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To improve CO2 adsorption performance of nanoparticle absorbents, a novel

tertiary amine functionalized nano–SiO2 (NS–NR2) was synthesized based on the

3–aminopropyltrimethoxysilane (KH540) modified nano–SiO2 (NS–NH2) via methylation.

The chemical structure and performances of the NS–NR2 were characterized through

a series of experiments, which revealed that NS–NR2 can react with CO2 in water and

nanofluid with low viscosity revealed better CO2 capture. The CO2 capture mechanism

of NS–NR2 was studied by kinetic models. From the correlation coefficient, the pseudo

second order model was found to fit well with the experiment data. The influencing factors

were investigated, including temperature, dispersants, and cycling numbers. Results has

shown the additional surfactant to greatly promote the CO2 adsorption performance of

NS–NR2 because of the better dispersity of nanoparticles. This work proved that NS–NR2

yields low viscosity, high capacity for CO2 capture, and good regenerability in water.

NS–NR2 with high CO2 capture will play a role in storing CO2 to enhanced oil recovery

in CO2 flooding.

Keywords: nano–SiO2, tertiary amine, CO2 capture, low viscosity, regenerability

INTRODUCTION

In recent years, humans have been endangered by greenhouse effect leading to global warming.
Carbon dioxide (CO2) emission source from the burn of fossil fuels catches much attention because
of it is a major factor to the greenhouse effect (Sarkodie and Strezov, 2019). One method to assuage
the greenhouse effect is to capture CO2 from emission sources and then save it in stratum or apply
it for enhanced oil recovery in low permeability reservoirs. Therefore, a feasible approach called
carbon capture and storage (CCS) technologies have developed, including membranes, cryogenic
distillation, gas adsorptionwith liquids or solids, and others (Benson andOrr, 2011; Bui et al., 2018).
However, membrane–based separation is not a suitable way for CO2 capture because perfection
wants to be made in the areas of CO2 selectivity, permeability, cost, and performance depletion
over time (all caused by a variety of factors). Moreover, because of the high energy costs involved,
cryogenic distillation is not optimally suitable. Solvents and solid sorbents have been reported for
CO2 capture, such as basic solvents, supported amine, and ammonium materials, as the primary
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classes of chemical sorbents (Heydari-Gorji et al., 2011; Darunte
et al., 2016; Hahn et al., 2016; Sanz-Perez et al., 2016; Kong
et al., 2019). The adsorption of CO2 by solvents is a commercially
available method, but the regeneration process of the solvents
is highly energy intensive and expensive (Rochelle, 2009). The
adsorption of CO2 by solid sorbents has recently attracted much
attention in the study of CO2 capture (Lee and Park, 2015).

Nano silica (SiO2) solid sorbents have been investigated for
CO2 capture given their high pore volume, large surface, and
ease of functionality (Liu et al., 2016; Lai et al., 2017, 2019;
Wang et al., 2019). Jiao et al. (2015) prepared mesoporous
silica (MSU–J) with a wormhole framework texture, the surface
of MSU–J was modified with triethylenetetramine (TETA) for
CO2 capture. Hahn et al. (2016) reported the primary amine,
secondary amine, and bibasic amine species functionalized
porous SiO2 and discussed the mechanism of CO2 adsorption
on the SiO2. Bae (2017) showed that the 3–(2–aminoethylamino)
propyldimethoxymetylsilane modified silica can be used as an
adsorbent to improve CO2 capture performance and obtained
capture CO2 capacity of 2.24 mmol/g. The surface of SiO2

usually has been functionalized with primary and secondary
amines for CO2 capture. Amine modified SiO2 reacted with CO2

to form carbamate or bicarbonate species based on the acid–
based chemical interaction for improved CO2 adsorption (Huang
et al., 2003). Without the presence of water, the amine groups
reacted with CO2 molecules to create the carbamates group. As
another specific, the presence of water impairs this amino group
adsorption (Ma et al., 2017). Therefore, the functionalized nano–
SiO2 with water impede is needed to further investigated in
future development.

It is difficult to destroy the steady carbon–nitrogen bond
of carbamate that is formed in primary amine and secondary
amines reaction with CO2. Also, fascinating tertiary amines as
absorbents generate bicarbonates to replace carbamates when
tertiary amines reacting with CO2 (Crooks and Donnellan,
1990; Vaidya and Kenig, 2007) thereby leading to low energy
for regeneration of absorbents. Therefore, tertiary amine as an
energy saving absorbent is appropriate comparing with primary
amines and secondary amines (Gao et al., 2017). Particularly, the
rate of primary amines and secondary amines with CO2 is faster
than tertiary amines (Liu et al., 2019a). However, the solubility
of CO2 is higher in tertiary amines solution than one in primary
amines and secondary amines solution due to different reaction
mechanisms. For example, the reaction molar ratio of tertiary
amine and CO2 is 1:1 to formed bicarbonate structure, while the
reaction molar ratio of primary amine or secondary amine and
CO2 is 0.5:1 to formed carbamate structure (Sartorl and Savage,
1983). Tertiary amine can be able to generate a bicarbonate due
to no hydrogen on nitrogen when reacted with CO2 and H2O,
resulting in a better CO2 adsorption and lower energy depletion
for regeneration (Xiao et al., 2016, 2019). Moreover, kinetics is
important since it can explain the dynamic adsorption of the
sorbent, a lot of kinetic models are applied to the CO2 adsorption
property of tertiary amine (Liu et al., 2019b).

Therefore, this study aimed to develop a sorbent to avert
the limits of aqueous amine solutions and take advantage of
tertiary amines for CO2 capture. The tertiary amine loaded

nano–SiO2 was synthesized, and the CO2 capture performance
was studied in the presence of water. The CO2 adsorption
mechanism was investigated by kinetics, and the viscosity of
the absorbent dispersion was measured before and after CO2

adsorption. Finally, tertiary amine functionalized nano–SiO2

(NS–NR2) was investigated further in terms of temperature,
dispersants, and cycling numbers.

EXPERIMENTAL SECTION

Materials
Methylbenzene(C7H8), 3–(trimethoxysilyl)−1–propanamine
(KH−540), ethanol (C2H5OH), formic acid (HCOOH),
formaldehyde (HCHO), hydrochloric acid (HCl), N, N–
dimethylformamide (DMF), and sodium hydroxide (NaOH)
were purchased from Chengdu Kelong Chemical Reagent
Factory (Sichuan, China). Nano–SiO2 (10–20 nm) was obtained
from Aladdin Chemistry Co. (Shanghai, China). All chemical
reagents were analytical–grade. CO2 (g) and N2 (g) were
purchased from Jingli Gas Company (Chengdu, China). Water
was double deionized with a Millipore Milli Q system to produce
the 18MM deionized water.

Synthesis and Characterization of Tertiary
Amine Functionalized Nano–SiO2
The nano–SiO2 loaded with primary amines (NS–NH2) was
prepared first using 3–Aminopropyltrimethoxysilane (KH540)
as modifiers, and then it was used as the matrix material to
synthesize branched nanomaterials with a tertiary amine group
on its surface (NS–NR2) via methylation of primary amines based
on formic acid and formaldehyde. The mechanism is shown
in Figure 1.

The specific reaction conditions of NS–NH2, NS–NR2,
and the preparation methods of the nanofluid are shown
in Supplementary Materials. It is worth noting that add
anhydride to promote unreacted primary amine groups undergo
acetylation. The optimum reaction conditions of NS–NR2 are
displayed in Table 1.

Fourier transform–Infrared (FT–IR) spectra were acquired
by the KBr pellet method using a WQF520 spectrometer.
Thermogravimetric analysis (TGA) was conducted on a
synchronous comprehensive thermal analyzer (Netzsch
Scientific Instruments). The microtopography of NS–
NR2 was characterized using an electron microscope
(ZEISS Libra 200 FE). The carbon and nitrogen contents
were detected by elemental analysis using a Var10EL III
instrument. The hydrodynamic diameter and proportion
of the nanoparticles were received by a BI 200SM wide-
angle dynamic light scattering (DLS) instrument. The
rheological property of NS–NR2 dispersion was measured
with a HAAKE MARS III rheometer at 25◦C to assess
the viscosity.

CO2 Adsorption and Desorption
NS–NR2 dispersion was introduced into a gas adsorption bottle.
The gas adsorption bottle was put in a constant temperature
water bath. The gas flow of CO2 was controlled at 1 L/min by a gas
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FIGURE 1 | Schematic of the reaction steps of NS–NR2.

TABLE 1 | Conditions of NS–NR2.

Time (h) Temperature (◦C) NS-NH2: HCOOH:

HCHO (g:mol:mol)

Solvent (mL)

12 90 1:6:6 60

flow controller, and CO2 was bubbling into the high concentrated
sulfuric acid to adsorb microscale water in CO2 gas in a hermetic
wild-mouth bottle. After that, the dry CO2 was flowed through
the gas adsorption bottle to reacted with absorbent in the water.
The mass change of dispersion was confirmed by an accurate
analytical balance (±0.1mg) until the weight has no change.
The amount of adsorption CO2 on nanoparticles could be
calculated under a control test (no nanoparticles). As shown
in Figure S1, most of the tests were implemented to assure
repeatability of the method. The CO2 adsorption capacity of NS–
NR2 was measured using a gas adsorption system, as shown in
Figure S2. The CO2 desorption experiment was simply carried
out by bubbling N2 around 1 L/min instead of injecting CO2

and keeping the system temperature at 25◦C to avoid the huge
energy depletion.

The mechanism studies of CO2 adsorption into NS–NR2 are
often executed using kinetic models including pseudo first order,
pseudo second order, and intraparticle diffusion model. The
parameter R2 and relative error (ε) were applied to evaluate the
reliability of kinetic models in predicting adsorption capacity,
as defined in Equation (1). Based on Equation (1), qe,cal is the

predicted date acquired from the model analysis, and qe,exp is the
experiment date.

ε(%) =
qecal − qeexp

qeexp
× 100% (1)

The pseudo first order model that introduced by Langergren in
1898 year (Langergren, 1898) is shown in Equation (2):

log(qe − qt) = log(qe)− (
k1

2.303
)t (2)

where qt is the adsorption capacity at a special time, qe is the
adsorption capacity at equilibrium, k1 is the constant of pseudo
first order with a unit of 1/min. The pseudo second order model
(Ho and McKay, 1999) is represented by Equations (3) and (4):

t

qt
=

1

k2q2e
+

t

qe
(3)

h = k2 · q
2
e (4)

where qt is the adsorption capacity at a special time, qe is the
adsorption capacity at equilibrium, k2 is the constant of pseudo
second order with a unit of g/mmol min. The intraparticle
diffusion model offers the diffusion mechanism of matter in
adsorption process as defined in Equation (5):

qt = kt1/2 + C (5)
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FIGURE 2 | (A) FT–IR spectra of raw SiO2, (B) KH540, (C) NS–NH2, and (D)

NS–NR2.

Where qt is the adsorption capacity at a special time (mmol/g),
k is the rate constant of intraparticle diffusion (mmol/g min1/2)
and C (mmol/g) is as the thickness of the boundary layer;
the intercept is positively correlated with the boundary layer.
(Hameed et al., 2008; Yousef et al., 2011). Mass transfer of
adsorbate to the adsorbent surface (bulk diffusion) and film
diffusion into the internal sites (intraparticle diffusion) and other
steps occur in the process of adsorption.

RESULTS AND DISCUSSION

Characterization
The FT–IR spectrum of the nanoparticles is shown in Figure 2.
Figure 2A shows the strong adsorption peaks at around 3,450
and 1,646 cm−1, suggest the stretching vibration of the –O–
H bonds on the surface of silica. The adsorption peaks near
1,106 and 812 cm−1 are the adsorption peaks of the Si–O–Si
group, which are characteristic adsorption peaks of SiO2. In the
FT–IR spectra of KH540, the adsorption peaks around 3,380
and 1,594 cm−1 are the –N–H stretching and NH2 deformation
of hydrogen bonded amino groups (Jiao et al., 2015). The
adsorption peak at 1,477 cm−1 is C–N, and the peaks at 2,954
and 2,842 cm−1 are feature adsorption peak of –CH3 and –CH2-,
respectively. The peak at 694 cm−1 is the adsorption peak of
Si–C (Titinchi et al., 2014). In the FT–IR spectra of NS–NH2,
the 2,954 cm−1 peak of –CH3 disappeared, elucidating that the
primary amine was grafted on the surface of SiO2. In Figure 2D,
the adsorption peak of –CH3 is shown to appear, indicating
that –(CH2)3NH2 reacted to –(CH2)3N(CH3)2 on the surface
of nano–SiO2.

The microscopic structure of the nanoparticles is shown
in Figure 3 as observed from the TEM morphology. The
diameter of NS–NR2 was shown to be approximately 15 nm.
The nanoparticles aggregated slightly because of the particle size
being in the nanometer scale (Zhao et al., 2014). The evidence
from DLS analysis (Figures 4A,B) shown the hydrodynamic

FIGURE 3 | TEM image of NS–NR2 (the scale bars in a is 50 nm and b is

100 nm).

diameter of NS–NR2 to be approximately 123.6 nm with uniform
size distribution. Moreover, it was found that the diameter
distribution of nude particles was wider and the agglomeration
was more serious than that of the modified nanoparticles.

The element contents of raw SiO2, NS–NH2, and NS–NR2

are shown in Table 2. Carbon and nitrogen contents are present
in raw SiO2 because many SiO2 materials are often synthesized
in an aqueous organic solvent, resulting in remaining carbon
and nitrogen in such materials. The contents of carbon and
nitrogen for NS–NH2 were shown to be 5.22 and 1.65 mmol/g,
respectively, and for NS–NR2 were shown to be 7.14 and 1.39
mmol/g, respectively. The contents of these elements were much
higher than raw SiO2. The nitrogen amount in NS–NR2 was
lower than that of NS–NH2 because when the molar amount of
carbon increases, themolar amount of nitrogen decreases in fixed
mass products. The molar ratio of carbon to nitrogen is 3.16,
5.13 in NS–NH2 (SiO2-C3H8N) and NS–NR2 (SiO2-C5H10N),
respectively. Here, the molar ratio of carbon to nitrogen was
adopted to further confirm the grafting of tertiary amines
on nano–SiO2.

The successful synthesis of NS–NR2 could also be proved by
thermos gravimetric analysis (TGA). Based on the TGA curves in
Figure 5, the weight retention of raw nano-SiO2, NS–NH2 and
NS–NR2 at 900◦C under the air atmosphere were 96.86, 89.38,
and 87.06%, respectively. For raw nano-SiO2, the mass depletion
is attributed to the surface dihydroxylation. In terms of the
structure of NS–NH2 and NS–NR2, when the temperature up to
900◦C, the primary amine and tertiary amine chains were grafted
on the nano-SiO2 has decomposed, respectively. Therefore,
compared with the TGA curve of raw nano-SiO2, the surface of
nano-SiO2 was modified to primary amine. The different weight
loss between in the NS–NH2 and NS–NR2 indicated that tertiary
amine was synthesized from primary amine successfully.

CO2 Adsorption and Kinetic Studies
Any amine with a pKa value >5 can react with CO2 in the
presence of water (Field and Grolimund, 1988). According to
Figure S3A, the pH value of NS–NR2 dispersion decreased
gradually with the addition of diluted hydrochloric acid (0.01
mol/L). The second derivative of the VHCl-pH curve was
obtained (Figure S3B), with the zero point of the second
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FIGURE 4 | Diameter distribution of (A) NS–NR2 and (B) nude nanoparticles in water; (C) Diameter distribution of NS–NR2 in PEG−400 solution (1,000 mg/L).

TABLE 2 | Element contents on nanoparticles.

Sample C (mmol/g) N (mmol/g) Molar ratio of C/N

Raw SiO2 0.15 0.18 0.85

NS-NH2 5.22 1.65 3.16

NS-NR2 7.14 1.39 5.13

FIGURE 5 | TGA thermograms of raw nano–SiO2, NS–NH2, and NS–NR2.

derivative corresponding to the extreme point of the curve in
Figure S3A. As a result, the pKa value was 7.08. The pKa value of
7.08 indicates that NS–NR2 dispersion can complete adsorption
of CO2. Along with the aeration of CO2 at 1 L/min, the pH value
of NS–NR2 dispersion dropped rapidly in the first 5min, after
which there were no changes in pH value for 20min, as shown
in Figure S3C, which means that NS–NR2 dispersion (0.1 wt.%)
completely saturated CO2 at 1 L/min CO2 gas velocity in 20 min.

It is well-known that CO2 capture is significant influenced
by the viscosity of absorbent (Xiao et al., 2019). Figure 6

demonstrates the rheological property of NS–NR2 dispersion
before and after adsorption CO2. A rheological plateau in the
shear rate region was found for NS–NR2 dispersion. Before
CO2 adsorption, the nanofluid viscosity was 2.23 mPa·s. After

FIGURE 6 | Viscosity of NS–NR2 dispersion before and after adsorption of

CO2 as a function of shear rate.

saturation with CO2, there was a nanofluid viscosity increase to
2.96 mPa·s. This viscosity change is consistent with the ionic
liquids in Xiao et al.’s work (Xiao et al., 2019). A possible
conclusion is the increase of electrostatic interaction of chains on
the NS–NR2 surface due to CO2 adsorption (Figure 7), resulting
in the higher viscosity. However, unlike the high viscosity of ionic
liquids, the nanofluid viscosity was very low. The CO2 capture
was not influenced by the increased viscosity.

The CO2 adsorption capacity of NS–NR2 was 25 mmol CO2/g
NS–NR2 in water (0.1 wt.%) at 25◦C, as shown in Table 3.
Compared with other materials (with CO2 adsorption capacity
of 0.1–21.45 mmol/g) (Yu et al., 2012), NS–NR2 in water has a
better CO2 adsorption capacity.

Kinetic models, such as pseudo first order, pseudo second
order, and intraparticle diffusion model, were applied to model
the test data. The pseudo first order model is mostly appropriated
to describe purely physisorption process without considering
the any chemical reaction between CO2 molecules and sorbent.
The pseudo second order model is mostly appropriated to
describe purely chemisorption processes with stable chemical
bonds between CO2 molecules and the sorbent. The comparison
between the test curves and simulative curves are shown
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FIGURE 7 | The process for NS–NR2 reacting with CO2.

TABLE 3 | CO2 adsorption of samples at 25◦C.

Samples Volume CO2 adsorption

Nanofluid (NS-NR2 of 0.06g) 60mL 5.55mmol

Water 60mL 4.05mmol

FIGURE 8 | Kinetic plot of CO2 adsorption models at various temperatures.

in Figure 8. The model parameters of kinetic at different
temperatures and their corresponding coefficients are shown in
Table 4. The R2 parameters of pseudo second order and pseudo
first order models with experimental data were 0.99 and 0.97,
respectively. The relative error for the pseudo second order
model, ε, was lower than pseudo first order model. Compared
with the R2, ε parameters, the pseudo second order model
was found to fit well with the experiment data. Therefore,
chemisorption of CO2 on nanoparticles plays a dominant role in
CO2 capture.

The pseudo first order model and pseudo second order model
provide interaction insight into the actual mechanism of CO2

adsorption. The surface of the particles is grafted with functional
groups to adsorb CO2. This surface adsorption was further
verified by the intraparticle diffusion. The model parameters of

TABLE 4 | Kinetic parameters of CO2 adsorption on NS-NR2.

Kinetic model Parameter Temperature (◦C)

30 50

qe,exp (mmol/g) 23.16 13.03

Pseudo first order qe,cal (mmol/g) 22.49 12.58

K1 (1/min) 3.16 2.84

R2 0.9795 0.9777

Relative error, ε (%) 2.89 3.45

Pseudo second order qe,cal (mmol/g) 23.82 13.37

K2 (g/mmol min) 0.10 0.17

h (mmol/g min) 56.74 30.39

R2 0.9977 0.9963

Relative error, ε (%) 2.84 2.61

Intra-particles diffusion K (mmol/g min1/2 ) 2.54 1.99

C(mmol/g) 14.13 6.64

R2 0.5044 0.6011

intraparticle diffusion are revealed inTable 4. It is notable that no
linear curve can pass through the origin point that is thought to
be caused by intraparticle diffusion, suggesting that intraparticle
diffusion is not the only factor controlling CO2 adsorption rate
at all tested temperatures (Rashidi et al., 2013). Therefore, the
adsorption process is not completely controlled by intraparticle
diffusion, surface diffusion also plays a role in the whole CO2

adsorption process.

Effect of Some Factors on CO2 Adsorption
With NS–NR2
Effect of Temperature
A CO2 capture test was implemented using 0.1 wt.% nanofluid
at contrast temperatures of 25, 30, 40, 50, and 60◦C, respectively.
The CO2 adsorption- temperature curve is revealed in Figure 9A.
It is obvious that the maximumCO2 loading on the nanoparticles
decreased at higher temperatures. Higher temperatures go
against CO2 adsorption that is an exothermic reaction. The
CO2 adsorption of NS–NR2 compared with that of MSU–J
modified with TETA (Jiao et al., 2015) at higher temperatures
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FIGURE 9 | (A) CO2 adsorption of NS-NR2 in water at different temperatures. (B) CO2 adsorption of NS–NR2 at (A) 25◦C and (B) 60◦C; CO2 adsorption of MSU–J at

(C) 25◦C and (D)55◦C.

FIGURE 10 | CO2 adsorption of NS-NR2 in different dispersants.

is displayed in Figure 9B. The relative comparison presents a
view of the advantages of the proposed nanoparticles although
a slight difference in the experimental conditions. For the NS–
NR2 absorbent in this work, the CO2 loading at 60

◦C decreased
to 48% of the CO2 loading at 25◦C, while the CO2 loading of
MSU–J at 55◦C decreased to 73% of the CO2 loading at 25◦C.
This result can be ascribed to the different mechanisms of CO2

adsorption. For modified MSU–J absorbent, huge energy was
used to generate carbamate group with CO2. But adsorption
of CO2 loaded nanoparticles enabled bicarbonate formation
much easier because of the physical adsorption and chemical
adsorption. This result indicates that the NS–NR2 in this work
can capture more CO2 at higher temperatures.

Effect of Dispersants
CO2 adsorption capacity in different dispersant agents were
investigated. According to the previous test is shown in
Figure S3C, it was not necessary to perform the experiment
for longer than 20min. Hence, CO2 adsorption with NS–NR2

FIGURE 11 | Cyclicity of NS–NR2 adsorbent in water.

was performed at a temperature of 30◦C in different dispersants
during this period of 15min. CO2 adsorption curves are drawn in
Figure 10. The maximum CO2 loading of NS–NR2 was changed
in water or PEG−400 dispersants. The maximum CO2 loadings
of NS–NR2 in water and PEG−400 solution was 23.16 and
105.34 mmol/g, respectively. This result can be explained by
the diameter distribution of nanoparticles, where the diameter
distribution in water was 123.6 nm and in PEG−400 solution
was 56.7 nm (Figure 4C). The tertiary amine groups as specific
sites for CO2 adsorption grafted on the surface of nano–SiO2

to endow the adsorbents with CO2 adsorption. Therefore, the
more specific sites were exposed on the surface of nanoparticles
because of better dispersibility. The dispersibility of nanoparticles
is certified by the Derjaguin Landau Verwey Overbeek (DLVO)
theory on interparticle interaction potential (Ilyas et al., 2014).
The interaction among nanoparticles is caused by electrostatic
repulsion and steric resistance in the PEG−400 solution. In
addition, using PEG−400 as the dispersant is inexpensive and has
lower surfactivity. Surfactants with similar properties can also be
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used to disperse the nanoparticles for CO2 capture. Therefore,
adding the surfactant improved CO2 adsorption by enhancing
the dispersibility of nanoparticles.

Effect of Cycling Numbers
It is crucial that an absorbent is reusable and retains an
efficient CO2 adsorption capacity (Ma et al., 2017). Therefore,
the regeneration tests of the NS–NR2 absorbent was carried
out at 25◦C. After CO2 adsorption in the nanofluid for
20min, the nanofluid was shifted to CO2 desorption for
regeneration. The CO2 desorption test was executed for another
20min by bubbling N2 around 1 L/min before the absorbent
was used for the next round of adsorption. As illustrated
in Figure 11, five cycles of adsorption were implemented
and the initial CO2 adsorption of absorbent was set as
the 100 % baseline. After five cycles, NS–NR2 adsorbent
shown favorable regeneration capacity with a slight decrease
of 14.3% in water for NS–NR2 compared to the initial
capacity. The results shown regeneration and efficient CO2

adsorption capacity of nanoparticles adsorbent. Considering
cycling capacity, NS–NR2 material shows intriguing regeneration
ability for CO2 adsorption.

CONCLUSION

This work synthesized tertiary amino functionalized nano–SiO2

successfully. The measurements of pKa value and nanofluid
viscosity change proved that NS-NR2 can react with CO2 in water
and nanofluid has a low viscosity. NS–NR2 shown better CO2

adsorption capacity, and adsorption kinetics revealed the pseudo
second order model was found to fit well with the experiment
data. The influence of factors such as temperature, dispersants,
and cycling numbers on CO2 adsorption was investigated.
Results indicated higher temperature to work against CO2

adsorption of NS–NR2. The CO2 adsorption performance of
NS–NR2 was greatly promoted because of a better dispersity of
nanoparticles with added surfactant. After recycling of absorbent,
the NS–NR2 maintained an efficient CO2 capture and shown
favorable regeneration capacity. The measurements of NS–NR2

properties on the bases of viscosity, kinetic models, CO2 capture,

and regeneration manifests that NS–NR2 exhibits satisfying
performance to capture CO2. NS–NR2 with high CO2 capture
will play a role in storing CO2 to enhanced oil recovery in
CO2 flooding.
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