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Summary

 

Leukocyte telomere length (LTL) is ostensibly a bio-
indicator of human aging. Here we report that African
Americans have longer LTL than whites. We studied cross-
sectionally 2453 individuals from the National Heart,
Lung, and Blood Institute (NHLBI) Family Heart Study
(age ====

 

 30–93 years) and the Bogalusa Heart Study
(age ====

 

 19–37 years), comprising 1742 whites and 711 Afri-
can Americans. We measured LTL by Southern blots of the
terminal restriction fragments length. In 234 participants,
telomere repeats were also measured by quantitative
polymerase chain reaction (qPCR). Adjusted for age and
body mass index (BMI), the respective leukocyte telomere
lengths (mean ±±±±

 

 SEM) were considerably longer in African
Americans than in whites both in the Family Heart Study
(7.004 ±±±±

 

 0.033 kb vs. 6.735 ±±±±

 

 0.024 kb, p <<<<

 

 0.0001) and the
Bogalusa Heart Study (7.923 ±±±±

 

 0.063 kb vs. 7.296 ±±±±

 

 0.039 kb,
p <<<<

 

 0.0001). We confirmed the racial effect on LTL by qPCR
(3.038 ±±±±

 

 0.565 T/S units for African Americans vs. 2.714 ±±±±

 

0.487 T/S units for whites, p <<<<

 

 0.001). Cross-sectionally,
sex- and BMI-adjusted LTL became shorter with age (range

19–93 years) at a steeper slope in African Americans than
in whites (0.029 kb year–1 vs. 0.020 kb year–1, respectively,
p ====

 

 0.0001). We suggest that racial difference in LTL arises
from a host of interacting biological factors, including
replication rates of hematopoietic stem cells.
Key words: age; demography; gender; leukocyte; race;
telomere.

 

Introduction

 

Mounting evidence suggests that leukocyte telomere length

(LTL) is a bio-indicator of human aging, cardiovascular aging in

particular. LTL is heritable (Slagboom 

 

et

 

 

 

al

 

., 1994; Jeanclos

 

et

 

 

 

al

 

., 2000; Vasa-Nicotera 

 

et

 

 

 

al

 

., 2005; Andrew 

 

et

 

 

 

al

 

., 2006),

although it is unknown how much of this heritability relates

to birth LTL and the rate of its shortening from birth onward.

Age-dependent LTL shortening is due to successive divisions of

hematopoietic stem cells (HSCs) and progenitor cells (PCs) that

form peripheral leukocytes. Inflammation and oxidative stress

– two central elements in the biology of aging and aging-related

diseases (Finch & Crimmins, 2004; Balaban 

 

et

 

 

 

al

 

., 2005) – were

reported to be associated with LTL (Aviv 

 

et

 

 

 

al

 

., 2006a; Demissie

 

et

 

 

 

al

 

., 2006; Bekaert 

 

et

 

 

 

al

 

., 2007; Fitzpatrick 

 

et

 

 

 

al

 

., 2007).

Inflammation entails an increase in number and diminished

biological life of leukocyte subsets in the circulation, which would

heighten the demand on HSCs/PCs to replicate, a phenomenon

expressed in an accelerated telomere attrition and ultimately

shortened LTL. Oxidative stress heightens the loss of telomere

repeats per cell division (Sitte 

 

et

 

 

 

al

 

., 1998; Saretzki 

 

et

 

 

 

al

 

., 1999;

Tchirkov & Lansdorp, 2003). The compounded effect of inflam-

mation/oxidative stress on the paces of both aging and LTL

attrition conceivably explains the shortened LTL observed in

individuals with aging-related diseases, particularly atherosclerotic

cardiovascular (CV) disease (Brouilette 

 

et

 

 

 

al

 

., 2003; Cawthon

 

et

 

 

 

al

 

., 2003; Benetos 

 

et

 

 

 

al

 

., 2004; Martin-Ruiz 

 

et

 

 

 

al

 

., 2005;

Matsubara 

 

et

 

 

 

al

 

., 2006; Brouilette 

 

et

 

 

 

al

 

., 2007; Fitzpatrick 

 

et

 

 

 

al

 

.,

2007; van der Harst 

 

et

 

 

 

al

 

., 2007), which is strongly linked to

inflammation (Hansson & Libby, 2006).

The paradigm that links LTL to CV disease draws on data

derived mainly from non-African American populations. But the

developmental pattern of CV disease differs between African

Americans and whites. For instance, African Americans are

more prone to heart failure due to hypertension (Yancy, 2005;

Whittle 

 

et

 

 

 

al

 

., 2006), but they have considerably less coronary
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artery calcification than do whites (Tang 

 

et

 

 

 

al

 

., 1995; Yan 

 

et

 

 

 

al

 

.,

2006; McClelland 

 

et

 

 

 

al

 

., 2006; Aiyer 

 

et

 

 

 

al

 

., 2007; Loria 

 

et

 

 

 

al

 

., 2007).

We therefore explored in two ongoing studies, the National Heart,

Lung, and Blood Institute (NHLBI) Family Heart Study (FHS) and

the Bogalusa Heart Study (BHS), the racial effect on LTL.

 

Results

 

Mean ages and BMI of whites and African Americans, by sex,

are displayed in Table 1. In both the FHS and the BHS cohorts,

LTL, measured by Southern blots of the terminal restriction

fragment (TRF) products of 

 

Hin

 

fI/

 

Rsa

 

I, was significantly longer

in African Americans than in whites (Table 2; Fig. 1). As LTL was

inversely correlated to BMI (

 

r

 

 

 

=

 

 –0.071, 

 

p 

 

=

 

 0.002), we adjusted

LTL for the BMI. For the FHS cohort, sex-specific differences in

age- and BMI-adjusted LTL between African Americans and

whites were 180 base pairs (bp) for men and 320 bp for women;

for the BHS cohort, these differences amounted to 500 bp

for men and 680 bp for women. Heritability of LTL in whites

was 0.69 

 

±

 

 0.03, while in African Americans it was 0.78 

 

±

 

 0.09,

both significant at 

 

p

 

 

 

<

 

 0.0001. There was no statistically

significant difference in heritability between African Americans

and whites.

In the FHS cohort, women of both races displayed significantly

longer LTL than men (Table 2; Fig. 1). The sex-related differences

in age- and BMI-adjusted LTL for this cohort were 120 bp for

Table 1 Means (± standard deviation) of age and body mass index of the two cohorts

Whites African Americans Entire sample

Men Women Men Women Men Women

FHS (n = 610) (n = 785) (n = 195) (n = 378) (n = 805) (n = 1163)

Age (years) 57.3 ± 13.6 58.5 ± 13.1 52.4 ± 10.6 54.0 ± 10.9 56.1 ± 13.1 57.1 ± 12.6

Body mass index (kg m–2) 29.4 ± 4.7 28.4 ± 5.9 30.6 ± 6.1 34.1 ± 7.8 29.7 ± 5.1 30.2 ± 7.1

BHS (n = 140) (n = 207) (n = 44) (n = 94) (n = 184) (n = 301)

Age (years) 30.9 ± 4.6 30.1 ± 4.8 31.6 ± 3.9 29.4 ± 5.0 31.1 ± 4.4 30.0 ± 4.9

Body mass index (kg m–2) 27.8 ± 5.3 25.5 ± 6.1 28.6 ± 8.2 30.6 ± 8.6 28.0 ± 6.1 27.1 ± 7.4

BHS, Bogalusa Heart Study; FHS, Family Heart Study.

Table 2 Leukocyte telomere parameters by race and sex in the two cohorts, in which leukocyte telomere length (LTL) was measured using restriction enzymes 

HinfI/RsaI

Whites African Americans

p gender p raceMen Women Men Women

FHS

LTL 6.67 ± 0.03 6.77 ± 0.03 6.93 ± 0.05 7.16 ± 0.04 < 0.0001 < 0.0001

Age-adjusted LTL 6.68 ± 0.03 6.81 ± 0.03 6.86 ± 0.05 7.10 ± 0.03 < 0.0001 < 0.0001

Age- and BMI-adjusted LTL 6.68 ± 0.03 6.80 ± 0.03 6.86 ± 0.04 7.12 ± 0.04 < 0.0001 < 0.0001

BHS

LTL 7.28 ± 0.06 7.32 ± 0.05 7.81 ± 0.10 7.95 ± 0.08 0.5087 < 0.0001

Age-adjusted LTL 7.29 ± 0.06 7.31 ± 0.05 7.83 ± 0.11 7.93 ± 0.08 0.5241 < 0.0001

Age- and BMI-adjusted LTL 7.30 ± 0.06 7.29 ± 0.05 7.84 ± 0.11 7.97 ± 0.08 0.2590 < 0.0001

BMI, body mass index; BHS, Bogalusa Heart Study; FHS, Family Heart Study.

Fig. 1 Age- and body mass index-adjusted 
leukocyte telomere length (LTL) in the NHLBI Family 
Heart Study (FHS) and the Bogalusa Heart Study 
(BHS), based on terminal restriction fragment 
lengths, determined in the entire sample by HinfI/
RsaI restriction enzymes. The lower LTL values in the 
FHS than the BHS cohorts relate to the older age 
of the participants of the FHS.
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whites and 260 bp for African Americans. However, no such

difference was noted between women and men of both races

in the relatively younger BHS cohort (Table 2; Fig. 1). Further

details regarding LTL results derived from the HinfI/RsaI digest

are summarized in Table 2.

In most clinical studies, the restriction enzymes for TRF analysis

typically comprise HinfI/RsaI. In principle, longer LTL in African

Americans than in whites may arise from race-related poly-

morphisms in length or the nearest restriction site proximal

to the canonic (TTAGGG) stretch of the telomeric repeats. For

this reason we also measured in a subset of the BHS cohort TRF

length using the restriction enzymes HphI/MnII. Both restriction

enzymes HinfI/RsaI and HphI/MnII yield an admixture of TRFs

comprising primarily canonical but also some noncanonical

telomere repeats at the proximal region of the telomeres.

However, HphI/MnII cut the DNA at TGAGGG and TCAGGG,

yielding shorter TRFs than those generated by HinfI/RsaI (Allshire

et al., 1989; Baird et al., 2006). This is shown in Fig. 2 and Table 3

(and in Supplementary Fig. S1). In this subset, we also measured

telomeric DNA content by quantitative polymerase chain

reaction (qPCR) analysis, which strictly quantifies telomere

repeats. Regardless of the method used, African Americans

displayed longer LTL (or a higher T/S ratio) than whites (Fig. 2;

also see Table 3). We note that the qPCR method (Cawthon,

2002) has a higher CV% than the TRF length analysis, which

might limit detection of small variation in telomere length (Aviv

et al., 2006b). However, given the considerable difference in

LTL between African Americans and whites, the qPCR measure-

ments confirmed the findings of the TRF length analysis.

Interestingly, analysis of the TRF products generated by the HphI/

MnII digest showed a significant sex effect on LTL in the BHS.

We also obtained the overall and differential counts of

leukocytes and their subsets, including neutrophils, in the

majority of participants of the BHS whose telomere parameters

were measured (Supplementary Table S1). Although African

Americans showed significantly lower leukocyte and neutrophil

Fig. 2 Age- and body mass index-adjusted leukocyte telomere length (LTL) in a subset of the Bogalusa Heart Study (BHS) based on terminal restriction fragment 
lengths, determined by using restriction enzymes HinfI/RsaI and HphI/MnII, and by quantitative polymerase chain reaction. Figure displays results from 72 men 
and 162 women, equally divided by race.

Table 3 Leukocyte telomere parameters in a subset of the Bogalusa Heart Study by race and sex in which leukocyte telomere length (LTL) and telomere repeats 

were measured using restriction enzymes HinfI/RsaI and HphI/MnII, and by quantitative polymerase chain reaction (qPCR)

Bogalusa Heart Study

Whites African Americans
p-value 

gender

p-value 

raceMen Women Men Women

LTL (HinfI/RsaI) (kb)

Unadjusted 7.15 ± 0.13 7.25 ± 0.08 7.80 ± 0.11 7.91 ± 0.08 0.4702 < 0.0001

Age-adjusted 7.16 ± 0.12 7.24 ± 0.08 7.81 ± 0.12 7.91 ± 0.08 0.3878 < 0.0001

Age- and BMI-adjusted 7.14 ± 0.12 7.20 ± 0.08 7.82 ± 0.12 7.95 ± 0.08 0.3748 < 0.0001

LTL (HphI/MnII) (kb)

Unadjusted 5.59 ± 0.13 5.79 ± 0.08 6.07 ± 0.13 6.32 ± 0.08 0.0292 < 0.0001

Age-adjusted 5.61 ± 0.12 5.78 ± 0.08 6.08 ± 0.12 6.31 ± 0.08 0.0637 < 0.0001

Age- and BMI-adjusted 5.58 ± 0.13 5.74 ± 0.08 6.10 ± 0.12 6.34 ± 0.08 0.0503 < 0.0001

qPCR LTL (T/S units)

Unadjusted 2.71 ± 0.08 2.71 ± 0.05 3.01 ± 0.10 3.05 ± 0.06 0.7923 < 0.0001

Age-adjusted 2.69 ± 0.09 2.72 ± 0.06 2.99 ± 0.08 3.06 ± 0.06 0.4788 < 0.0001

Age- and BMI-adjusted 2.68 ± 0.09 2.70 ± 0.06 2.99 ± 0.09 3.08 ± 0.06 0.4449 < 0.0001

BMI, body mass index.
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counts than did whites, no relationships were observed between

these counts and LTL in African Americans and whites,

independently or jointly.

Figure 3 displays sex- and BMI-adjusted LTL vs. age from the

combined data set of the FHS and BHS, using LTL derived from

HinfI/RsaI digest. African Americans had higher LTL at nearly all

ages. However, sex- and BMI-adjusted LTL became shorter with

age at a steeper slope in African Americans (0.029 kb year–1)

than in whites (0.020 kb year–1) (p = 0.0001). The slope of LTL

vs. age did not differ by sex.

Discussion

The central finding of this study is that African Americans have

considerably longer LTL than whites, at least up to age 80. In

this study, we observed a sex effect on LTL in the NHLBI FHS,

but in the BHS, the sex effect was found only in the products

of the HphI/MnII. A potential explanation for the difficulty in

detecting the sex effect may be the much younger age of the

BHS participants. In the FHS and in previous studies that found

longer LTL in women than men (Jeanclos et al., 2000; Benetos

et al., 2001; Nawrot et al., 2004; Vasa-Nicotera et al., 2005;

Bekaert et al., 2007), the subjects were much older than those

in the BHS.

LTL is equal in African American and white newborns (Okuda

et al., 2002). As African Americans in their 20s already display

longer LTL than their white peers, the racial gap in LTL might

relate to factors that define leukocyte telomere dynamics during

the formative years. These include the proliferative rates of

HSCs/PCs. African Americans and other individuals of African

ancestry display lower leukocyte and neutrophil counts than do

whites (Haddy et al., 1999; Bain et al., 2000; Phillips et al.,
2000; Mayr et al., 2007), a finding we confirmed in the BHS.

The neutrophils in peripheral blood are distributed into two

pools; namely, circulating cells and marginated cells that adhere

to the endothelium in postcapillary venules (Athens et al., 1961).

Physiological neutropenia in individuals of African ancestry is

not due to increased margination of neutrophils (Athens et al.,
1961; Bain et al., 2000; Phillips et al., 2000). It is therefore likely

to arise from fewer replications of HSCs/PCs. The longer LTL in

African Americans than in whites is consistent with this premise.

Telomere length is shorter in neutrophils than in T lymphocytes

in young individuals and vice versa in older individuals (Weng,

2001). For the following reasons, we suggest that in and of itself

this phenomenon does not explain the racial difference in LTL:

First, LTL was found to be longer in African Americans than in

whites at a wide age range that encompasses most of adult

life. Second, there are considerable interindividual variations in

LTL at birth (Okuda et al., 2002; Akkad et al., 2006) and there-

after (Jeanclos et al., 2000; Benetos et al., 2001; Gardner et al.,
2005; Nawrot et al., 2005; Valdes et al., 2005; Vasa-Nicotera

et al., 2005; Bekaert et al., 2007; Njajou et al., 2007). These

interindividual variations in telomere length far exceed the

variation in telomere length among cell types within the

individual, because telomere length is synchronized (equivalent)

in different tissues and cells in the fetus (Youngren et al., 1998)

and the newborn (Okuda et al., 2002), and partially synchronized

at any age (Butler et al., 1998; Martens et al., 1998; von Zglinicki

et al., 2000; Takubo et al., 2002; Gardner et al., 2007). It follows

that individuals with relatively long (or short) telomere length

in one cell type have long (or short) telomere length in other

cell types. Regarding telomere dynamics in leukocytes, LTL

reflects birth telomere length and replicative history of HSCs/

PCs. At any given time, and for whatever reason and duration,

an altered demand by a leukocyte subset on PCs to increase or

diminish their divisions would ultimately impact telomere dynamics

in HSCs and therefore telomere length in all leukocytes. It is

unlikely therefore that the racial differences in LTL may be simply

explained by a subset of leukocytes. Third, in the BHS we found

no association of LTL with the numbers of either leukocytes or

neutrophils (Supplementary Table S1). This is not unexpected,

as LTL is a record of the replicative history of HSCs/PCs over the

individual’s lifetime until sample collection, while the leukocyte

and neutrophil counts reflect a ‘snapshot’ of the peripheral

leukocytes at the time of sample collection.

Although diminished HSC/PC replication might explain the

longer LTL in African Americans than in whites during early

adulthood, additional factors apparently tip the balance towards

narrowing the racial gap in LTL later in life. Theoretical consid-

erations suggest that telomere attrition rate in cultured cells is

proportional to telomere length (op den Buijs et al., 2004),

perhaps because longer telomeres are a greater target to free

radicals. All other things being equal, the relatively longer LTL

in adult African Americans may account in part for a higher rate

of LTL shortening. In addition, African Americans exhibit increased

prevalence of risk factors – not only for CV disease (whose

pattern may not be the same as in whites), but also for other

potentially deleterious conditions, e.g. low social status and

Fig. 3 Sex- and body mass index-adjusted leukocyte telomere length (LTL) vs. 
age for African Americans and whites from the NHLBI Family Heart Study 
(FHS) and the Bogalusa Heart Study (BHS) combined.
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unhealthy lifestyle (Otten et al., 1990), which were shown to

be associated with shortened LTL (Cherkas et al., 2006; Bekaert

et al., 2007). Despite the racial differences in LTL and the rate

of its shortening during adulthood, we found LTL to be heritable

in both races.

Might the longer LTL in African Americans than whites

provide clues with regard to racial differences in life expectancy

in the USA? Until recently, a controversy existed about the

relation between LTL and mortality/survival in elderly persons

(Cawthon et al., 2003; Martin-Ruiz et al., 2005; Bischoff et al.,
2006; Harris et al., 2006; Honig et al., 2006). Of these, two

studies (Cawthon et al., 2003; Honig et al., 2006) showed an

association between mortality and LTL. The other three did not.

We recently addressed this question in the Longitudinal Study

of Aging Danish Twins, which comprises same-sex, elderly

twins, whose mortality/survival was monitored for 10 years

after leukocyte collection. The same-sex twin model is the

most optimal to study the connection between mortality and

LTL because it controls for genes, rearing environment, sex

and age, all of which might impact LTL. Using Southern blot

analysis approach, it was found that the co-twin with the shorter

telomere parameters was likely to die first by the 4th year of the

10 years follow-up (Kimura et al., in press). Another study

reported similar findings in same-sex Swedish twins (Bakaysa

et al., 2007).

The mechanisms that define the upper boundary of lifespan

– namely, the survival of elderly individuals who withstood or

did not suffer aging-related diseases during midlife – might not

be the same as those that determine aging in the general

population (Kimura et al., 2007). However, assuming that LTL

is associated with lifespan in the elderly, there are curious

observations regarding differences in mortality/survival between

African Americans and whites. African Americans exhibit increased

clustering of risk factors not only for CV disease but also other

potentially lethal maladies; in the USA they display higher

mortality rates and shorter life expectancy than whites (Otten

et al., 1990). However, above the age of 70–80 years African

Americans have been reported to exhibit lower mortality than

whites (Markides & Machalek, 1984; Wing et al., 1985; Ford

et al., 1990; Elo & Preston, 1994). This crossover phenomenon

was challenged due to concerns that vital statistics data reflect

systematic misreporting of age among elderly African Americans

(Coale & Kisker, 1986; Preston et al., 1996). However, more recent

work further supports the mortality crossover, at least with

respect to coronary heart disease mortality (Corti et al., 1999).

The etiology of this finding is unknown. The faster LTL short-

ening in African Americans would narrow the racial difference

in LTL, but the vestigial effect of the LTL ‘advantage’ in African

Americans throughout most of adult life might narrow the racial

gap in mortality in the elderly.

A number of limitations of this study are noteworthy. First, this

cross-sectional study is not as powerful as the longitudinal

approach to examine leukocyte telomere dynamics. Second, our

conclusions that LTL attrition rate is slower in African Americans

than in whites between birth and early adulthood is based on

indirect evidence. Third, our study focuses on the racial difference

in LTL without factoring a host of race-associated circumstances

that might account for the narrowing of the racial gap in LTL. How-

ever, the racial difference in LTL is of such a magnitude that it would

probably eclipse the effect of any single environmental factor.

We propose that race and ethnicity should be assessed in

future studies that explore the associations between diseases

of aging, CV disease, in particular, and leukocyte telomere parameters.

Experimental procedures

The cohorts

The NHLBI FHS is a multicenter investigation of the genetic and

epidemiologic basis of CV disease (Higgins et al., 1996). Between

January 2002 and January 2004, 3359 family members were studied

(2737 whites, 622 African Americans). The LTL data are derived from

1968 individuals from this cohort (1163 women, 805 men, 1395

whites and 573 African Americans) with an age range of 30–93 years.

The BHS is a long-term community-based epidemiologic study

of early natural history of CV disease beginning in childhood

from the semirural, biracial community of Bogalusa, LA (Bogalusa

Heart Study, 1995). Between September 1995 and December

1996, 1420 individuals (1011 whites, 409 African Americans)

were examined for CV risk factors. The LTL data were derived

from 485 individuals of this cohort who had stored blood

available (301 women, 184 men, 247 whites and 138 African

Americans) with an age range of 19–37 years.

The study protocol was approved by Institutional Review

Boards of centers that oversee each of the participating cohorts

and each participant gave written informed consent.

Telomere length measurements

The mean length of the TRFs, determined by Southern blot ana-

lysis, was used to measure LTL on DNA extracted from peripheral

leukocytes. We obtained the mean TRF length in two ways: our

standard method (Okuda et al., 2002) and an ‘overlay’ method

(Vasan et al., in press), both utilizing HinfI/RsaI restriction enzymes.

(Description of the ‘overlay’ method, used for DNA samples

derived from the FHS, is provided in the Supplementary Appendix

S1.) For the standard method, the coefficient of variation for

duplicate samples, which were resolved on different gels, was

1.43% while for the overlay method it was 2.40%. The correlation

between the two methods was r = 0.99, p < 0.0001 (n = 24).

In a subset of participants, TRF length was also measured in DNA

digested with restriction enzymes HphI/MnII. The TRF length

derived from these restriction enzymes highly correlated with

that derived from HinfI/RsaI (r = 0.814, p = 0.0001; Supplementary

Fig. S1). In the same subset we also measured telomere repeats

by qPCR, using minor modification (Gardner et al., 2007) of the

method originally described by Cawthon (2002). The coefficient

of variation for duplicate samples undergoing qPCR on different

days was 6.10%. The laboratory that conducted the TRF length

and qPCR assays was blinded to the identity of the subjects.
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Statistical analyses

The primary analysis consisted of comparing LTL parameters

between African Americans and whites, and between men and

women after adjustment for age and BMI. To investigate cross-

sectional, race-specific associations of age with LTL, sex- and

BMI-adjusted LTLs from each study were combined and analyzed

by generalized estimating equations and an exchangeable

correlation matrix (PROC GENMOD in SAS) to correct the

estimated standard errors for the relatedness of the subjects

within families. This correction prevents inflated significance

levels of the tests used in the analyses presented. An age-by-race

interaction term was included in the model to test if there were

different age-related cross-sectional rates of LTL shortening

between the two races. When significant, this interaction term

was replaced by nesting age within race to estimate the two

different slopes and their standard errors. Sex-by-age interactions

with LTL shortening were not significant. Race-specific heritabilities

of LTL in the FHS were obtained from SOLAR (Almasy & Blangero,

1998), adjusting for sex, age and specific gel on which the sam-

ple was run. Unless otherwise indicated, data are presented as

mean ± SEM.
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