.0500	C10 H10P	0.9800
C = H	1,295 (2)	С19—П19В	0.9600
$C = C \delta$	1.385 (3)	C19—H19C	0.9800
C8—H8	0.9500	C20—H20A	0.9800
C8—C9	1.384 (4)	С20—Н20В	0.9800
C9—C10	1.393 (3)	C20—H20C	0.9800
C9—C19	1.513 (3)		
C3—N1—H1	108.3 (18)	C9—C10—H10	119.4
C3—N1—C4	112.70 (18)	C11—C10—C9	121.2 (2)
C4—N1—H1	111 (2)	C11—C10—H10	119.4
O1—C1—C2	120.5 (2)	C6-C11-H11	119.7
O1—C1—C5	122.9 (2)	C10—C11—C6	120.5 (2)
C5—C1—C2	116.51 (19)	C10-C11-H11	119.7
C1—C2—Cl1	103.80 (15)	C13—C12—C4	120.6 (2)
C1—C2—C3	108.96 (17)	C13—C12—C17	118.2 (2)
C3—C2—C11	111.02 (16)	C17—C12—C4	121.1 (2)
C18 - C2 - C11	108.31 (18)	C12—C13—H13	119.7
$C_{18} = C_{2} = C_{1}$	111 42 (19)	C12 - C13 - C14	120.6(2)
$C_{18} = C_{2} = C_{3}$	112.96 (19)	C14 - C13 - H13	119.7
N1 C3 C2	112.90(17) 110.30(17)	$C_{14} = C_{13} = H_{14}$	110.7
N1 C2 H2	107.5	$C_{13} - C_{14} - C_{14}$	119.3 121.4(2)
N1-C2-C6	107.3	C15 - C14 - C15	121.4(2)
N1 - C3 - C0	109.09 (17)	C13 - C14 - H14	119.5
C2—C3—H3	107.5	C14 - C15 - C16	117.9(2)
C6-C3-C2	114.00 (17)	C14 - C15 - C20	121.5 (3)
С6—С3—Н3	107.5	C16—C15—C20	120.6 (3)
N1—C4—H4	109.1	C15—C16—H16	119.3
N1—C4—C5	107.14 (18)	C15—C16—C17	121.4 (3)
N1—C4—C12	109.27 (18)	C17—C16—H16	119.3
C5—C4—H4	109.1	С12—С17—Н17	119.7
C12—C4—H4	109.1	C16—C17—C12	120.6 (3)
C12—C4—C5	112.94 (18)	С16—С17—Н17	119.7
C1—C5—C4	110.02 (18)	C2C18H18A	109.5
C1—C5—H5A	109.7	C2C18H18B	109.5
C1—C5—H5B	109.7	C2C18H18C	109.5
С4—С5—Н5А	109.7	H18A—C18—H18B	109.5

C4—C5—H5B	109.7	H18A—C18—H18C	109.5
H5A—C5—H5B	108.2	H18B—C18—H18C	109.5
C7—C6—C3	120.7 (2)	С9—С19—Н19А	109.5
C11—C6—C3	121.01 (19)	C9—C19—H19B	109.5
C11—C6—C7	118.2 (2)	С9—С19—Н19С	109.5
С6—С7—Н7	119.6	H19A—C19—H19B	109.5
C8—C7—C6	120.9 (2)	H19A—C19—H19C	109.5
С8—С7—Н7	119.6	H19B—C19—H19C	109.5
С7—С8—Н8	119.5	С15—С20—Н20А	109.5
C9—C8—C7	121.0 (2)	C15—C20—H20B	109.5
С9—С8—Н8	119.5	С15—С20—Н20С	109.5
C8—C9—C10	118.1 (2)	H20A-C20-H20B	109.5
C8—C9—C19	121.7 (2)	H20A-C20-H20C	109.5
C10—C9—C19	120.2 (3)	H20B-C20-H20C	109.5
Cl1—C2—C3—N1	64.2 (2)	C5-C1-C2-Cl1	-72.9 (2)
Cl1—C2—C3—C6	-59.8 (2)	C5—C1—C2—C3	45.4 (3)
O1—C1—C2—C11	109.0 (2)	C5-C1-C2-C18	170.7 (2)
O1—C1—C2—C3	-132.7 (2)	C5—C4—C12—C13	129.5 (2)
O1—C1—C2—C18	-7.4 (3)	C5—C4—C12—C17	-54.1 (3)
O1—C1—C5—C4	128.2 (2)	C6—C7—C8—C9	0.9 (3)
N1—C3—C6—C7	143.2 (2)	C7—C6—C11—C10	0.5 (3)
N1-C3-C6-C11	-34.4 (3)	C7—C8—C9—C10	0.1 (3)
N1-C4-C5-C1	56.9 (3)	C7—C8—C9—C19	179.2 (2)
N1—C4—C12—C13	-111.4 (2)	C8—C9—C10—C11	-0.7 (3)
N1—C4—C12—C17	65.1 (3)	C9—C10—C11—C6	0.4 (3)
C1—C2—C3—N1	-49.5 (3)	C11—C6—C7—C8	-1.1 (3)
C1—C2—C3—C6	-173.48 (19)	C12—C4—C5—C1	177.2 (2)
C2-C1-C5-C4	-49.9 (3)	C12—C13—C14—C15	-0.1 (4)
C2—C3—C6—C7	-92.4 (2)	C13—C12—C17—C16	-0.2 (4)
C2—C3—C6—C11	89.9 (2)	C13—C14—C15—C16	0.3 (4)
C3—N1—C4—C5	-66.6 (2)	C13—C14—C15—C20	179.4 (2)
C3—N1—C4—C12	170.74 (18)	C14—C15—C16—C17	-0.5 (4)
C3—C6—C7—C8	-178.9(2)	C15—C16—C17—C12	0.4 (4)
C3—C6—C11—C10	178.2 (2)	C17—C12—C13—C14	0.0 (3)
C4—N1—C3—C2	64.0 (2)	C18—C2—C3—N1	-173.9(2)
C4—N1—C3—C6	-169.52 (18)	C18—C2—C3—C6	62.1 (3)
C4—C12—C13—C14	176.6 (2)	C19—C9—C10—C11	-179.9 (2)
C4—C12—C17—C16	-176.7 (2)	C20-C15-C16-C17	-179.6 (2)
$\begin{array}{c} N1 - C4 - C12 - C17 \\ C1 - C2 - C3 - N1 \\ C1 - C2 - C3 - C6 \\ C2 - C1 - C5 - C4 \\ C2 - C3 - C6 - C7 \\ C2 - C3 - C6 - C11 \\ C3 - N1 - C4 - C5 \\ C3 - N1 - C4 - C12 \\ C3 - C6 - C7 - C8 \\ C3 - C6 - C11 - C10 \\ C4 - N1 - C3 - C2 \\ C4 - N1 - C3 - C6 \\ C4 - C12 - C13 - C14 \\ C4 - C12 - C17 - C16 \end{array}$	65.1 (3) -49.5 (3) -173.48 (19) -49.9 (3) -92.4 (2) 89.9 (2) -66.6 (2) 170.74 (18) -178.9 (2) 178.2 (2) 64.0 (2) -169.52 (18) 176.6 (2) -176.7 (2)	$\begin{array}{c} C9-C10-C11-C6\\ C11-C6-C7-C8\\ C12-C4-C5-C1\\ C12-C13-C14-C15\\ C13-C12-C17-C16\\ C13-C14-C15-C16\\ C13-C14-C15-C20\\ C14-C15-C16-C17\\ C15-C16-C17-C12\\ C17-C12-C13-C14\\ C18-C2-C3-N1\\ C18-C2-C3-C6\\ C19-C9-C10-C11\\ C20-C15-C16-C17\\ \end{array}$	$\begin{array}{c} 0.4 (3) \\ -1.1 (3) \\ 177.2 (2) \\ -0.1 (4) \\ -0.2 (4) \\ 0.3 (4) \\ 179.4 (2) \\ -0.5 (4) \\ 0.4 (4) \\ 0.0 (3) \\ -173.9 (2) \\ 62.1 (3) \\ -179.9 (2) \\ -179.6 (2) \end{array}$

Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C6–C11 and C12–C17 rings, respectively.

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O1 ⁱ	0.85 (3)	2.27 (3)	3.057 (2)	154 (3)

C18—H18 <i>A</i> ··· <i>Cg</i> 3 ⁱⁱ	0.98	2.92	3.686 (3)	135
C20—H20 <i>A</i> ··· <i>Cg</i> 2 ⁱⁱⁱ	0.97	2.81	3.724 (3)	156

 $D_{\rm x} = 1.419 {\rm Mg m^{-3}}$

 $\theta = 3.9 - 71.2^{\circ}$

 $\mu = 4.83 \text{ mm}^{-1}$ T = 173 K

 $R_{\rm int} = 0.033$

 $h = -16 \rightarrow 15$

 $k = -27 \longrightarrow 27$ $l = -7 \longrightarrow 4$

Prism, colourless

 $0.34 \times 0.14 \times 0.14$ mm

 $\theta_{\rm max} = 71.4^\circ, \ \theta_{\rm min} = 3.9^\circ$

12474 measured reflections

2602 independent reflections

2494 reflections with $I > 2\sigma(I)$

Cu *K* α radiation, $\lambda = 1.54184$ Å

Cell parameters from 5579 reflections

Symmetry codes: (i) x+1/2, -y+3/2, z; (ii) -x-1/2, y+3/2, z+1/2; (iii) x+3/2, -y-1/2, z-1.

(III) 3-Chloro-3-methyl-r-2,c-6-bis(4-chlorophenyl)piperidin-4-one

Crystal data

C₁₈H₁₆Cl₃NO $M_r = 368.67$ Orthorhombic, $Pna2_1$ a = 13.2430 (4) Å b = 22.3945 (6) Å c = 5.81947 (14) Å V = 1725.88 (8) Å³ Z = 4F(000) = 760

Data collection

Agilent Xcalibur, Eos, Gemini diffractometer Radiation source: Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 16.0416 pixels mm⁻¹ ω scans Absorption correction: multi-scan CrysAlisPro (Agilent, 2014) $T_{min} = 0.646, T_{max} = 1.000$

Refinement

Refinement on F^2 H atoms treated by a mixture of independent Least-squares matrix: full and constrained refinement $R[F^2 > 2\sigma(F^2)] = 0.032$ $w = 1/[\sigma^2(F_o^2) + (0.0469P)^2 + 0.6568P]$ $wR(F^2) = 0.084$ where $P = (F_0^2 + 2F_c^2)/3$ S = 1.02 $(\Delta/\sigma)_{\rm max} = 0.001$ 2602 reflections $\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$ 212 parameters $\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$ 1 restraint Absolute structure: Flack x determined using Hydrogen site location: mixed 695 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: 0.135 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and	l isotropic or e	quivalent isotropi	ic displacement	parameters ($(Å^2)$)
-----------------------------------	------------------	--------------------	-----------------	--------------	---------	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.45288 (4)	0.77767 (3)	0.75233 (13)	0.04111 (16)	
C12	0.03876 (5)	0.95332 (3)	0.88033 (17)	0.05145 (19)	
C13	0.10150 (6)	0.45148 (3)	0.38178 (19)	0.0578 (2)	

O1	0.57167 (12)	0.74818 (9)	0.2363 (4)	0.0363 (4)
N1	0.28424 (14)	0.72489 (9)	0.4198 (4)	0.0288 (5)
H1	0.228 (2)	0.7238 (12)	0.413 (6)	0.035*
C1	0.49247 (17)	0.73891 (11)	0.3332 (5)	0.0294 (6)
C2	0.43340 (17)	0.79041 (11)	0.4461 (5)	0.0277 (5)
C3	0.32060 (17)	0.78557 (9)	0.3839 (5)	0.0261 (5)
Н3	0.3143	0.7944	0.2161	0.031*
C4	0.33396 (17)	0.68095 (10)	0.2728 (5)	0.0291 (5)
H4	0.3302	0.6946	0.1095	0.035*
C5	0.44518 (17)	0.67810 (12)	0.3470 (6)	0.0364 (6)
H5A	0.4497	0.6630	0.5066	0.044*
H5B	0.4823	0.6501	0.2460	0.044*
C6	0.25273 (17)	0.82914 (10)	0.5104 (5)	0.0260 (5)
C7	0.22816 (18)	0.88418 (11)	0.4167 (5)	0.0303 (6)
H7	0.2565	0.8955	0.2733	0.036*
C8	0.1631 (2)	0.92294 (11)	0.5281 (5)	0.0335 (6)
H8	0.1467	0.9606	0.4625	0.040*
C9	0.12236 (17)	0.90591 (11)	0.7364 (6)	0.0336 (6)
C10	0.14495 (18)	0.85140 (11)	0.8344 (5)	0.0321 (6)
H10	0.1161	0.8402	0.9776	0.039*
C11	0.21035 (17)	0.81329 (11)	0.7205 (5)	0.0303 (6)
H11	0.2265	0.7757	0.7869	0.036*
C12	0.27945 (18)	0.62177 (11)	0.2956 (5)	0.0312 (6)
C13	0.2849 (2)	0.58865 (14)	0.4970 (6)	0.0445 (7)
H13	0.3268	0.6021	0.6190	0.053*
C14	0.2303 (3)	0.53636 (14)	0.5229 (7)	0.0471 (8)
H14	0.2346	0.5140	0.6613	0.057*
C15	0.1701 (2)	0.51733 (11)	0.3470 (6)	0.0402 (7)
C16	0.1625 (2)	0.54859 (14)	0.1446 (6)	0.0420 (7)
H16	0.1206	0.5347	0.0235	0.050*
C17	0.2180 (2)	0.60143 (13)	0.1208 (6)	0.0384 (7)
H17	0.2133	0.6236	-0.0179	0.046*
C18	0.47925 (19)	0.85094 (11)	0.3858 (6)	0.0356 (6)
H18A	0.4427	0.8825	0.4675	0.053*
H18B	0.4740	0.8576	0.2198	0.053*
H18C	0.5505	0.8516	0.4313	0.053*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0355 (3)	0.0587 (4)	0.0292 (3)	0.0045 (3)	-0.0049 (3)	-0.0023 (3)
Cl2	0.0479 (3)	0.0469 (3)	0.0596 (5)	0.0179 (3)	0.0108 (4)	-0.0101 (4)
C13	0.0598 (4)	0.0405 (3)	0.0732 (5)	-0.0189 (3)	0.0166 (4)	-0.0065 (4)
O1	0.0232 (7)	0.0470 (9)	0.0388 (10)	-0.0017 (7)	0.0030 (9)	-0.0059 (11)
N1	0.0196 (8)	0.0281 (9)	0.0386 (13)	0.0013 (7)	0.0008 (9)	-0.0027 (10)
C1	0.0220 (10)	0.0378 (12)	0.0286 (13)	0.0045 (9)	-0.0038 (10)	-0.0023 (11)
C2	0.0252 (10)	0.0342 (11)	0.0235 (12)	0.0000 (9)	0.0010 (10)	-0.0018 (10)
C3	0.0267 (10)	0.0265 (10)	0.0252 (13)	0.0012 (8)	-0.0026 (10)	0.0008 (11)

C4	0.0305 (10)	0.0251 (10)	0.0318 (14)	0.0010 (9)	0.0013 (11)	-0.0013 (11)
C5	0.0260 (11)	0.0354 (12)	0.0478 (16)	0.0062 (9)	0.0070 (12)	-0.0021 (13)
C6	0.0219 (9)	0.0280 (11)	0.0282 (12)	-0.0016 (9)	-0.0020 (9)	-0.0018 (11)
C7	0.0311 (11)	0.0279 (11)	0.0318 (14)	0.0007 (9)	0.0013 (10)	0.0001 (11)
C8	0.0337 (12)	0.0262 (11)	0.0406 (16)	0.0047 (10)	-0.0027 (12)	0.0011 (12)
C9	0.0270 (10)	0.0320 (12)	0.0418 (15)	0.0038 (9)	-0.0016 (12)	-0.0085 (13)
C10	0.0287 (11)	0.0375 (13)	0.0302 (14)	0.0001 (9)	0.0051 (10)	-0.0018 (12)
C11	0.0286 (10)	0.0282 (11)	0.0340 (15)	0.0019 (9)	0.0021 (11)	0.0020 (11)
C12	0.0309 (11)	0.0270 (11)	0.0357 (16)	0.0027 (9)	0.0047 (10)	-0.0018 (11)
C13	0.0550 (16)	0.0411 (15)	0.0375 (17)	-0.0085 (13)	-0.0069 (14)	0.0021 (14)
C14	0.0615 (18)	0.0365 (14)	0.0434 (18)	-0.0062 (13)	-0.0018 (16)	0.0052 (15)
C15	0.0383 (12)	0.0304 (12)	0.0519 (17)	-0.0028 (10)	0.0133 (13)	-0.0090 (13)
C16	0.0382 (13)	0.0431 (15)	0.0446 (17)	-0.0045 (12)	0.0007 (13)	-0.0089 (13)
C17	0.0387 (13)	0.0385 (14)	0.0379 (16)	-0.0017 (11)	-0.0008 (13)	0.0004 (13)
C18	0.0297 (11)	0.0321 (11)	0.0449 (16)	-0.0036 (9)	0.0045 (12)	-0.0012 (14)

Geometric parameters (Å, °)

Cl1—C2	1.823 (3)	C7—C8	1.385 (4)	
Cl2—C9	1.748 (3)	C8—H8	0.9500	
Cl3—C15	1.744 (3)	C8—C9	1.380 (4)	
01—C1	1.209 (3)	C9—C10	1.380 (4)	
N1—H1	0.74 (3)	C10—H10	0.9500	
N1—C3	1.457 (3)	C10—C11	1.385 (4)	
N1-C4	1.460 (3)	C11—H11	0.9500	
C1—C2	1.541 (3)	C12—C13	1.389 (4)	
C1—C5	1.501 (4)	C12—C17	1.380 (4)	
C2—C3	1.541 (3)	C13—H13	0.9500	
C2—C18	1.526 (3)	C13—C14	1.384 (4)	
С3—Н3	1.0000	C14—H14	0.9500	
C3—C6	1.517 (3)	C14—C15	1.365 (5)	
C4—H4	1.0000	C15—C16	1.374 (5)	
C4—C5	1.536 (3)	C16—H16	0.9500	
C4—C12	1.515 (3)	C16—C17	1.400 (4)	
С5—Н5А	0.9900	C17—H17	0.9500	
C5—H5B	0.9900	C18—H18A	0.9800	
C6—C7	1.386 (3)	C18—H18B	0.9800	
C6—C11	1.391 (4)	C18—H18C	0.9800	
С7—Н7	0.9500			
C3—N1—H1	111 (2)	С7—С8—Н8	120.6	
C3—N1—C4	113.3 (2)	C9—C8—C7	118.7 (2)	
C4—N1—H1	113 (2)	С9—С8—Н8	120.6	
01—C1—C2	120.7 (2)	C8—C9—C12	120.0 (2)	
01—C1—C5	122.9 (2)	C10—C9—Cl2	118.5 (2)	
C5—C1—C2	116.4 (2)	C10—C9—C8	121.5 (2)	
C1—C2—Cl1	103.17 (17)	C9—C10—H10	120.6	
C1—C2—C3	109.8 (2)	C9—C10—C11	118.9 (3)	

C3 C2 C11	110.85 (17)	C11 C10 H10	120.6
$C_{18} = C_{2} = C_{11}$	107.01(10)	C6 $C11$ $H11$	120.0
$C_{10} = C_2 = C_1$	107.91(19) 111.4(2)		119.5 121.0 (2)
$C_{10} = C_2 = C_1$	111.4(2)	C_{10} C_{11} U_{11}	121.0(2)
C18 - C2 - C3	113.2 (2)		119.5
NI-C3-C2	110.62 (19)		121.1 (2)
NI—C3—H3	107.3	C17—C12—C4	120.3 (2)
N1—C3—C6	109.5 (2)	C17—C12—C13	118.5 (2)
С2—С3—Н3	107.3	С12—С13—Н13	119.4
C6—C3—C2	114.5 (2)	C14—C13—C12	121.1 (3)
С6—С3—Н3	107.3	C14—C13—H13	119.4
N1—C4—H4	109.1	C13—C14—H14	120.4
N1—C4—C5	107.2 (2)	C15—C14—C13	119.1 (3)
N1-C4-C12	108.9 (2)	C15—C14—H14	120.4
C5—C4—H4	109.1	C14—C15—Cl3	118.7 (3)
C12—C4—H4	109.1	C14—C15—C16	121.8 (3)
C12—C4—C5	113.3 (2)	C16—C15—C13	119.5 (2)
C1—C5—C4	110.3 (2)	C15—C16—H16	120.8
C1—C5—H5A	109.6	C15—C16—C17	118.5 (3)
C1—C5—H5B	109.6	С17—С16—Н16	120.8
C4—C5—H5A	109.6	C12-C17-C16	1210(3)
C4—C5—H5B	109.6	C12—C17—H17	119 5
H5A_C5_H5B	108.1	C16-C17-H17	119.5
C7 - C6 - C3	121.3(2)	C_{2} C_{18} H_{18A}	109.5
C7 C6 C11	121.5(2) 118 5 (2)	$C_2 C_{18} H_{18B}$	109.5
$C_{11} C_{6} C_{2}$	110.3(2) 120.1(2)	$C_2 = C_{10} = H_{10}C_{10}$	109.5
$C_1 = C_0 = C_3$	120.1 (2)	110 10 110	109.5
$C_0 - C_1 - H_1$	119.4		109.5
	121.3 (3)	H18A - C18 - H18C	109.5
C8—C/—H/	119.4	HI8B—CI8—HI8C	109.5
Cl1—C2—C3—N1	-65.4 (2)	C4—C12—C13—C14	176.1 (3)
Cl1—C2—C3—C6	59.0 (2)	C4—C12—C17—C16	-176.2 (2)
Cl2—C9—C10—C11	179.4 (2)	C5—C1—C2—Cl1	74.3 (2)
Cl3—C15—C16—C17	179.8 (2)	C5—C1—C2—C3	-44.0 (3)
01—C1—C2—Cl1	-106.9 (3)	C5-C1-C2-C18	-170.2(2)
O1—C1—C2—C3	134.8 (3)	C5—C4—C12—C13	49.2 (4)
O1—C1—C2—C18	8.6 (4)	C5—C4—C12—C17	-134.8(3)
O1—C1—C5—C4	-129.9 (3)	C6—C7—C8—C9	0.0 (4)
N1—C3—C6—C7	-142.0(2)	C7—C6—C11—C10	0.1 (4)
N1—C3—C6—C11	35.4 (3)	C7—C8—C9—Cl2	-179.3 (2)
N1-C4-C5-C1	-56.5 (3)	C7—C8—C9—C10	-0.2(4)
N1-C4-C12-C13	-699(3)	C8-C9-C10-C11	0.3(4)
N1-C4-C12-C17	106.0 (3)	C9-C10-C11-C6	-0.2(4)
C1 - C2 - C3 - N1	48.0 (3)	$C_{11} - C_{6} - C_{7} - C_{8}$	0.2(1)
C1 - C2 - C3 - C6	172 4 (2)	C_{12} C_{4} C_{5} C_{1}	-1766(2)
$C_1 C_2 C_3 C_5 C_4$	1/2.7(2)	$C_{12} = C_{1} = C_{1} = C_{1}$	-0.1(5)
$C_2 = C_1 = C_3 = C_4$	03 1 (3)	$C_{12} = C_{13} = C_{14} = C_{15}$	-0.2(4)
$C_2 = C_3 = C_6 = C_1^{-1}$	-90.6(2)	$C_{13} = C_{12} = C_{17} = C_{10}$	0.2(4)
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	-69.0(3)		-1/9.9(2)
U3—NI—U4—U5	00.1 (3)	C13—C14—C15—C16	0.2 (5)

C3—N1—C4—C12	-170.9 (2)	C14—C15—C16—C17	-0.3 (4)
C3—C6—C7—C8	177.4 (2)	C15-C16-C17-C12	0.3 (4)
C3—C6—C11—C10	-177.4 (2)	C17—C12—C13—C14	0.1 (4)
C4—N1—C3—C2	-62.9 (3)	C18—C2—C3—N1	173.2 (2)
C4—N1—C3—C6	169.9 (2)	C18—C2—C3—C6	-62.4 (3)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C12–C17 ring.

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O1 ⁱ	0.74 (3)	2.40 (3)	3.071 (3)	151 (3)
C10—H10…O1 ⁱⁱ	0.95	2.56	3.374 (3)	144
C18—H18 <i>C</i> ··· <i>Cg</i> 3 ⁱⁱⁱ	0.98	2.98	3.725 (3)	134

Symmetry codes: (i) x-1/2, -y+3/2, z; (ii) x-1/2, -y+3/2, z+1; (iii) -x+1/2, y+3/2, z+1/2.