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Abstract

Background: Constitutive production of blood coagulation proteins by hepatocytes is necessary for hemostasis. Stressful
conditions trigger adaptive cellular responses and delay processing of most proteins, potentially affecting plasma levels of
proteins secreted exclusively by hepatocytes. We examined the effect of glucose deprivation on expression of coagulation
proteins by the human hepatoma cell line, HepG2.

Methodology/Principal Findings: Expression of coagulation factor VII, which is required for initiation of blood coagulation,
was elevated by glucose deprivation, while expression of other coagulation proteins decreased. Realtime PCR and ELISA
demonstrated that the relative percentage expression +/2 SD of steady-state F7 mRNA and secreted factor VII antigen were
significantly increased (from 100+/215% to 188+/227% and 100+/28.8% to 176.3+/217.3% respectively, p,0.001) at 24 hr
of treatment. The integrated stress response was induced, as indicated by upregulation of transcription factor ATF4 and of
additional stress-responsive genes. Small interfering RNAs directed against ATF4 potently reduced basal F7 expression, and
prevented F7 upregulation by glucose deprivation. The response of the endogenous F7 gene was replicated in reporter
gene assays, which further indicated that ATF4 effects were mediated via interaction with an amino acid response element
in the F7 promoter.

Conclusions/Significance: Our data indicated that glucose deprivation enhanced F7 expression in a mechanism reliant on
prior ATF4 upregulation primarily due to increased transcription from the ATF4 gene. Of five coagulation protein genes
examined, only F7 was upregulated, suggesting that its functions may be important in a systemic response to glucose
deprivation stress.
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Introduction

Hepatocytes produce most of the coagulation proteins found in

plasma, and for many coagulation proteins are the only cell type

known to do so. Though their average concentrations and half-

lives differ, all coagulation proteins are present in trace amounts in

plasma and have comparatively short half-lives. Since sufficient

concentrations of all the coagulation proteins are necessary for

hemostasis, constitutive expression of the genes encoding them is

required to maintain adequate plasma concentrations. Hepato-

cytes must frequently alter their patterns of metabolic gene

expression in response to oscillations in nutrient availability and

the consequent hormonal shifts engendered by normal behaviors

such as feeding or fasting, and by changing levels of activity. In

addition, hepatocytes are responsible for the secretion many

specialized plasma proteins, such as serum albumin and

apolipoproteins, as well as coagulation proteins. However, the

question of whether the rates of coagulation protein transcription

and biosynthesis are consistent, or whether they fluctuate in

response to environmental conditions, has largely been un-

explored.

Coagulation FVII (FVII) plays a pivotal role in blood coagulation,

yet has the lowest average plasma level among the vitamin K-

dependent coagulation proteins (500 ng/ml or,10 nM) as well as

the shortest half-life (3–6 hr). Because of these properties, variations

in the extent of hepatic FVII expression could be particularly

important with regard to hemostasis. FVII is the zymogen of

a glycoprotease essential for the initial reaction of blood coagulation,

and is indispensable for both hemostasis and thrombosis. [1,2]To

initiate blood coagulation, FVII must interact with its trans-

membrane receptor, tissue factor (TF), be converted to its

catalytically active form, FVIIa, and then must proteolytically

activate its physiological substrates, the zymogens of coagulation

factors X (FX) and IX (FIX). [1] These activated coagulation

proteases, in turn, participate in a complex series of reactions with

additional coagulation proteins such as factors VIII and V (FVIII

and FV) on the membrane surfaces of activated platelets or other
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cells, resulting in the proteolyic activation of prothrombin to

thrombin. The coagulation pathway culminates with the thrombin-

mediated conversion of soluble fibrinogen to insoluble fibrin to form

the structure of the blood clot. (reviewed in [3,4]) In contrast,

additional coagulation proteins, such as ProteinC and Protein S, are

important in counter-reactions that limit the overall extent of blood

coagulation. [5,6].

The interaction between FVII/FVIIa and TF is tightly

regulated by the relative amounts and disparate locations of each

component, as well as by their reciprocal requirements for

functional activation. The plasma concentration of FVII is low,

with 1% of the total amount estimated to be the activated form

(reviewed in [7]). However, FVIIa has negligible catalytic activity

against FIX and FX when in solution; only when bound to TF in

an appropriate cell membrane context does FVIIa attain its full

catalytic ability. Zymogen FVII as well as FVIIa can interact with

TF. After FVII binds TF, it is rapidly converted to FVIIa either

autocatalytically, by the FVII activating protease (FSAP) or by

trace amounts of other activated coagulation proteins. [2,8]

Although TF is more abundant than FVII/FVIIa, being expressed

on the membranes of many cell types throughout the body, it is

found almost exclusively outside the vasculature (reviewed in [9]).

Furthermore, it too exists in an inactive (or ‘‘encrypted’’) form.

[10] Encrypted TF has the ability to bind, but not to support the

catalytic activity of, FVII/FVIIa. [11] The activation (‘‘decryp-

tion’’) of TF has been associated with influx of calcium ions into

TF-expressing cells [12], the local loss of membrane lipid

asymmetry [13], the dissociation of TF dimers [10] and disulfide

exchange at the Cys186–Cys209 bond in the external domain of

TF. [14,15] These physical and biochemical barriers limit the

majority of productive TF–FVII/FVIIa interactions to the time

and place of a vascular injury.

The importance of having sufficient amounts of FVII and TF

for hemostasis has been demonstrated through characterization of

patients with FVII deficiency (TF deficiency has never been

documented in humans [16]), as well as through study of knockout

mice in which one or the other gene has been completely or

partially silenced. Patients homozygous for deleterious promoter

mutations reducing transcription of the FVII gene (F7)

[17,18,19,20,21], although rare, have been diagnosed following

severe bleeding episodes that usually first occur during infancy.

The phenotype of the F7 knockout mouse is reminiscent of that of

patients with severe FVII deficiency. If gestation takes place in

a dam expressing murine FVII from at least one normal allele, the

FVII 2/2 pups develop properly but experience fatal internal

hemorrhages shortly after birth. [22,23] Ablation of the TF gene is

an embryonic lethal defect [24,25], but normal development takes

place in mice expressing very low TF levels, ,1% of the typical

level. Hemostasis is apparently normal in this ‘‘low-TF’’ mouse,

except in situations where extensive bleeding must be controlled.

[24].

The endoplasmic reticulum (ER) is an important organelle

within all eukaryotic cells, and its proper functioning is especially

significant for differentiated cell types such as hepatocytes that

must meet continual heavy metabolic and biosynthetic demands.

In hepatocytes, the roles of the ER include the maintenance of

intracellular calcium levels, the production of membrane lipids

and cholesterol, the metabolism of glycogen, the detoxification of

both xenobiotics and the byproducts of normal metabolism such as

lactate and ammonia, as well as the synthesis, initial folding and

post-translational modification of an array of specialized trans-

membrane and secreted proteins. As secreted proteins, FVII and

other coagulation factor proteins must traverse the hepatocyte ER

during biosynthesis. Many circumstances, both physiologic and

pharmacologic, have been shown to compromise the ability of the

ER to optimally handle protein synthesis, and as a cell type with

high protein secretory activity, hepatocytes may be particularly

sensitive to conditions that trigger cellular stress responses. [26] A

common repercussion of such insults is a sharp reduction in global

protein translation, which lessens the cell’s energetic burden at

a time when resources are limited. Translational inhibition comes

about through the reversible phosphorylation of the eukaryotic

translation initiation factor 2 alpha (eIF2a) at a single residue,

impairing its ability to interact with GTP and blocking binding of

the initiator methionyl-transfer RNA to ribosomes, thus inhibiting

new protein translation. [27,28,29,30,31].

At least four kinases are known to be capable of phosphorylating

eIF2a, thereby repressing global protein synthesis in response to

different types of stress: these are HR1 (EIF2AK1), PKR

(EIF2AK2), PERK (EIF2AK3), and GCN2 (EIF2AK4). HR1 is

known to be activated by oxidative stress, PKR by viral infection,

PERK by damage to the ER or by accumulation of misfolded

proteins within it, and GCN2 by amino acid deprivation or UV

irradiation [29,31,32,33,34] In addition to the immediate re-

duction in global protein synthesis, gene expression patterns are

altered in stressed cells to bring about a longer-term response to

the stressor. Paradoxically, phosphorylated eIF2a also enhances

the selection of the appropriate open reading frame in the

messenger RNA encoding the transcription factor ATF4 (activat-

ing transcription factor 4) and so preferentially increases ATF4

translation at a time when overall protein translation is inhibited.

The resultant increase in ATF4 functionality is succeeded by the

upregulated expression of numerous ATF4 target genes, many but

not all of which also encode transcription factors.

[35,36,37,38,39,40,41,42,43,44,45,46] Collectively, this eIF2a-
mediated mechanism has been referred to as the ‘‘integrated

stress response’’ [47].

Conditions that interfere directly with ER functioning, causing

unfolded nascent proteins to accumulate within it, activate

additional stress response pathways. Three ER transmembrane

proteins–an eIF2a kinase mentioned above (PERK, or protein

kinase RNA-dependent-like endoplasmic reticulum kinase), ATF6

(activating transcription factor 6) and IRE1a (inositol requiring

enzyme 1 alpha)–mediate the three branches of the ER stress

response (reviewed in [48]). In homeostasis, the ER luminal

domains of each of these proteins is thought to be bound by GRP-

78 (glucose related protein 78, also known as BiP) an abundant ER

chaperone protein, and this interaction maintains them in their

inactive states. When improperly folded proteins accumulate

within the ER, there is an increased need for GRP-78 to act as

a chaperone and so it dissociates from PERK, ATF6 and IRE1a.
For each of these ‘‘sensor proteins’’, its dissociation from GRP-78

is the prerequisite for activation. [49] PERK is activated by

dimerization and autophosphorylation [50] early in the stress

response. Inactive ATF6 is translocated from the ER to the Golgi

apparatus following its dissociation from GRP-78, where it is

cleaved by SP1 and SP2 (the resident site-1 and site-2 proteases) to

release the active ATF6a transcription factor. [51] After trans-

location to the nucleus, ATF6a, in conjunction with the

transcription factor NF-Y, upregulates expression of target genes

that include the chaperone proteins GRP-78, GRP-94 and PDI

(protein disulfide isomerase), as well as of transcription factor

XPB1 (X-box binding protein 1). Although production of ATF6a
is fairly rapid, the subsequent upregulation of its target genes

requires some time to become apparent. Finally, when IRE1a is

released from GRP-78, it dimerizes and is autophosphorylated,

activating an internal endoribonuclease. [50] Two functions for

the IRE1a ribonuclease have been reported: the degradation of
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mRNAs encoding secreted or membrane proteins, which further

reduces the protein synthetic burden of the ER, [52] and atypical

splicing of XPB1 mRNA. Translation of unspliced XBP1 mRNA

produces a DNA binding protein without a transactivation

domain. When the IRE1a ribonuclease removes a 26-base pair

intron from XPB1 mRNA, the reading frame is altered to encode

a fully functional transcription factor. [53,54,55] Many target

genes of XPB1 overlap with those of ATF6a, while others promote

the degradation of misfolded proteins. This third branch of the ER

stress response is the last to be fully implemented, since a significant

level of XBP1 mRNA is not attained prior to upregulation of the

XBP1 gene by ATF6a. [54] The co-ordinated activation of these

pathways thus limits global protein synthesis by blocking the

translation of most proteins, producing additional protein chaper-

ones to assist with the folding of immature proteins within the ER

lumen, and enhancing the degradation of mRNAs and severely

misfolded proteins. Although higher-level activation of stress

response pathways, especially if sustained over time, will lead to

apoptosis, these mechanisms taken together are well suited to

resolve short-term or lower-intensity stresses that cause unantic-

ipated difficulties with protein synthesis. [56].

Investigations of cellular stress responses have largely been

directed towards detailed understanding the intracellular pathways

involved, and have seldom explored the effect of stresses upon the

expression of cell-type specific secreted proteins. The expected

slowdown in global protein processing characteristic of stress

responses, together with possible reductions in mRNA and nascent

protein stability, suggest that production of all secretory proteins

would be curtailed. In this study, we have examined whether stress

triggered by glucose deprivation influenced expression of five

coagulation protein genes–those encoding the vitamin K-de-

pendent FVII, FX, prothrombin and protein S, as well as FVIII, in

the human hepatoma cell line, HepG2.

To our knowledge, no previous investigation has analyzed the

extent to which nutritional stress impinges on constitutive

expression of blood coagulation proteins. Our results indicated

that 24 hr glucose deprivation activated multiple stress response

pathways in HepG2 cells, and was associated with reduced mRNA

levels transcribed from the F10, F2 (prothrombin), PROS1 (protein

S) and F8 genes. Conversely, however, we found that the

expression of the F7 gene was enhanced at both the mRNA and

the secreted protein levels by glucose deprivation. Focusing on F7

transcriptional upregulation, we further demonstrate that it occurs

in an ATF4-dependent manner, mediated by increased transcrip-

tion of the ATF4 gene and direct interaction of ATF4 protein with

a composite binding element within the proximal promoter of the

F7 gene.

Results

Glucose Deprivation Differentially Affects Expression of
Coagulation Protein Genes
To examine the ability of glucose deprivation to influence the

expression of coagulation factor genes, HepG2 cells were

incubated in standard culture media supplemented with 1% fetal

bovine serum and glucose at high, standard, or no-glucose

conditions (25 mM, 5 mM and 0 mM glucose, respectively). It

was anticipated that glucose deprivation would activate the

integrated stress response and thus increase the amount of

functional ATF4 transcription factor present in the cells.

Therefore, this initial experiment was performed upon cells that

had been transfected either with a negative control siRNA or with

a validated siRNA directed against ATF4. After 24 hr of

treatment, total RNA was isolated, converted to cDNA, and

tested by quantitative reverse-transcriptase realtime PCR as shown

in Figure 1, to determine the relative levels of mRNA encoding the

genes of interest: several coagulation factor genes, the ATF4 gene

and a number of its target genes, and additional known stress-

inducible genes. A complete list of the genes examined, their

genebank accession numbers, and the Taq-Man gene expression

assay numbers used, are given in Table S1.

With regard to expression of the coagulation factor genes

(Figure 1A), the data demonstrate that in cells transfected with the

negative control siRNA, the F10, F2 (prothrombin), PROS1 and F8

genes were each significantly downregulated at the mRNA level by

glucose deprivation. In contrast, the expression of F7 steady-state

mRNA was significantly upregulated by glucose deprivation, from

100+/215% to 188+/227%. Glucose deprivation for 24 hr also

increased expression of the ATF4 gene at the mRNA level

(Figure 1B). The steady-state ATF4 mRNA was elevated nearly

two-fold (from 100+/215.7% to 178+/229.3%). These data

suggested that ATF4 transcription was elevated, while the

increased expression of several recognized, stress-inducible target

genes of ATF4 (ASNS, C/EBPb, ATF3) (Figure 1C) implied that

ATF4 protein levels and transcriptional capacity had also been

elevated during glucose deprivation.

Increased mRNA levels were also observed for two ‘‘growth

arrest and DNA damage-inducible’’ or GADD genes: CHOP

(GADD153), an inhibitory member of the C/EBPb transcription

factor family, and GADD34, an accessory protein for the serine/

threonine-protein phosphatase PP1 which is needed to reverse the

stress-induced repression of protein synthesis mediated by

phosphorylated eIF2a. [57] In addition, increased mRNAs

encoding the transcription factors ATF6 and spliced XBP1(S)

despite a decrease in total XPB1(U) mRNA, and of the ER

chaperone protein GRP-78, were also observed. (Figure 1B, 1C)

These data indicated that all ER stress response pathways, not

only the integrated stress response, had been triggered in the cells

by glucose deprivation.

The inclusion of ATF4 siRNA reduced the mRNA levels of

some genes in this panel, indicating the ones whose basal and/or

induced expression relied upon functional ATF4. Glucose

deprivation in the presence of ATF4 siRNA blocked basal ATF4

mRNA expression as well as ATF4 upregulation during glucose

deprivation, and also prevented the upregulation of C/EBPb,
ATF3, and ASNS. In contrast, ATF4 siRNA had only minimal

influence on the induction of GADD34, GRP-78 and CHOP.

Interestingly, ATF4 siRNA blocked ATF6 induction, and partially

prevented the increased splicing of XBP1(S) during glucose

deprivation as well. Crosstalk has been previously reported

between the integrated stress response and these other branches

of the ER stress response. [58,59].

ATF4 siRNA did not significantly affect the basal expression, or

prevent the downregulation during glucose deprivation, of the

coagulation protein genes F10, F2, PROS1 and F8. Of the

coagulation factor genes tested, only F7 responded to ATF4

siRNA, and its responses were strong and were observed at all

three glucose concentrations. The F7 steady-state mRNA levels

were halved by inclusion of ATF4 siRNA in comparison to the

negative control siRNA, at both 25 mM and 5 mM glucose. Most

notably, inclusion of ATF4 siRNA completely eliminated the

increase in F7 mRNA anticipated at 0 mM glucose. The response

of F7 to the ATF4 siRNA resembled more closely that of ASNS

and of the ATF4 gene itself, than it did even of two other known

ATF4 target genes, ATF3 and C/EBPb. Taken together, the data

of Figure 1 implied a previously unrecognized role for ATF4 in

endogenous expression of F7, and suggested as well that F7 is

a transcriptional target of ATF4 during the integrated stress

Glucose Deprivation Upregulates F7
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Figure 1. Glucose deprivation and coagulation factor mRNA expression. Replicate cultures of HepG2 cells were transfected with negative
control siRNA (grey bars) or ATF4 siRNA#1 (white bars), then cultured in media with 25 mM, 5 mM, or 0 mM glucose for 24 hr. RNA was analyzed by
qRT-PCR for expression of amplicons as shown. For each amplicon, average expression at 25 mM glucose with the negative control siRNA was
considered 100% and other values are shown as % expression +/2 SD relative to that. N = 3 per group. Panel A, coagulation factor genes; panels B
and C, stress responsive genes. At 0 mM glucose, expression was significantly increased for F7, ATF4, ATF6, XBP1(S), GADD34, GRP-78, ASNS, C/EBPb,
ATF3 and CHOP (all p,0.001). Please note difference in scale between panel A and panels B and C. ATF4 siRNA blocked all increases (all p,0.005)
except for GRP-78, GADD34 and CHOP. Expression of FX, F2 and PROS1 were significantly decreased at 0 mM glucose (all p,0.001) and were not
significantly affected by ATF4 siRNA.
doi:10.1371/journal.pone.0040994.g001
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response. Further experiments were then conducted to examine

these topics in more detail.

Thapsigargin and Glucose Deprivation Trigger Similar
Stress Responses, but have Distinct Effects on F7
Expression
Thapsigargin (TG), an irreversible inhibitor of the ER-

membrane calcium ATPase, interferes with normal ER function-

ing and provokes strong and rapid activation of all branches of the

ER stress response. [45,49,51,60] A TG concentration of 500 nM

and a time of 6 hr were chosen for the comparison to 24 hr

glucose deprivation for HepG2 cells, since in each instance ATF4

expression was roughly doubled. In Figure 2, the ability of TG to

affect gene expression was compared to that of glucose depriva-

tion. Panels A and B provide the results of qRT-PCR performed in

parallel for a number of stress-inducible genes. As in glucose

deprivation (Figure 1, and confirmed here) ATF4 and its target

genes ATF3, C/EBPb, and ASNS, as well as GADD34 GRP-78,

XBP1(U) and XBP1(S) were all significantly upregulated by TG.

ATF3, ASNS, GADD34 and GRP-78 were increased to a greater

extent by glucose deprivation than by TG; CHOP and C/EBPb
were increased to approximately the same extent; and XBP1(U)

and XBP1(S) were increased to a greater extent by TG than by

glucose deprivation. Only glucose deprivation increased expres-

sion of ATF6. Finally, as shown in panel C, it was striking that TG

had no effect at all on expression of the two coagulation factor

genes tested: F7 was not upregulated, nor was F8 downregulated,

as they were by glucose deprivation.

In Figure 2 panel D, protein expression for a subset of these

stress-responsive genes (ATF4, ATF3, CHOP, and XBP1(S)) were

investigated, along with pan- and phospho-eIF2a. Both glucose

deprivation and TG treatment increased the detectable amounts

of ATF4 and ATF3, while CHOP and XBP1(S) were increased by

glucose deprivation at the protein level, corroborating their

expression at the mRNA level. While the amounts of total eIF2a
remained fairly constant, we noted that higher amounts of

phospho-eIF2a were seen at 25 mM and 5 mM glucose than at

0 mM glucose and 500 nM TG. This result appeared contradic-

tory, since the greatest detection of phospho-eIF2a might have

been expected under the strongest stress conditions. However, we

also noted that mRNA expression of GADD34, which assists PP1 to

dephosphorylate eIF2a and thereby permits global protein

translation to resume, was also much higher under glucose

deprivation (3271+/2309%) or TG treatment (1015+/2205%)

than at 25 mM or 5 mM of glucose (100+/217.6% and 112+/
215.2%, respectively). Thus we hypothesized that eIF2a had been

extensively phosphorylated (or was being repeatedly yet transiently

phosphorylated) in glucose-deprived and TG-treated cells, but that

its phosphorylation status was being reversed through induction of

GADD34.

To test this hypothesis, we performed an additional experiment

in which cells were cultured for 6 hr with 5 mM or 0 mM glucose,

in the absence versus the presence of the specific PP1 inhibitor,

Sal003. [61] Because the eIF2a dephosphorylation mechanism is

inhibited, any phospho-eIF2a generated under glucose depriva-

tion will accumulate when Sal003 is included. The Western blot

comparing eIF2a and phospho-eIF2a under these conditions is

shown in Figure 3. Approximately comparable amounts of

phospho-eIF2a were detected in cells cultured with 5 mM or

0 mM glucose in the absence of Sal003 (compare lanes 1 and 2).

At 5 mM glucose, the detectable phospho-eIF increased slightly

when 10 mM Sal003 was present during the incubation period

(compare lanes 2 and 4). However, the detectable phospho-eIF2a
increased robustly in cells cultured with 0 mM glucose and 10 mM

Sal003 (compare lanes 1 and 3). It is interesting to note that even

under the standard culture conditions, eIF2a was phosphorylated

to a minor degree, and hence was capable of enhancing the

translation of ATF4 mRNA somewhat. These data indicate that

Figure 2. Thapsigargin versus glucose deprivation and F7
mRNA expression. (A-C) HepG2 cells were treated in parallel for
24 hr in medium with 25 mM, 5 mM or 0 mM glucose (white bars, with
the direction of arrows indicating decreasing concentration) or for 6 hr
at 5 mM glucose without (-) or with (+) 500 nM TG (grey bars), and qRT-
PCR was performed as described. Expression at 25 mM glucose and
without thapsigargin were considered 100% expression for each
amplicon; other groups were expressed as a percentage +/2 SD
relative to this. N = 3/group. Glucose deprivation significantly increased
expression of ATF4, ATF6, ASNS, C/EBPb, XBP1(S), GRP78, CHOP, GADD34,
and F7 (all p,0.001). TG did likewise (all p,0.001), except for ATF6 and
F7 amplicons. F8 was downregulated by glucose deprivation but
unaffected by TG. (D) Western blot of whole-cell extracts of cells treated
with glucose and/or TG as shown, above the lanes, for detection of the
proteins shown at the right.
doi:10.1371/journal.pone.0040994.g002
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phosphorylation of eIF2a happens to a greater extent during

glucose deprivation, implying that enhanced transcription of the

ATF4 gene and preferential translation of ATF4 mRNA cooperate

in the upregulation of F7 and other ATF4 target genes.

FVII is Secreted in an ATF4-dependent Manner during
Glucose Deprivation
To determine the extent to which the elevation in F7 mRNA in

response to glucose deprivation was reflected in translation and

secretion of FVII antigen, HepG2 cells were incubated in media

with glucose levels ranging from 25 mM to 0 mM, and the

amount of FVII secreted into the culture medium over a 24 hr

period was measured by ELISA (Figure 4). Glucose at 25 mM,

5 mM, and 1 mM were employed to mimic the plasma glucose

levels in unregulated diabetics, and in non-diabetics during fed and

fasted states, respectively. [62] Though unlikely to occur in

physiological contexts, the glucose deprivation condition (0 mM

glucose), was included as an established method to strongly

provoke cellular stress responses, [41,42,45,46] the efficacy of

which we had confirmed, above. Low glucose concentrations,

either 1 mM or 0 mM, significantly increased the amount of FVII

antigen detected in the culture medium. For cells in media

containing 10% serum, reduction of glucose from 25 mM to

1 mM increased the amount of secreted FVII from 100+/210.5%

to 159.7+/217.2% (p,0.001). For cells in media containing 1%

serum, reduction from 25 mM to 0 mM glucose increased FVII

antigen from 100+/28.8% to 176.3+/217.3% (p,0.001). In

these experiments, any insulin present was contributed by the

serum component of the media and was constant under a given

condition. Since glucose limitation increased the secreted FVII

regardless of the amount of serum present, this effect was

independent of insulin or any other serum component. For

convenience, subsequent experiments were performed in media

containing 1% serum.

As a control to examine whether glucose deprivation treatments

were survivable, we have measured both the cell number and the

overall metabolic activity by a colorimetric MTS (3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophe-

nyl)-2H-tetrazolium) assay in cells cultured for 24 hr in media with

1% serum containing either 5 mM or 0 mM glucose. (Figure S1).

While there was a notable reduction in metabolic activity, from

100+/210% to 13+/21.4%, associated with glucose deprivation,

this was not accompanied by a reduction in cell number. Thus we

concluded that the F7/FVII induction provoked by the glucose

deprivation was likely to be part of an adaptive response to a severe

but survivable stress condition.

ATF4 Increases F7 Expression by Direct and Indirect
Mechanisms
As described above, an important early event in cellular stress

responses is preferential translation of ATF4 mRNA at the correct

ORF to produce the functional transcription factor. This may also

be accompanied by elevated transcription of the ATF4 gene as

noted by other investigators and as we observed for both glucose

deprivation and TG (Figures 1 and 2) [35,41,45,47,56]. Whether

ATF4 directly affected transcription of the F7 gene, either under

basal conditions or during the stress response, was not previously

known.

The results of our initial experiment suggested that ATF4

influenced F7 transcription under both basal circumstances and

during glucose deprivation. To investigate this more closely, we

first employed an RNA interference strategy to assess the degree to

which ATF4 influences ambient F7 expression in unstressed cells.

As shown in Figure 5A, the endogenous ATF4 expressed by

HepG2 cells under the standard culture condition of 5 mM

glucose was independently knocked down by two small interfering

RNAs (siRNAs), one directed to the 5’ UTR and the other to the

3’ UTR, of the ATF4 gene.

The data of Figure 5A demonstrate that each ATF4 siRNA was

effective in reducing the steady-state ATF4 mRNA to ,30% of

Figure 3. Phosphorylation of eIF2a during glucose deprivation.
Western blots of extracts from HepG2 cells incubated for 6 hr in media
having either 0 mM or 5 mM glucose, and without (-) or with (+) 10 mM
Sal003 as shown above lanes. Antibodies against phospho-eIF2a
(eIF2a,P), total eIF2a and GAPDH as a loading control, were used as
indicated to the right of each blot.
doi:10.1371/journal.pone.0040994.g003

Figure 4. Glucose concentration affects secreted FVII antigen
levels. HepG2 cells were cultured for 24 hr in media supplemented
with 10% or 1% fetal bovine serum and either high (25 mM), standard
(5 mM), or low/no (1 mM or 0 mM) glucose. The concentration of
secreted FVII antigen, expressed as ng per ml, was determined by ELISA.
For each experimental set, the average amount secreted by cells in
25 mM glucose was considered 100%, and amounts secreted at the
lower glucose concentrations were expressed as percentages +/2 SD
relative to that. The number of replicates assayed at each condition is
shown below the bars. Reducing the concentration of glucose
significantly increased the amount of FVII secreted for each experi-
mental set (p,0.001).
doi:10.1371/journal.pone.0040994.g004
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the level seen in cells transfected with the negative control siRNA.

At the same time, each ATF4 siRNA decreased F7 steady-state

mRNA to ,60% of its level in cells transfected with the negative

control siRNA. The western blot of Figure 5B for ATF4 protein

expression and the ELISA of Figure 5C for FVII antigen secretion

demonstrate that transfection with ATF4 siRNA caused a re-

duction in the ATF4 and F7 protein levels reflecting their

respective mRNA reductions. The amount of detectable ATF4

protein, assessed by Western blotting of whole-cell extracts,

declined dramatically post-introduction of ATF4 siRNA. Similar-

ly, introduction of ATF4 siRNA reduced the cumulative amount

of FVII secreted into conditioned media as assessed by ELISA,

from 100+/29.5% to 76.1+/26.3%, p,0.001. These data clearly

indicate that even under the standard growth conditions, un-

stressed HepG2 cells were expressing endogenous ATF4, and that

the extent of ATF4 expression was positively correlated with that

of F7.

We have previously demonstrated that F7 expression is

modulated in response to insulin, via a promoter element that

interacts with transcriptionally activating and inhibiting isoforms

of C/EBPb. [63] Because C/EBPb is known to be upregulated by

ATF4 during nutritional stress [36,42], and because the data of

Figures 1 and 2 suggest that C/EBPb expression is ATF4

dependent during glucose deprivation, our data could not

differentiate whether the increase in transcription of the F7 gene

was a direct effect of ATF4 upregulation, or an indirect effect

mediated by ATF4-dependent upregulation of the C/EBPb gene.

To address whether or not fluctuating ATF4 expression influenced

F7 directly or indirectly, we assessed the individual effects of C/

EBPb siRNA versus ATF4 siRNA on F7 expression during glucose

deprivation. (Figure 6) The data presented in both panels of

Figure 6 again corroborated the upregulation of the ATF4, F7, and

C/EBPb genes by glucose deprivation in the presence of negative

control siRNA. Reduction of glucose from 25 mM to 5 mM had

negligible effects on expression of all three genes. In contrast, the

further reduction from 5 mM to 0 mM glucose significantly

increased their relative expression levels. For the ATF4 and F7

genes, steady-state mRNA levels were approximately doubled by

glucose deprivation, while for C/EBPb they were approximately

quadrupled. Introduction of ATF4 siRNA prior to glucose

deprivation (Figure 6A) once again completely prevented upregu-

lation of both ATF4 and F7, and significantly reduced but did not

block upregulation of C/EBPb. In contrast, while introduction of

C/EBPb siRNA prior to glucose deprivation did interfere with the

extent of both C/EBPb and F7 upregulation, it did not prevent

induction of ATF4 by glucose deprivation (Figure 6B). Further,

since ATF4 knockdown completely blocked F7 induction by

glucose deprivation, but C/EBPb knockdown did not, we

concluded that the response of the F7 gene to glucose deprivation

was taking place partially but not solely via an intermediate, C/

EBPb-dependent mechanism, and partially via a direct ATF4-

dependent mechanism.

Glucose Deprivation Drives F7 Reporter Gene Expression
through the AARE Motif
Stress-induced increases in expression of many ATF4 target

genes are known to be mediated by interactions of transcriptional

regulatory proteins with an ‘‘amino acid response element’’, or

Figure 5. ATF4 siRNA blocks basal F7 expression. A. siRNA directed to either the 5’ UTR (ATF4 si#1, white bars) or the 3’ UTR (ATF4 si#2,
striped bars) of the human ATF4 gene were introduced into HepG2 cells cultured in media with 5 mM glucose. Parallel cultures were transfected with
the same amount of negative control siRNA (control si, light and dark grey bars, respectively). Relative expression of ATF4 and F7 are graphed as
a percentage +/2 SD of the expression seen with negative control siRNA, which was considered 100%. For ATF4 si#1, N = 5 for ATF4 amplicon and
N=10 for F7 amplicon; for ATF4 si #2, N= 6 per group. All p,0.001 for both ATF4 siRNAs. B. Whole-cell extracts prepared from HepG2 cells
transfected with negative control siRNA (control si), 5’ UTR-ATF4 siRNA (ATF4 si#1) or without siRNA (none) and cultured 48 hr in media with 5 mM
glucose. Replicate aliquots of extracts, 4 mg/lane, were separated on SDS-PAGE and Western-blotted in parallel with antibody to ATF4 (upper panel)
or to GAPDH (lower panel) as loading control. C. Conditioned media collected from cells following transfection with negative control siRNA (dark
grey bars) or ATF4 si#2 (striped bars) for 48 hr in media with 5 mM glucose, analyzed for FVII antigen by ELISA. N= 18/group, p,0.001.
doi:10.1371/journal.pone.0040994.g005
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AARE. AAREs function as enhancers and have been identified

within 59 and 39 regulatory regions, as well as within introns, of

several stress-inducible genes. [36,37,38,39,40,41,42,43,44,45,46]

AAREs have also been shown to interact with transcription factors

of the basic leucine-zipper (b-zip) superfamily, of which both the

CCAAT enhancer binding proteins (C/EBPs) and the activating

transcription factors (ATFs) and are members. [44,64,65] Our

previous work had shown that the F7 promoter includes an AARE

between positions 28 and +1 of the F7 promoter (where +1
represents the first base of the initiator methionine codon of the

FVII structural gene), and that C/EBPb affects F7 expression via

this element. [63]Thus we hypothesized that the glucose-depriva-

tion dependent F7 upregulation might be mediated, at least in

part, via the AARE.

To test this hypothesis, the responsiveness of the endogenous F7

gene to ATF4 was modeled in a reporter gene system. Reporter

constructs containing a fragment of the human F7 gene extending

spanning the AARE were prepared in native and block-mutated

configurations. The unmutated AARE has base sequence 59

ATTTCATCA 39, and like other identified AAREs appears to be

a composite element with one half-site (residues –8 to –4, 59

ATTTC 39) resembling a C/EBP monomer consensus juxtaposed

to a second half-site (residues –3 to +1, 59 ATCA 39) resembling an

ATF monomer consensus. The block-mutated (DAARE) con-

struct, with sequence 59 ATGAGCGCA 39, has base changes

introduced at positions 22 through 26 to disrupt both half-site

motifs. These plasmids, along with a promoterless control plasmid,

were then used for various transient tranfection assays in HepG2

cells to assess responses to pre-existing endogenous ATF4 under

the standard 5 mM glucose condition (Figure 7A), to induction of

endogenous ATF4 by glucose deprivation (Figure 7B), and to

overexpression of recombinant human ATF4 (Figure 7C).

In Figure 7A, HepG2 cells were cotransfected with the AARE-

WT, DAARE, or promoterless control pOGH plasmids, along

with either negative control siRNA or ATF4 siRNA, and cultured

at the standard 5 mM glucose concentration. Reporter expression

from the promoterless vector, as well as from the block-mutated

vector, were not significantly changed by the presence of the ATF4

siRNA compared to the presence of the negative control siRNA.

However, the extent of reporter expression from the native

construct was reduced in the presence of the ATF4 siRNA. This

reduction was significant although its increment was small, from

100+/27.8% to 81.8+/28.5%, p,0.001. In Figure 5B, the same

reporter constructs were transfected into HepG2 cells prior to

24 hr treatment with 25 mM, 5 mM or 0 mM glucose. While

reporter expression from the native construct increased signifi-

cantly due to glucose deprivation (from 100+/29.2% to 228+/
256%, p,0.001), expression from the promoterless control and

DAARE constructs were unaffected.

In the experiments of Figures 7A and 7B, the unmutated F7

reporter gene recapitulated the responses of the endogenous F7

gene to ATF4 silencing under both ambient and glucose

deprivation conditions. In contrast, the block-mutated reporter

gene was inert both to reduction of ambient ATF4 by ATF4

siRNA and to induction of ATF4 by glucose deprivation,

identifying the AARE as the promoter region required for the

responses of the F7 gene to ATF4.

In Figure 7C, the responsiveness of the native, block-mutated,

and half-site mutated reporter constructs to overexpression of

recombinant human ATF4 was assessed. For the native construct,

the dose-responsive increase in reporter expression to recombinant

ATF4 was robust. However, installation of double point mutations

within either the ATF-motif (DA, with changes at positions 22

and 23), or the C/EBP-motif (DC, with changes at positions 26

and 27), as well as the block mutation affecting both motifs,

severely impaired the influence of recombinant ATF4 on reporter

expression. While all three mutated constructs responded weakly

to recombinant ATF4, they were severely impeded in the extent of

reporter upregulation in comparison to the construct with an

unmutated AARE. Taken together, the data of Figure 5 confirmed

that the effect of ATF4 on F7 expression occurred through the

Figure 6. ATF4 siRNA and C/EBPb siRNA differentially block F7 induction. A. Replicate cultures of HepG2 cells were transfected with ATF4
siRNA #2 (grey bars), or negative control siRNA (black bars), then cultured with 25 mM, 5 mM, or 0 mM glucose for 24 hr. qRT-PCR was done for
expression of ATF4, F7, and C/EBPb amplicons. For each amplicon, average expression +/2 SD at 25 mM glucose with negative control siRNA was
considered 100% and other values are shown relative to that. N = 3 per group, p,0.001 at all glucose concentrations for ATF4, F7 and ASNS
amplicons, and for the C/EBPb amplicon at 0 mM glucose. B. Experiment as in panel A, except that C/EBPb siRNA (white bars) was used with negative
control siRNA (grey bars). C/EBPb siRNA had no effect on ATF4 amplicon expression at all glucose concentrations, but significantly blocked expression
and induction of C/EBPb at all glucose concentrations and induction of F7 at 0 mM glucose (p,0.001), N = 3 per group.
doi:10.1371/journal.pone.0040994.g006
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Figure 7. AAREmediates F7 glucose deprivation response. A. HepG2 cells were transfected with promoterless or reporter vectors OGH (N= 6/
group), AARE-WT or DAARE (N= 12/group), along with either negative control siRNA or ATF4 si#1, then cultured at 5 mM glucose for the final 24 hr
before harvest. Reporter expression is shown relative to that of AARE-WT vector in the presence of control siRNA, which was considered 100%. Effect
of ATF4 siRNA on expression from AARE-WT vector only, p,0.001. B. HepG2 cells were transfected with reporter vectors and incubated in medium
containing 25 mM glucose (dark grey bars), 5 mM glucose (light grey bars) or 0 mM glucose (white bars), with diminishing glucose concentration
depicted by wedges. Glucose deprivation increased expression from WT reporter (N = 12; p,0.001), but not from DAARE (N= 12/group) or OGH
(N= 9/group) reporters. C. HepG2 cells were transfected with reporter vectors OGH, AARE-WT, DAARE, DA or DC, along with 0 ng (dark grey bars),
125 ng (light grey bars) or 250 ng (white bars) of ATF4 expression plasmid, with increasing amounts depicted by the wedges. The number of
replicates per group is shown below each bar. Expression from AARE-WT reporter without recombinant ATF4 was considered 100%; expression from
the other groups are shown in comparison to this. Note the break in the Y-axis at 800%; expression from WT vector with ATF4 is graphed on the
upper portion, all other groups on the lower portion. All effects of ATF4 coexpression were significant (p,0.001).
doi:10.1371/journal.pone.0040994.g007
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AARE in its promoter, and indicated that mutation within either

half-motif compromised the ability of the AARE to function.

ATF4 Binds the F7 AARE
The ability of ATF4 as well as C/EBPb to directly bind to

AARE-spanning oligonucleotides was explored by EMSA with

recombinant human proteins overexpressed individually in COS-1

cells. As shown in Figure 8A, COS-1 cell extracts containing

recombinant ATF4 produced a complex with the AARE-WT

oligonucleotide, which was blocked and/or supershifted by an

anti-ATF4 antibody. Neither the DA nor the DC oligonucleotide,

however, was able to interact with ATF4. COS-1 cell extracts

expressing human C/EBPb were tested similarly, and the results

are shown in Figure 8B. Two complexes of differing mobilities

were observed binding to the unmutated F7 oligonucleotide.

Because the intronless C/EBPb mRNA has three alternative

initiation codons which can be selected by the cellular transcrip-

tional machinery to produce the isoforms LAP* (or LAP-1), LAP

(LAP-2), and LIP, a mixture of isoforms was expected. LAP* is the

full-length protein; the slightly smaller LAP lacks only the N-

terminal 23 amino acids. The truncated isoform, LIP, has DNA

binding and dimerization domains identical to the longer isoforms,

but lacks the entire N-terminal transactivation domain that they

both possess [66]. Both C/EBPb binding complexes observed in

EMSA were blocked/supershifted by a pan-C/EBPb antibody

recognizing all isoforms. While weak residual binding of C/EBPb-
containing complexes was retained by the DA oligonucleotide,

none was detectable with the DC oligonucleotide.

These data indicated that ATF4 as well as C/EBPb bound the

F7 AARE, with a requirement that both half-motifs be intact for

optimal binding to each transcription factor. The ability of

endogenous ATF4 in nuclear extracts of HepG2 cells to interact

with the AARE-WT oligonucleotide was examined next. As shown

in the EMSA of Figure 9, glucose deprivation increased the overall

detection of binding complexes and of a complex with slightly

altered electrophoretic mobility. This complex is more easily

discerned in the lighter exposure of lanes 1 though 7 shown on the

right side of the figure, which is , 20% of the intensity in the

longer exposure shown on the left. Inclusion of antibody to ATF4

produced a supershifted complex with components of the nuclear

extract prepared from glucose-deprived cells (lane 7), while

inclusion of antibody to C/EBPb blocked/supershifted the

majority of complexes binding to the AARE-WT oligonucleotide

under all glucose concentrations. The mobility of one complex

supershifted by the anti-C/EBPb antibody matched that of the

complex supershifted by the anti-ATF4 antibody, and was most

prominent in lane 9, containing nuclear extract prepared from

glucose-deprived cells. This same supershifted complex is also

detectable in lane 11, using nuclear extracts prepared from cells

incubated with 5 mM glucose.

The data of Figure 9 suggested that at least some binding

complexes from HepG2 nuclear extracts were heterodimeric

species comprised of one ATF4 monomer and one C/EBPb
monomer. However, we also considered an alternative possibility,

that individual binding complexes were composed of homodimers

of either ATF4 or C/EBPb isoforms, with one monomer binding

optimally to its preferred half-site in the AARE and the other

monomer interacting weakly but adequately with the non-

preferred half-site. These alternatives are testable using mixing

and supershift assays, provided the antibodies used do not cross-

react significantly. To confirm that the antibodies were sufficiently

specific for these experiments, reciprocal Western blotting of

COS-1 cell extracts individually overexpressing recombinant

Figure 8. Recombinant ATF4 and C/EBPb bind the F7 AARE. A. Oligonucleotides spanning F7 AARE without mutation (WT) or with mutation
in the ATF-motif (DA) or the C/EBPb-motif (DC), were incubated with 8 mg extracts of COS-1 cells that were untransfected, or transfected with
expression plasmid for human ATF4. Extract used in each lane, and the lanes in which anti-ATF4 antibody were included, are indicated. The arrow
indicates supershifted complex (ATF4 ss) detected in presence of antibody. B. A similar experiment, but using extract of COS-1 cells transfected with
expression plasmid for human C/EBPb in the absence or presence of anti-C/EBPb antibody. The arrow indicates position of the supershifted complex
(C/EBPb ss).
doi:10.1371/journal.pone.0040994.g008
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human ATF4 or C/EBPb was first performed. The results,

presented in Figure S2, demonstrated that each antibody

sensitively recognized the recombinant protein against which it

had been raised. There was no indication that the anti-ATF4

antibody recognized C/EBPb or that the anti-C/EBPb antibody

recognized ATF4. However, longer exposures of the blots showed

that COS-1 cells also contained a protein recognized by the anti-

C/EBPb antibody, suggesting that these cells express a similar

protein with nearly the same mass as human C/EBPb. This cross-
reacting protein can be seen faintly in lanes 1 and 2 of the anti-C/

EBPb blot of Figure S2.

Because mobility of oligonucleotide-protein complexes in

EMSA is primarily determined by the mass of the protein

constituents, we therefore performed the mixing experiment with

recombinant human ATF4 and LIP, the smallest of the C/EBPb
isoforms. (Figure 10) ATF4-LIP heterodimeric complexes would

be distinguishable from other potential dimeric complexes by

migration pattern as well as by antibody recognition, since LIP

monomers (,20 kDa) are dissimilar in mass compared to ATF4

(,50 kDa), LAP*/LAP (,45 kDa each) and the C/EBPb cross-

reacting protein from COS-1 cells. Figure 10 shows results

obtained when recombinant ATF4 or LIP were tested with the

AARE-WT oligonucleotide, individually and in combination. A

major complex of slow mobility (indicated by arrow 1) was

observed on the AARE-WT oligonucleotide when titrated with 2–

8 mg ATF4 extract. This complex was supershifted/blocked

completely by the anti-ATF4 antibody, and partially by the anti-

C/EBPb antibody. The 2 mg of LIP extract used in this

experiment was insufficient to produce a detectable complex at

this exposure level when tested individually (lane 7). However,

mixing of this amount of LIP extract with the titrated amounts of

ATF4 extract produced two strong, readily detectable complexes

of rapid mobility (arrows 2 and 3) and also intensified the original

band that had been seen with ATF4 extract alone (arrow 1).

Antibody directed towards either ATF4 or C/EBPb supershifted/

blocked all three complexes. Because combination of the two

extracts synergistically increased total binding to the AARE-WT

oligonucleotide and also produced prominent complexes of faster

mobility (hence smaller mass) that were recognized by both

antibodies, these data confirm that ATF4-C/EBPb heterodimers

are a F7 AARE binding species. We conclude that increased

expression of both ATF4 and C/EBPb, and their subsequent

interactions with the AARE of the F7 gene, are responsible for

upregulated F7 transcription and FVII secretion during glucose

deprivation.

Discussion

Blood coagulation is an important process that maintains the

integrity of the vascular system following injury. Coagulation is

controlled on multiple levels to restrict its location and extent to

sites of injury to the blood vessel wall. A major point of regulation

of coagulation is control over the first reactions of the pathway, the

interaction of FVII with its obligate receptor, TF. In order to

Figure 9. ATF4-containing complexes from glucose-deprived HepG2 cells bind F7 AARE. In each lane, 10 mg of nuclear extracts from cells
cultured with 25 mM, 5 mM, or 0 M glucose interacted with AARE-WT probe, in the absence and presence of anti-ATF4 or anti-C/EBPb antibodies.
The darker exposure is shown at left; an ATF4 supershifted complex in lane 7 is indicated by arrow (ATF4 ss). Two C/EBPb supershifted complexes are
seen in lanes 9 and 11, one of which has identical mobility to ATF4 ss and the other which is indicated by arrow (C/EBPb ss). In the lighter exposure of
lanes 4 through 7, shown at right, a binding complex with slightly increased mobility in the 0 mM glucose condition (lanes 6 and 7) is more easily
distinguished from the complexes of lanes 2–5 and indicted by arrow (new complex).
doi:10.1371/journal.pone.0040994.g009
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initiate the complex process of blood coagulation, both compo-

nents are not only required to come into contact but also to be

activated. Unlike TF, which is synthesized by many cell types, is

relatively abundant and is found primarily outside of the

bloodstream, FVII is synthesized in trace amounts by hepatocytes

and is found primarily within the bloodstream. Some FVII,

however, apparently extravasates from the circulatory system and

binds to TF in perivascular tissues. [67] Reduction of plasma FVII,

such as may result from hereditary defects in the F7 gene, cause

a bleeding disorder of variable severity. When FVII levels are

drastically reduced, the consequences of bleeding episodes can be

life threatening. As a protein with a low plasma concentration and

very short half-life, FVII must be consistently transcribed,

synthesized and secreted in order to maintain plasma levels within

an acceptable range for hemostasis.

Much work has shown that cellular stress conditions affect the

ability of cells to synthesize secreted proteins. One well-charac-

terized response to stressors including nutrient deprivation is

repression of global protein synthesis, which reduces the energetic

demands on the cells at a time when their resources are limited. In

the present study, which investigated the effects of glucose

deprivation on expression of coagulation protein expression, we

found that several coagulation protein genes behaved in just that

manner. As might be expected, their steady-state mRNA levels

declined after 24 hr of glucose deprivation. However, one

coagulation protein gene, encoding FVII, behaved in the converse

manner. The work presented here demonstrated that F7

expression (at both the mRNA and secreted antigen levels) was

significantly increased in cells deprived of glucose. In contrast to

the downregulation of expression of several other coagulation

proteins, the upregulation of F7 expression under glucose

deprivation resembled that of the stress responsive transcription

factors ATF3, ATF6, C/EBPb, XBP1(S) and CHOP, as well as of

the enzyme ASNS, the chaperone protein GRP-78, and the PP1

accessory factor GADD34. Previous work has examined the

expression of recombinant FVIII cDNA in non-hepatic cell lines

[68,69,70] and demonstrated that biosynthesis and secretion of the

large FVIII protein, which carries numerous post-translational

modifications, places taxing energetic demands even on cells that

are highly specialized for protein secretion. We found that

expression of endogenous F8 was downregulated in HepG2 cells

during glucose deprivation, as were F10, F2, and PROS1, all

contrary to F7. To our knowledge, this was the first investigation of

endogenous coagulation protein expression during cellular stress,

and indicated that F7 is regulated in an opposite manner to the

others under our experimental conditions.

We found that glucose deprivation elevated both the steady-

state F7 mRNA within HepG2 cells, as well as the amount of FVII

antigen secreted by them. Limitation of glucose was also associated

with upregulation at both the mRNA and protein levels of

transcription factor ATF4, and RNA interference experiments

demonstrated that upregulation of F7 mediated by glucose

deprivation was causally related to the upregulation of ATF4 as

well as of C/EBPb, an ATF4 target gene during cellular stress

responses. [45,71,72] Although a supporting role for C/EBPb,
which itself interacts with the F7 promoter [63] could not be ruled

out, it was clear that the ATF4 upregulation was ultimately

responsible for the increased endogenous F7 expression observed

during glucose deprivation. In an analogous manner, glucose

deprivation increased the expression of a reporter gene directed by

a fragment of native F7 promoter, and mutational analyses of that

fragment identified the amino-acid response element (AARE) as

the region responsible for increasing F7 reporter expression.

Lastly, EMSA performed with nuclear extracts from cells deprived

of glucose for 24 hr indicated that while the majority of AARE

binding complexes contained C/EBPb isoforms, a fraction also

included ATF4. Mixing and supershift experiments using

recombinant ATF4 and the truncated C/EBPb isoform LIP,

proteins of distinctly different masses, indicated that ATF4–C/

EBPb heterodimers can be formed on the AARE-WT oligonu-

cleotide. Unexpectedly, in the aggregate, these data indicated that

the F7 gene is a direct as well as indirect target of ATF4 in glucose-

deprived cells. The F7 gene directly interacts with and is

transcriptionally responsive to ATF4, a master regulator of cellular

stress responses.

The contribution of C/EBPb to F7 upregulation during glucose

deprivation cannot be overlooked. It should also be noted that,

although C/EBPb is strongly expressed in HepG2 cells even under

non-stressed conditions, we found that siRNA directed against C/

EBPb reduced F7 expression under glucose deprivation. This was

so, even though ATF4 induction was unaffected by the C/EBPb
siRNA, and though the overall extent of C/EBPb expression still

remained relatively high. Conversely, the siRNA directed against

ATF4 had a greater impact on F7 expression during glucose

deprivation than did the C/EBPb siRNA, perhaps because it

simultaneously diminished the upregulated expression of both

ATF4 and C/EBPb. These data imply not only that ATF4 and C/

Figure 10. AARE binding species include ATF4-C/EBPb hetero-
dimers. WT oligonucleotide probe spanning the F7 AARE was titrated
with 2 to 8 mg of extract from COS-1 cells overexpressing recombinant
human ATF4, in the absence (-) or presence (+) of 2 mg of extract from
COS-1 cells overexpressing recombinant human LIP. Blocking/supershift
of binding complexes with anti-ATF4 and C/EBPb antibody are shown
without LIP in lanes 5 and 6 and with LIP in lanes 11 and 12. The bracket
(ss) indicates the region of the gel with supershifted complexes. 2 mg of
LIP extract did not produce a detectable complex when tested alone
(lane 7).
doi:10.1371/journal.pone.0040994.g010
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EBPb cooperate in enhancing F7 expression, but that they do so

most effectively under conditions when both are simultaneous

upregulated. As has been suggested, [73] it is possible that newly-

translated ATF4 and C/EBPb will tend to dimerize with other

newly-synthesized potential partners, making the formation of

ATF4-C/EBPb heterodimeric species more likely if both are being

concurrently synthesized, but formation of homodimeric species

more likely if synthesis of only one predominates at any given time.

Our data do not address whether all the endogenous C/EBPb-
containing binding complexes seen on EMSA are in heterodimeric

complexes, or whether additional C/EBPb binding partners

besides ATF4 might be present at the F7 AARE. Also, because

the anti-C/EBPb antibodies available for supershift analysis

cannot discriminate between the transcriptional activators

LAP*/LAP and the transcriptional inhibitor LIP, the data do

not address which C/EBPb isoforms are included. The broad

band of C/EBPb–containing complexes seen in all lanes of

Figure 7 suggests that multiple complexes of slightly different

masses exist within the cells and are capable of binding to the

oligonucleotide. Whether those differences in binding complex size

are due to the presence of different C/EBPb isoforms, carriage of

post-translational modifications, inclusion of additional binding

partners, or to a mixture of causes, is unknown. A previous study

of C/EBPb expression during ER stress in rat C6 glioma cells has

demonstrated that both the LAP and LIP isoforms are induced,

but that their relative proportions depend not only on the period of

stress but also on the nature of the stressor. [72] When stressed by

a poison such as thapsigargin or tunicamycin, the intracellular

levels of both LAP and LIP declined during the first three hours,

then rebounded and were significantly elevated between nine and

24 hours. The ratio between LAP and LIP also changed, with LAP

more prominent at the earlier times and LIP much more

prominent at the later times. Interestingly, a different pattern

was seen when cells were stressed in a more physiological manner.

LAP and LIP were induced in tandem over twelve hours of amino

acid deprivation and remained elevated to 24 hours; and the ratio

between the isoforms was stable over this time course. The

possibility that different stress conditions could produce subtle

variations in the mechanism and outcome of the stress response

itself is intriguing, and may have implications for the relative

expression of numerous downstream target genes.

In our experiments, the period of stress and the nature of the

stressor also influenced the outcome of coagulation factor

expression in HepG2 cells. When 24 hr glucose deprivation was

compared to 6 hr TG treatment, the ATF4 and C/EBPb genes

were upregulated comparably. However, under glucose depriva-

tion the expression of F7 was elevated and expression of F8 was

reduced, while under TG treatment neither F7 nor F8 expression

changed at all. Evidently, some critical difference in the cellular

response to glucose deprivation versus TG treatment supports the

different coagulation factor expression results obtained. Although

the reason(s) for this discrepancy in coagulation factor expression is

unclear, one caveat must be borne in mind: the C/EBPb gene

expression assay used in our experiments cannot distinguish

among the isoforms. Therefore it is not known whether C/EBPb
upregulation under glucose deprivation versus TG treatment

produced similar proportions of the isoforms LAP*/LAP and LIP.

ATF4 is induced to some degree under nearly all stress

conditions. Frequently, increased ATF4 transcription and prefer-

ential ATF4 translation occur together, coordinating to have

a large impact on the level of functional ATF4 transcription factor

generated. [60,73,74,75,76] Rarely, transcription of ATF4 is

found not to change or even to be reduced by a stressor. For

example, ultraviolet irradiation decreases ATF4 transcription, and

therefore ATF4 protein levels do not increase in UV-irradiated

cells despite high eIF2a phosphorylation [34,74]. An expanding

list of ATF4 target genes have now been identified, and many have

been shown to possess functional AAREs within their regulatory

regions, which mediate their transcriptional upregulation during

stress responses. Many of these ATF4 target genes are themselves

transcription factors needed to carry out the altered gene

transcription patterns of adaptive stress responses. Additional

ATF4 target genes encode proteins that alleviate a localized stress

in a straightforward manner. For example, genes encoding

asparagine synthetase as well as the system 2 neutral amino acid

and cystine-glutamate transporters, are induced in response to

glucose, amino acid or protein limitation. [37,41,43] These genes

are ubiquitously expressed and encode either intracellular or

membrane proteins, rather than secreted proteins. By increasing

the cellular capacity to synthesize amino acids or to acquire them

from the environment, the biological roles of the induced

enzymes/transporters are to directly counteract the nutritional

stress being experienced by the responding cells.

In contrast, there are other ATF4 target genes whose expression

is tissue-restricted, whose products are secreted from their cells of

origin, and whose roles in response to stress conditions are less

immediate or comprehensible. Such genes include osteocalcin,

insulin growth factor binding protein 1 and vascular-endothelial

growth factor. Osteocalcin is a calcium-binding component of

bone matrix produced by osteoblasts, which also acts as a hormone

for adipocytes and the pancreas. [77]. Insulin growth factor

binding protein 1 is a member of a family of secreted proteins that

regulate the activity of the insulin-like growth factors. Its

biosynthesis is tissue-restricted; liver, kidney, and female re-

productive organs are the major sites. [78,79] Vascular-endothelial

growth factor is a secreted protein expressed in response to low

oxygen tension, which acts as a mitogen via interaction with

endothelial cell surface receptors to promote and direct the growth

of new blood vessels. [80,81,82] Expression of these particular

stress-responsive target genes is required during various aspects of

development, growth, and tissue repair, and an AARE capable of

binding to ATF4 has been identified within a regulatory region of

each. Although the ATF6 and IRE1a branches of the stress

response were shown to contribute to upregulation of vascular-

endothelial growth factor, [82] it is evident that ATF4-dependent

mechanisms are primarily responsible for upregulation of these

genes under stress conditions.

Our work indicates that F7 is an additional example of a stress-

inducible gene with tissue-restricted expression, which encodes

a secreted protein having the potential to either maintain normal

systemic function despite the stressor and/or to modulate systemic

responses to the stressor. HepG2 cells stressed by lack of available

glucose devoted a portion of their limited resources to the

production of this coagulation protein, and then secreted it,

sustaining a net loss of material that might otherwise have been

directed to biochemical salvage pathways or to catabolism. It is not

completely clear why, among the coagulation factor genes tested,

expression of only the F7 gene was transcriptionally upregulated.

But considering its very short half-life in plasma in comparison to

other coagulation proteins and its essential role as a co-initiator of

blood coagulation along with TF, F7 upregulation could plausibly

be a compensatory mechanism to maintain adequate hemostasis

during periods of stress. Reductions in the plasma concentrations

of some procoagulant proteins, such as FX or prothrombin, with

half lives of 40–70 hr, might be expected to have a lesser potential

impact on hemostasis than reduction in the plasma concentration

of FVII, with its half life of 3–6 hr.
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Beyond its critical role in blood coagulation, the TF–FVIIa

complex plays both direct and indirect roles in signal transduction

processes of non-hepatic cells, which could also be affected by the

plasma level of FVII. The capacity of monocyte TF, a trans-

membrane protein with similarity to class 2 cytokine receptors, to

participate directly in signal transduction when stimulated by FVII

binding has been investigated following LPS stimulation, and

upregulated expression of pro-inflammatory cytokines such as IL-

6, IL-8 and TNFa was observed. [83]In addition, when bound to

TF on a cell surface, FVIIa has been shown to trigger signal

transduction through cleavage and activation of the G-protein

coupled receptor, protease-activated receptor 2. (reviewed in [84])

Some additional consequences of TF–FVII interactions, not all of

which relate to hemostasis, may be inferred from the results of

investigations performed with the ‘‘low-FVII’’ transgenic mouse,

which expresses ,1% of the average normal level of plasma FVII.

On the one hand, the low-FVII mouse suffers slower wound

healing, and is more prone to cardiomyopathy as a result of post-

hemorrhage fibrosis within the heart. [85,86] On the other hand,

the low FVII mouse experiences reduced experimental asthmatic

responses, and is more likely to survive LPS-induced endotoxemia.

[87,88] Comparison of the responses of the low-FVII mouse and

its normal-FVII counterpart to various challenges thus suggests

that the outcomes of the TF–FVII interaction may be alternately

beneficial or detrimental, especially in response to inflammatory

stimuli.

The data we present also showed that ATF4 steady-state

mRNA and protein were present and functional in HepG2 cells

even under nominally un-stressed conditions, indicating that

a degree of eIF2a phosphorylation continuously but transiently

takes place and then is resolved. Indeed, phospho-eIF2a was

detected by Western blot in cells even without glucose deprivation.

This is unlikely to be an idiosyncrasy of HepG2 cells, since it has

been shown that feeding acutely increases activation of stress

markers in the liver. [89,90] Indeed, ATF4 protein is detectable in

the livers of normal mice following a 12 hr fast, and is further

induced by a 4 hour continuous nutrient infusion supplying

approximately 50% of the typical daily caloric intake. [91].

That both fasting and feeding have both been linked to

upregulated ATF4 in hepatic cells from healthy animals, albeit to

different extents and perhaps with other permutations as well, is

intriguing. Such ATF4 oscillations may be transient in healthy

individuals but more sustained, or of different character, in those

with metabolic disorders affecting the liver that develop in-

sidiously such as diabetes. [90,92] Activation of ER stress

response pathways has been linked with establishment of hepatic

insulin resistance, which is a hallmark of diabetes, while

alleviation of that stress has been correlated with restoration of

insulin sensitivity. [93,94] In this regard, it is interesting to note

that plasma levels of coagulation proteins, including FVII, are

often elevated in diabetics [95] and that our previous work

demonstrated downregulation of F7 expression by insulin

treatment. [63] In the insulin-resistant state, the loss of such

negative regulation of gene expression would passively permit

increased F7 transcription to take place. However, the work

presented here implies that increased ATF4-dependent transcrip-

tion during the cellular stress elicited by insulin resistance might

comprise an additional positive regulatory mechanism contribut-

ing to elevated plasma FVII in diabetics. The physiological

implications of increased F7/FVII expression resulting from

glucose deprivation, or other stressors provoking ATF4 in-

duction, are deserving of further attention considering the

plieotropic effects of TF–FVII interactions.

Materials and Methods

Cell Culture and Treatments
The human hepatoma cell line, HepG2 (HB-8065), was

obtained from the American Type Culture Collection (Manassas,

VA) and routinely cultured in full growth medium as described

described [63]. For experimental treatments, 26105 cells were

plated per well in 6-well dishes, cultured to approximately 70%

confluence in full growth medium, then transferred for an

additional 24 hr to collection media, consisting of glucose-free

D-MEM (Sigma-Aldrich, St Louis, MO) containing 10% or 1%

(v/v) fetal bovine serum, and supplemented with D-glucose (Life

Technologies, Carlsbad, CA) to the desired final concentration.

Aliquots of the conditioned collection media were assayed for

secreted factor VII antigen by enzyme-linked immunoabsorbent

assay (ELISA) (Enzyme Research Labs, South Bend, IN). HepG2

whole cell lysates were prepared for Western blotting using RIPA

lysis and extraction buffer supplemented with HALT Protease and

Phosphatase Inhibitor cocktail (Thermo Fisher Scientific, Rock-

ford, IL). Thapsigargin (Calbiochem EMD Millipore, Billerica,

MA) at 500 nM final and Sal003 (Santa Cruz Biotechnology,

Santa Cruz, CA) at 10 mM final were added to cultures for 6 hr

where indicated. Nuclear extracts were prepared by hypotonic

lysis described [63] for use in EMSA. COS-1 cells (ATCC CRL-

1650) were routinely cultured in Dulbecco’s modified Eagle’s

medium (D-MEM; Life Technologies) plus 10% serum supple-

mented with 100 U/ml penicillin G, 100 mg/ml streptomycin at

37uC in an atmosphere of 5% CO2. Cell numbers were

determined by trypsinization and hemocytometer counting in

duplicate for individual replicate cultures. Metabolic activity was

indicated with the Cell-Titer assay (Promega, Madison, WI)

performed according to the manufacturer’s protocol. Additional

details for the Cell-Titer experiment are provided in Methods S1.

Reporter Constructs and Expression Plasmids
A human growth hormone (hGH) reporter plasmid containing

a segment of native F7 59 flanking sequence extending from

position 2728 to +134 relative to the translation start site of the

gene (with the initiation codon at positions +1 to +3), was

constructed in promoterless plasmid pOGH by PCR as described

[63]. Plasmids having block-mutated F7 AARE sequence

(DAARE, 59 ATGAGCGCA 39), and half-site mutated sequences

affecting only the ATF motif (DA, 59 ATTTCCGCA 39) or only

the C/EBP motif (DC, 59 AAGTCATCA 39) were made by

overlapping PCR using the native construct (WT, 59 ATTT-

CATCA 39) as the template. The AARE sequences from positions

28 to +1 are given, with mutated bases shown in bold type. All

plasmids were confirmed by DNA sequencing on both strands.

The expression vector for human C/EBP-LIP was the gift of Dr.

M. Kilberg (Gainsville, FL), while those for full-length human C/

EBPb and for ATF4 were obtained from Origene Technologies

(Rockville, MD).

Transfections
Transfection of HepG2 cells with hGH reporter plasmids and

b–galactosidase plasmid as a transfection efficiency control were

performed using Attractene (Qiagen Inc., Germantown MD) or

Lipofectamine (Life Technologies) according to the manufacturers’

protocols for this cell line. With Attractene, 36105 cells per well

were transfected in full growth medium at plating with 800 ng of

reporter vector and 200 ng of pRSV-b–galactosidase expression

vector. Approximately 40 hr later, the growth medium was

replaced with collection medium for an additional 24 hr prior to

harvest. Conditioned media and cell lysates were respectively

Glucose Deprivation Upregulates F7

PLoS ONE | www.plosone.org 14 July 2012 | Volume 7 | Issue 7 | e40994



assayed for hGH by ELISA (Diagnostic Systems Labs, Webster,

TX; or Roche Applied Science, Indianapolis, IN) and for b–
galactosidase by colorimetric enzyme assay (Promega). Attractene

reagent was used for all DNA transfections except those shown in

Figure 7C, which were done with Lipofectamine reagent. In those

experiments, 16106 cells per well were plated in full growth

medium and transfected 18 hr later with a total of 4 mg of DNA.

2 mg of reporter vector, 0.5 mg of pRSV-b–galactosidase vector,

and 125 ng or 250 ng of human ATF4 expression plasmid were

introduced, with the total amount of DNA equalized by addition

of the inert plasmid, pUC19.

In all reporter gene assays, six replicates per reporter vector

were routinely done per experiment. Transfection data were

expressed as average percentage of normalized WT reporter

expression, plus or minus the standard deviation (SD). The

statistical significance of differences in reporter expression between

groups was assessed by the Student’s t-test.

5 nM small interfering RNA (siRNA) was introduced into

2.56105 HepG2 cells at plating using Hi-Perfect transfection

reagent (Qiagen) according to the manufacturer’s protocol. Cells

were cultured in full growth medium for approximately 40 hr

before transfer to collection medium for the final 24 hr incubation

prior to harvest. Six replicates were transfected per experiment,

with cells from pairs of wells combined for RNA preparation. The

siRNAs directed against human ATF4 (SI03019345 and

SI03218404) and human C/EBPb (SI02777292) were obtained

from Qiagen and used for targeted knockdowns. Negative and

positive transfection controls, the All-Stars negative siRNA and

All-Stars Death siRNA (also from Qiagen) were included in siRNA

experiments. The statistical significance of differences between

groups transfected with negative control siRNA and transcription

factor siRNA were assessed by the Student’s t-test.

For preparation of extracts overexpressing recombinant human

ATF4, C/EBPb or LIP, approximately 106106 COS-1 cells were

transfected with 10 mg of expression plasmid using Lipofectamine

reagent. The cells were cultured in full growth medium for 48 hr,

when whole-cell lysates were prepared by a freeze-thaw method.

[96].

Electrophoretic Mobility Shift Assay (EMSA)
Complementary oligonucleotides extending from position 220

to +25 of the F7 gene were annealed and end-labeled with

[c232P]-ATP (Perkin-Elmer Life Sciences, Billerica, MA) using

T4 polynucleotide kinase (New England Biolabs, Beverly MA).

Binding reactions were done in buffer containing 5 mM HEPES

pH 7.5, 30 mM KCl, 3 mM MgCl2, 0.5 mM EDTA, 0.5 mM

dithiothreitol, 12% glycerol, and 1 mg of poly (dI-dC). Incubations
of HepG2 nuclear extracts or COS-1 whole cell extracts with

radiolabeled probe were carried out for 15 minutes at room

temperature. For supershift, 60 min preincubation of extract in

binding buffer with antibody was done at 4uC preceded the

addition of probe. Reactions were electrophoresed on 5% (w/v)

polyacrylamide gels in tris-borate-EDTA buffer (90 mM Tris base,

90 mM sodium borate, and 0.5 mM EDTA) at 300 volts for 3 hr

with cooling to 4uC, then dried and autoradiographed.

For mixing experiments, COS-1-LIP whole-cell extract was

diluted in binding buffer and mixed with titrated amounts of COS-

ATF4 whole-cell extract for a 60 min preincubation period,

followed by probe addition and an additional 15 min incubation

period prior to electrophoresis. For supershift assays, polyclonal

antibodies to ATF4 or C/EBPb (sc-200X and sc-150X, Santa

Cruz Biotechnology) were added to reaction mixtures at the start

of the preincubation period.

Western Blotting
Whole-cell extracts of HepG2 cells were prepared following

experimental treatments as described, and of COS-1 cells at 48 hr

post transfection with recombinant expression vectors, respective-

ly. The protein concentrations were determined by the BCA

protein assay (Pierce Biotechnology, Rockford IL). Aliquots were

denatured in standard Laemmli sample buffer (Sigma, St. Louis

MO), separated on 4–20% discontinuous polyacrylamide gels

(ThermoFisherScientific) at 150 volts for 45 min at room

temperature, transferred to Immobilon membranes (Life Tech-

nologies) at 20 volts for 2 hr at 4uC, blocked overnight with 5%

(w/v) dry milk and 5% (w/v) bovine serum albumin, probed 2 hr

with appropriate primary antibody then 1 hr with horseradish

peroxidase-conjugated secondary antibody (Santa Cruz; Calbio-

chem, San Diego, CA), and developed with Dura-Signal West

chemiluminescent reagents (Pierce) at room temperature. Primary

antibodies to ATF4 and C/EBPb were the same as those used for

EMSA; antibodies to CHOP, ATF3, XBP1 (S), pan-eIF2a and

GAPDH were from Santa Cruz, while antibody to phospho-eIF2a
was from Cell Signaling Technologies (Beverly, MA). Experimen-

tal assessment of cross-reaction potential of the anti-ATF4 and

anti-C/EBPb antibodies is described in Methods S1.

Quantitative Reverse-transcriptase Realtime PCR
Total RNA was prepared by the RNeasy miniprep protocol

(Qiagen), and converted to cDNA using the High-Capacity RNA

to cDNA kit (Applied Biosystems, Foster City CA). Aliquots of

cDNA were tested in qRT-PCR using Taq-Man gene-specific

assay mixtures in an Applied Biosystems 7900 detector under

standard cycling conditions of 2 min at 48uC, 10 min at 95uC,
followed by 40 cycles of PCR with 15 sec at 95uC/1 min at 60uC.
This procedure was used to monitor relative expression of various

genes (ATF4, C/EBPb, ASNS, ATF3, GRP-78,CHOP, GADD34,

ATF6, XBP1(U), XBP1(S), F7, F8, FX, F2, PROS1; catalogue

numbers of gene expression assays given in Table S1) normalized

against expression of the 18S ribosomal RNA gene, by the DDCt
method. All values are percent expression +/2 SD. Unless

otherwise noted, the number of replicates per condition was three

per experiment, with each sample assayed in duplicate for each

amplicon. Statistical difference between groups was assessed by the

student’s t-test. qRT-PCR was also performed with two types of

control assay. Conversion reactions from which the reverse

transcriptase enzyme had been omitted were done to detect

DNA contamination of the RNA preparations, and no-template

controls were performed for each gene-specific assay. The controls

were always negative.

Supporting Information

Figure S1 Cellular characteristics. At left, cells were plated
on a 96-well dish, at cell numbers and culture medium volumes

proportional to those used in all other experiments. Collection

media with 5 mM or 0 mM glucose were applied at the usual

time, and the CellTiter reagent (Promega) was included and

assayed according to the manufacturer’s protocol. N=8 per

group, p,0.001. At right, a parallel experiment was set up on

6-well dishes with proportional initial cell numbers and media

volumes. At the final time, cells were trypsinized and counted

using a hemocytometer. The average of 8 cell count determina-

tions per well are shown; the difference between the 5 mM and

0 mM glucose groups was not significant.

(TIF)

Figure S2 Antibody specificity. 20 mg aliquots of extracts

from untransfected COS-1 cells, or cells individually overexpres-
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sing recombinant human ATF4 or human C/EBPb (as shown

above lanes) were separated by SDS-PAGE and subjected to

Western blotting with anti-ATF4 or anti-C/EBPb antibody as

shown to the right of each panel. As loading controls, replicate

samples were blotted with anti-GAPDH antibody.

(TIF)

Table S1 Gene expression assays. The target genes used for

RT-PCR experiments are shown in the first column. The genbank

accession numbers, and Applied Biosystems/Life Technologies

gene expression assay numbers, are given for each target gene.

(DOC)

Methods S1 Detailed methodology for the experiments
shown in Figures S1 and S2 are provided.
(DOC)
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