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Vaccination has become an integral part of public health, since an increase in overall
vaccination in a given population contributes to a decline in infectious diseases and
mortality. Vaccination also contributes to a lower rate of infection even for nonvaccinators
due to herd immunity ((Brisson and Edmunds, 2002)). In this work we model human
decision-making (with respect to a vaccination program in a single-payer health care
provider country) using a leader-follower game framework. We then extend our model to
a discrete dynamic game, where time passing is modelled by risk perception changes
among population groups considering whether or not to vaccinate. The risk perception
changes are encapsulated by probability transition matrices. We assume that the single-
payer provider has a given fixed budget which would not be sufficient to cover 100% of
a new vaccine for the entire population. To increase the potential coverage, we propose the
introduction of a partial vaccine adoption policy, whereby an individual would pay a
portion of the vaccine price and the single payer would support the rest for the entire
population. We show how this policy, together with changes in risk perceptions regarding
vaccination, impact the strategic decisions of individuals in each group, the policy cost
under budgetary constraints and, ultimately, how it impacts the overall uptake of the
vaccine in the entire population.

© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Vaccines stimulate the immune system to build a defense against infectious diseases ((World Health Organization Report,
2010)). Even though vaccines are proven to be effective (smallpox and polio are eradicated, and vaccination significantly
lessened the number of cases of measles, diphtheria, pertussis, etc. (Asim, Malik, Yousaf, Gillani, & Habib, 2012)), personal
beliefs about them in populations at large vary greatly, based on an array of nonmedical factors, such as education level,
economic status, religious beliefs, etc. These factors are incorporated in population health and epidemiological models to
draw conclusions about individuals' possible vaccinating decisions ((Helbing, 1992, pp. 330e348)). In previous works (see
(Cojocaru & Bauch, 2007; Cojocaru, Bauch, & Johnston, 2007) and the references therein), the authors used game theory to
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study the dynamics of potential vaccinating decisions in a population consisting of distinct groups of parents, where each
group has different perceptions of vaccine and disease risks. These models discussed the cumulative effect of the groups'
decisions on the uptake of vaccine.

The Nash equilibrium concept provides a resolution to noncooperative nonzero-sum games when no single player's
decision weighs more than any others'. There is a vast literature on Nash games to date, so we limit ourselves to a few
fundamental references and the references therein (Basar & Olsder, 1998; Ichiishi, 1983; Nash, 1950; Von Neumann &
Morgenstern, 1945). There are noncooperative decision problems where one of the players can enforce their strategy on
the other player(s), and for such decision problems, one has to introduce a different equilibrium concept known as a
Stackelberg1 equilibrium (Basar & Srikant, 2002; von Stackelberg, 2011, p. 134). Examples of Stackelberg games are found in a
vast number of references (see for instance (Basar & Srikant, 2002), (Gibbons, 1992), (Fudenberg & Tirole, 1991) and refer-
ences therein).

A Stackelberg game has a distinct player (usually called the “leader”) who can anticipate the actions of the others (called
“followers”) and use this knowledge in selecting their optimal strategy (Zhi-Quan, Pang, & Ralph, 1996). Here the followers'
strategies depend on the particular strategy of the leader. In general, the followers behave according to a Nash non-
cooperative principle. The Stackelberg game is a sequential game, where the leader chooses an action before the others
choose theirs. Importantly, the followers must have information about the leader's choice, otherwise the difference in time
would have no strategic effect. There are some variations of this game. If all players are followers, then it is called the Cournot
game where decisions are simultaneous. If all players in this game believe themselves to be the leader, then it will become a
leader-leader game, and it will lead to a Stackelberg disequilibrium.

The Stackelberg game has been used in the literature for modelling vaccine designs (Swetasudha & Vorobeychik, 2015). In
(Shen, Sobzcyk, Buchanan, Wu, & Duggan-Goldstein, 2011, pp. 12e18), it is shown that the gap between the immunization
and its affordability should be reduced in order to increase vaccine coverage in a population. In (Mylene, Haines, & Palmer,
2007), authors discussed the impact of conditional cash transfer programs on immunization coverage in low- and middle-
income countries.

In this paper we investigate how a copay under a single payer health provider (such as Canada, U.K. or Australia) may
influence the likelihood of vaccination in population groups. The provider is contemplating the introduction of an immu-
nization program for a hypothetical new vaccine. In countries where a single-payer health care system is present, new
vaccines are considered to be adopted under the single-payer health insurance program and adoption is understood to mean
complete cost coverage for all individuals under the insurance program. The decision whether or not to adopt depends on
many factors such as the expected cost of the program, and its expected efficacy and coverage (Erickson, De Wals, & Farand,
2005). In our work here we explore the possible benefits when single-payer adopts and funds a portion of the cost of a new
vaccine. In this scenario, individuals whowish to get vaccinatedwould have to pay some fraction of the treatment price out of
pocket. The single-payer provider acts as the “leader” in our model, and wishes to minimize the difference (gap) between the
likely overall coverage under a given budget, and the expected overall coverage in the population. The latter expected
coverage is calculated based on the probability of vaccinating of various population groups. The population groups, differing
by perceptions of vaccine and infection risks and costs, act as the “followers”. Individuals have direct knowledge of the
program being introduced by the leader, and take this into consideration in their decision-making, however our framework
does not account for the decisions made by health care provider(s).

The structure of the paper is as follows: in Section 2 we introduce our leader-followers game model for the single-payer
health provider and a partially adopted vaccination program. Section 3 expands our model to incorporate time evolution of
individuals groups' perceptions of risk, both towards the vaccine and towards the consequences of getting the infection. We
study the effects that changes in risk perceptions together with the partial vaccine adoption policy have on the vaccination
coverage. We close with conclusions and some remarks on future work.
2. Model set up and background

In (Cojocaru & Bauch, 2007; Cojocaru et al., 2007), the authors presented a Nash vaccinating game played by cohorts of
parents who consider whether or not to vaccinate their offspring against pediatric diseases such as measles, mumps, rubella,
polio, etc. The game proposed is played among a finite number of groups of parents (k>1) where parents in a group are
considered to share common perceptions of the risk of vaccinating their offspring, as well as the risk of not vaccinating. The
game was further extended into a generalized Nash game in (Cojocaru, 2008) and placed in a dynamic context in (Cojocaru&
Greenhalgh, 2012). None of theworks, however, accounted for the other decisionmaker acting in some countries (for instance
Canada, U.K.), namely a single-payer health program. Below we present a mathematical model that incorporates the
perspective of the single-payer health provider, along with a model of population groups contemplating not only the
perceived risks of vaccinating, but also sensitivity to the cost of vaccinating and perceived risks of getting sick in the case of
not vaccinating.
1 German economist Heinrich Stackelberg formulated this model in 1934.
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2.1. Nash and Stackelberg games

In general, a multiplayer Nash game involves a finite number of players, denoted here by k>0. A generic player i2f1;…; kg
is thought to have a strategy set Si3ℝni , with strategy vectors xi2Si, and a payoff function ui : K/ℝ, wherewe denote by K :¼
S1 � …� Sk. A Nash equilibrium of a multiplayer game is defined as follows:

Definition 2.1. Assume each player is rational and wants to maximize their payoff function ui : K/ℝ. Then a Nash equilibrium is
a vector x�2K :¼ S1 �…� Sk which satisfies the inequalities:

ci; ui
�
x�i ; x

�
�i

� � ui
�
xi; x

�
�i

�
; cxi2Si

where x��i :¼ ðx�1;…;x�i�1;x
�
iþ1;…;x�kÞ.

In general, the definition of a Stackelberg game can be given as follows (we assume k followers as above, involved in a
noncooperative Nash game):

Definition 2.2. Let f : C/ℝ be the objective function of the Leader, usually with good continuity and convexity properties (see for
instance (Leyffer & Munson, 2010)) and C2ℝm a closed, convex set as the Leader's strategy set. The Leader's problem is then an
optimization problem, such as:

min
y2C

f ðy; x�Þ

s:t: gðyÞ � 0/ is=are the Leader’s constraints;
�
and where given a fixed y2C, x is a Nash equilibrium of the followers’ problem:

ci2f1;…; kg; ui
�
y; x�i ; x

�
�i

� � ui
�
y; xi; x

�
�i

�
; cxi2Si:
2.2. Followers game

Let k>1 be the number of population groups, which are the players (followers) in ourmodel. Each group represents a fixed

proportion εi2ð0;1Þ in the population (thus
Pk

i¼1εi ¼ 1). The population groups are differentiated by their risk perception

towards the adverse effects of the vaccine, riv, and risk perception toward significant adverse outcomes upon infection, riinf ,

but people in one group are thought to share the same risk perceptions. By pp we denote the perceived probability of
becoming infected given that a proportion p of the population is vaccinated, considered to be the same in all groups. The
overall perceived probability of experiencing significant adverse outcomes because of not vaccinating is thus riinfpp.

In order to find a mathematical expression for pp one could take a theoretical approach (as in (Bauch & Earn, 2004)).
However, individuals do not have perfect knowledge of their probability of being infected. Here, we assume for ease of
analysis that pp is a decreasing function of p given by

pi
p :¼ b

aþ p
; for all i2f1;…; kg; p ¼

Xk
i¼1

εiPi: (1)

i.e., disease prevalence is a function of how many individuals have been vaccinated, and a greater perceived coverage in the
population means a reduced perceived infection risk for susceptible individuals. In other similar models assumptions on the
functional form of pp are different (see for instance (Cojocaru & Bauch, 2007) where they were distinct among groups:

pi
pðpÞ ¼ ea

ip, ai2½1;10� or (Bauch, 2005) where the functional form involves linearity).
In general, each group has two pure strategies (0¼ not vaccinate and 1¼ vaccinate), while their mixed strategy is given by

their probability of vaccinating, denoted by Pi2½0;1�. In the notation of Definition 2.1, ni ¼ 1 and Si ¼ ½0;1� for all i2f1;…;kg.
The vaccine coverage in the population is considered to be (excluding time lags between vaccination and uptake of the

vaccine) p ¼ Pk
i¼1εiPi. Each group has an expected utility of vaccinating, defined as:

Uiðp; PÞ ¼ �rivPi � riinfp
i
pð1� PiÞ:

i

Let us now scale the utility in each group by introducing the ri :¼ rv
riinf

to be the relative perceived risk of vaccination versus

getting infected in group i, thus leading us to consider each group's utility to be of the form:
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uiðp; PÞ ¼ �riPi � pi
pð1� PiÞ:

i
We now let cost 2½0;1� be the average sensitivity of an individual in group i to supporting the full cost of the vaccine out of
pocket. Here a 0-sensitivity means the cost of the treatment has no influence on the individual's decision to vaccinate, while a
costi ¼ 1 denotes an individual for whom the out of pocket cost is the main deterrent in deciding to not vaccinate. In this case,
the utility of a group becomes:

uiðp; PÞ ¼ �
�
ri þ costi

�
Pi � pi

pð1� PiÞ;

and each player i is solving the following problem:

maxuiðp; PÞ ¼ �
�
ri þ costi

�
Pi � pi

pð1� PiÞ
s:t: Pi2½0;1�

where pi
p ¼ b

aþ
P

i
εiPi

.

2.3. Leader's game

In this paper we assume the single-payer program funds a portion of a new vaccine cost from public sources, while in-
dividuals have to pay some fraction of the price per treatment, which is typically called a copay. Let us assume cost per
treatment 2 is denoted by cv and that the copay is a fraction of the cost of the new vaccine; for simplicity, we denote it by
d2½0;1�. The decision to cover ð1� dÞcv of the cost is motivated by a desire of the single-payer provider to better use an
assumed fixed budget B allocated for the adoption of this vaccine.

Assume the budget B is used to cover the population under consideration (of size N) with a cost per treatment of ð1� dÞcv,
thus the number of treatments that can be acquired for the population will be B

ð1�dÞcv. This means that the coverage level for

this vaccine under budget B and copay d<1 will be

pðdÞ :¼
B

ð1�dÞcv
N

:

� P �
We also have that p ¼
k
εiPi is the Nash equilibrium coverage depending on the Nash equilibrium strategies of followers:

P� ¼ ðP�1;P�2;…; P�kÞ.
Then the Leader (the single-payer health provider) wishes to minimize the gap between pðdÞ, and the expected Nash

equilibrium vaccine coverage of the followers, p�. In this case, the Leader's problem is:

min
d2½0;1�

Gap
�
d; P�

�
:¼

����pðdÞ � �
ε1P

�
1ðdÞ þ ε2P

�
2ðdÞ þ…þ εkP

�
kðdÞ

����� (2)

where P� solves the followers problem:
8><
>:s:t:

maxuiðd; PÞ ¼ �
�
ri þ dcosti

�
PiðdÞ �

b
aþP

εiPiðdÞ
ð1� PiðdÞÞ;

PiðdÞ2½0;1�; ci2f1; ::; kg
; (3)
Note that we implicitly have 0 � ε1P1ðdÞ þ ε2P2ðdÞ þ…:þ εkPkðdÞ � 1 for any value of d. In order to solve the Leader's
problem (2) we start by solving the followers' problem (3) for all values of d, where now the expected utilities depend on the
copay d and the individuals' perception of the vaccine risks and costs costi. Here we assume that a reduction in out-of-pocket
cost per treatment induces a reduction in sensitivity to the treatment's perceived cost costi.

We know (see (Cojocaru et al., 2007)) that Nash equilibrium vaccination strategies exist and are unique for the followers'
game (3) for any fixed values of d and ε. This means that the function Gap, evaluated at the equilibrium strategies
ðP�1ðdÞ;…; P�kðdÞÞ will attain its optimal value at a d�2½0;1� for which Gap

�
P�;d�

� ¼ 0. Thus an optimal solution to our model

would be a d�2ð0;1Þ with Gap
�
P� ; d�

�
¼ 0 with p� ¼ P

i
εiP

�
i ðd�Þ is covered by the single-payer budget whenever each indi-

vidual copays d�.
2 A treatment may consist of multiple doses of the vaccine.



M.-G. Cojocaru et al. / Infectious Disease Modelling 3 (2018) 256e265260
2.4. Copay size and equilibrium vaccine coverage

In this subsection we show the implementation of our game above in a population with three groups, differ by their
relative risk values and their relative vaccine cost sensitivities.

In general, we pick a value of r1 ¼ 0:01 for the reference behaviour, representing a situation where there is a significant
level of trust in vaccination in group 1, and the disease is thought to be 100 times more dangerous than becoming vaccinated
(the actual value is much higher for most vaccine-preventable infections, but r1 is a perceived relative risk, not an actual
relative risk). In essence, the relation between the relative risk ri and pi

p in a group i2f1;2;3g comes from an assumption we
make for the model, namely, that lower values of the perceived probability of infection in a group correspond in general to
larger values of the perceived relative risk: individuals who think having the disease is less dangerous may also believe that
their risk of becoming infected is lower. In the other groups with variable behaviour, we assume that r2z10r12½0:10;0:17�
and r3z100r1. In this context we call group 1 vaccine inclined, group 2 undecided and group 3 vaccine adverse, (r3 >1). We
keep these values throughout the examples in the Sections below.

We analyze first the impact of reducing the vaccine cost in a population where ε1 ¼ 0:2; ε2 ¼ 0:6; ε3 ¼ 0:2, i.e., the
Undecided group is a majority; this is clearly our assumption, albeit an educated one. In countries such as Canada, the public
vaccination schedules are well-known to the population and uptake of vaccines for instance for pediatric infections is
generally between 85% and 92%, which is to say that the population does not contain large adversemajorities against vaccines
in general. Although refusal to vaccines is known to exist (Smith et al., 2011), it is reasonable to assume that a lot of the
population falls under the Undecided group when presented with a new treatment. We examine what happens when the
group proportions vary in the next section.

In our examples we assume a treatment (vaccine) against an infectious disease of strength comparable tomeasles, thus we
choose a ¼ 0:1, b ¼ 0:09 in formula (1) above, as detailed in (Cojocaru et al., 2007).

We further assume that the single payer has a fixed budget B so that the coverage offered under this B is only pðd ¼ 0Þ ¼
60% of the population (i.e., B cannot offer a complete adoption of the vaccine for the entire populationwith a copay of d ¼ 0).
Last but not least, we consider the following values cost1 ¼ cost2 ¼ cost3 ¼ 1. We report our results in Fig. 1 next.

We see that we find an optimal value of d� ¼ 0:05 which leads to both minimizing the Gap function for the leader, as well
as to significantly increasing the expected vaccination coverage in the population, from a 40:17% for d ¼ 1 (i.e., when in-
dividuals would have to support the entire cost of the treatment) to 63:24% (when they would support only 5% of the cost).
3. Time dependent game with varying risk perceptions

In this sectionwe consider the fact that individuals' perceptions of risks towards the vaccine may change over time due to
several factors that we expand upon below.We consider a finite number of discrete time steps, generally denoted by the time
division h :¼ f0 � t1 � … � tm � … � Tg of a finite time interval ½0; T �, and we continue to assume that the population is
divided into three groups with risk perceptions discussed in Subsection 2.4 above.

Each average individual of a group i2f1;2;3g has a probability of changing their views on their relative risk perception
from stage tm to stage tmþ1. This assumption means that an individual has a probability of switching from group εi to group εj

in one time step; let us denote this transition probability Trij. Given probabilities Trij we build a 3� 3 square matrix Tr ¼ ½Trij�,
such that Tr is right stochastic with each row summing up to 1, denoted in general by:

Tr ¼
Incl Und Adv

Incl
Und
Adv

2
4 q11 q12 q13
q21 q22 q23
q31 q32 q33

3
5 such that ¼ 1; i2
Fig. 1. Left panel: Overall coverage p� ¼ P3
i¼1

εiP
�
i ðdÞ versus copay d. Right panel: This the Leader's problem, where its objective function Gap is minimized for a

copay value of d� ¼ 0:05 of the cost per treatment, leading to a coverage of p�ðd�Þ ¼ 63:24%.



M.-G. Cojocaru et al. / Infectious Disease Modelling 3 (2018) 256e265 261
Our model now is formulated as follows:

For each t2h ¼ f0 � t1 � … � tm � … � Tg :

min Gap
�
d; P� ðd; tÞ; t

�
:¼ pðd; tÞ � �

ε ðtÞP� ðd; tÞ þ…þ ε ðtÞP�ðd; tÞ� (4)

d2½0;1� 1 1 k k
where P�ðd; tÞ solves the problem:(
s:t: maxuiðd; Pðd; tÞ; tÞ ¼ �

�
ri þ dcosti

�
Piðd; tÞ � ppðtÞð1� Piðd; tÞÞ;

Piðd; tÞ2½0;1�; ci2f1; ::; kg:
(5)
To model the expected vaccination coverage under copay when the population's risk perceptions change, we follow the
steps below:

STEP 0:

(1) Start with the initial distribution of people in each group for the initial time: t0 ¼ 0, εð0Þ ¼ ðε1ð0Þ; ε2ð0Þ; ε3ð0ÞÞ ;
(2) Solve the followers game and obtain the equilibrium strategies P�ðd; tÞ for each d value; Then find the d� value(s) which

solves the leader problem on t2½0; t1Þ.
(3) Apply the transition matrix εð0Þ,Tr ¼ εðt1Þ to compute the distribution of people in each group at t1.

STEP m: Repeat (1), (2) & (3) at tm. If tm ¼ T , repeat (1) and (2) and STOP.

3.1. Policy-independent transition matrix

Changes in risk perceptions towards a vaccine could happen over time and independent of this policy being introduced, for
instance in cases of vaccine scares, of public health education campaigns, of previous infectious outbreaks in the population
and/or of changes in the socio-politic environment of the population (Opiski, 2012). To account for these possibilities, and to
study the effect these changes may have on the long-term health of the policy, we introduce a specific form of the transition
matrix T, described below.

Let us denote by g1; g22½0;1� the probabilities of an individual in group 2 (an Undecided) to switch their perception of
vaccine risks towards vaccine Inclined (g1) and respectively towards vaccine Adverse (g2). We assume for simplicity that both
Inclined and Adverse individuals are unchanged in their perceived risks estimates over time. Then the matrix Tr becomes:

Tr ¼
Incl Und Adv

Incl
Und
Adv

2
4 1 0 0
g1 1� ðg1 þ g2Þ g2
0 0 1

3
5

We show next a first scenario, where we vary the probabilities of changing risk assessment groups: g1; g22½0;0:5�, over a
time window ½0;T� ¼ ½0;5�, where the time unit is taken to be 1 year. We note that if both g1 ¼ g2 ¼ 0, then no individual in
any group changes their risk perceptions over time; if however g1 ¼ g2 ¼ 0:5, then the Undecided group is non-existent, thus
we would be in the case where the population is either vaccine inclined of vaccine adverse. We run this scenario considering
the values of group sizes in Subsection 2.4 as the initial values of ε at t ¼ 0.

In our simulations and discussions below we also plot the function

TrueGapðP�; dÞÞ :¼ pðd; tÞ �
�
ε1ðtÞP*1ðd; tÞ þ ε2ðtÞP*2ðd; tÞ þ…þ εkðtÞP*kðd; tÞ

�

to clearly show the sign difference between the possible coverage given by a budget B and the expected Nash equilibrium
coverage of followers. We present our results of this simulation in Fig. 2 below.

We see that (upper right panel) the optimal values of d� decrease as the values of g1; g2 increase. This means that as the
population becomes more polarized (lower panel), the cost burden of the single payer (i.e., ð1� dÞcost) has to increase.
However, the polarization between Adverse and Inclined also results, over the 5 years, in a decline of the overall coverage
(upper left panel). Thus we conclude here that having a majority of Undecided results in the best coverage, as they may be
swayed to vaccinate by being offered a shared cost policy. However, relying on such a policy in the face of big opinion changes
is not enough to motivate vaccinating behaviour.



Fig. 2. Overall coverage as a function of the probability of changing risk perceptions between Undecided and Inclined=Adverse groups, g1 ¼ g22½0;0:5� and time
t2½1;5�. Lower panel shows the change in population group sizes.
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3.2. Coverage-dependent transition matrix

Assume now that p0 is the coverage for the control of disease in the given population and p�ðtÞ is the Nash equilibrium
coverage depending on the Nash equilibrium strategies ðP�1ðtÞ;P�2ðtÞ;P�3ðtÞÞ. Assuming p�ðtÞ<p0 for all t2½0;T �, we now define
the transition matrix as:

Tr1 ¼
Incl Und Adv

Incl
Und
Adv

2
41 0 0
cðp0 � p�ðd; tÞÞ 1� cðp0 � p�ðd; tÞÞ 0
0 ~cðp0 � p�ðd; tÞÞ 1� ~cðp0 � p�ðd; tÞÞ

3
5

An individual in the Undecided group may change their relative risk perception and cross over to the Inclined group; this
accounts for a change in the Inclined group size given by cðp0 � p�ðd;tÞÞ, where c is the sensitivity of the Undecided group to the
difference in coverage. Similarly, an individual in the Adverse group may change their risk perception and cross over to the
Undecided group; this accounts for a change in group sizes equal to ~cðp0 � p�ðd;tÞÞ, where ~c is the sensitivity parameter for the
Adverse group. We assume that the Inclined group is not influenced by the year-to-year coverage changes.

We run simulations based on varying c; ~c2½0;0:5�, d2½0;0:5� and t2½0;5�. At t ¼ 0 we have the same conditions as in
Subsection 2.4, with p0 ¼ 95%.3 We report our results in Fig. 3 below. We note first that each figure depicts a 4-dimensional
representation of the expected Nash coverage p�ðd; t; c;~cÞ (upper figure), respectively of the leader's gap function TrueGapðd;t;
c;~cÞ. While the first two parameters are represented in a standard manner (d on x-axis, respectively t on y-axis), the other two
parameters are represented by color variation (for ~c) and color intensity (dark to light for c).

Herewe see that the copay d has the smallest positive effect for all values of t2½0;5�, c2½0;0:5� and ~c ¼ 0 (upper and lower
panels, blue, dark to light), i.e. the coverage increases little with d and t when the Adverse group's opinion is unchanged over
time. When this group's opinion is influenced over time (i.e., for ~c2½0:1; 0:5�) we see that there is an increasing trend in
coverage levels as c2½0;0:5�. The biggest time effect is displayed for d ¼ 0 (i.e., the copay to the individual is 0), while time's
effect is less remarkable for d2½0:1;0:5�.

In the lower panel, we can see the values of the leader's true objective function (i.e., without the absolute value imposed).
In general we see that for t ¼ 0 there are cases where the single-payer budget is insufficient for complete coverage, even for
larger values of d. However, as time evolves, the budget is balancing to cover the expected vaccination uptakes. To see this,
3 Note that for instance measles eradication vaccine coverage is between 93% and 95% (Katz et al., 2004). To stay consistent with our choice of a; b values
in pp , we take here p0 ¼ 0:95.



Fig. 3. Overall coverage as a function of the copay d2½0;1�, time t2½0; 5� and sensitivities c and ~c2½0;5�.
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look for instance at the values d ¼ 0:3 and t2½0;5�. At t ¼ 0 there is a budgetary shortage although the individual is asked to
support 30% of the cost. However, as time progresses, by t ¼ 2, ~c ¼ 0 and c2½0;0:5� the value of the Gap function is 0, thus for
all subsequent years, there will be a budgetary surplus, if d ¼ 0:3 is maintained as individual copay.

The second panel in Fig. 3 gives further insights in what a time-dependent implementation of this policy might look like.
Let us for instance assume that in year 2 we have achieved the Leader's goal to have the budget needed to support the ex-
pected vaccine uptake. Then, in the following years, given that a surplus might form, the leader can seek to further improve
their policy by reducing d from 0.3 to perhaps 0.2. Once budgetary balance is achieved for d ¼ 0:2, then they could further
reduce it in subsequent years. Our model then can be used as a mechanism to evaluate how long it might take (and for what
population types) to reach adoption of a treatment with d ¼ 0.

4. Conclusions and future work

In this paper we introduce a model of a partial adoption of a new vaccine in countries with a single-payer health provider,
such as Canada, the U.K., Australia etc. As the prices of new treatments tend to increase, the costs of public programs increases
as well. In order to help keep costs under control, yet still promote and help increase the overall treatment coverage in a
population, we propose that the price of a new treatment, such as a vaccine, be split between the single-payer provider and
individuals in the population. We are thus able to determine proportions of price per dose needed to be supported by the
single payer program so that both the expected vaccination coverage increases in the population, as well as costs are
maintained within fixed budgets.
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We show that a populations' perception of the risks of a new treatment can interfere with the policy. To see this we
introduced a time-dependent element in the model (via a discrete transition matrix) which reflects the changes of views on
the perceived risks in the population per year. Such changes could be either: 1) independent of the policy being introduced, as
in cases of vaccine scares, of public health education campaigns, of previous infectious outbreaks in the population and/or of
changes in the socio-politic environment of the population; 2) or changes could be dependent on each individuals' estimation
of the level of vaccine coverage in the population, i.e., consequently their estimation of how protected they may be by herd
immunity.

In the former case, if the population is highly polarized, with most individuals being adverse or inclined toward the
vaccine, the policy introduction will not necessarily induce an increase in the expected coverage. This is because the adverse
individuals are not simply persuaded to vaccinate just by lowering the monetary cost of vaccine; their adverse perception
toward a vaccine is likely a combination of other factors, not easily changed by a change in cost. On the other hand, if the
population has a largemajority of undecided individuals (i.e., individuals who are not intrinsically pro or against a vaccine, but
who most of the time fail to vaccinate due to economic and personal costs), then they may be persuaded to consider
vaccination by lowering the cost per dose.

In the latter case, we see that the introduction of the partial adoption policy in populations which are more sensitive to the
vaccine coverage year by year achieves very high overall vaccine coverage levels. In contrast, while the introduction of the
policy helps in general, it is less effective in populations which are generally less sensitive to overall yearly coverage.

A major assumption of the work is that the willingness to pay for the vaccine is additive to relative risk. Our assumption
here is directly linked with being able to take advantage of two results: first, the existence and uniqueness of Nash strategies
for all d values, using the proofs in (Cojocaru et al., 2007); second, the result in (Barbagallo& Cojocaru, 2009) showing that the
Nash strategies must vary continuously with the parameter d, thus giving us a solid foundation for the plots of Fig. 1. A
nonlinear-type dependency can be explored as well for the willingness to pay. However, in this case care must be taken in re-
analyzing the vaccinators' game from existence as well as uniqueness of solutions points of view as the payoffs of each group
will change in a nonlinear fashion the above results will not necessarily apply anymore.

In this work we present the theoretical framework to analyze the proposed policy under various parameter sensitivity
scenarios. The scope of our analysis was to show that, qualitatively: 1) coverage will be impacted if a copay is introduced; 2)
there is a “common ground” spot between a single payer programs wish to expand vaccination and to keep costs under
control; 3) time and changes in peoples opinions are very likely to be extra factors in the success or failure of the proposed
policy.

In a future exploration of this topic, one may consider using available data for a currently existing vaccine which is not yet
adopted in the overall population. The example here could be the herpes zoster vaccine and the targeted populationwould be
all individuals over the age of 50. Our framework could be used to explore a partial adoption policy for all at-risk individuals in
the population.
Acknowledgement

I would like to acknowledge the Natural Sciences and Engineering Research Council of Canada Discovery Grant program,
with grant number 400684. This grant supported the work of the first and second authors.
References

Asim, M., Malik, N., Yousaf, H., Gillani, I., & Habib, N. (2012). An assessment of parental knowledge, belief and attitude toward childhood immunization
among minorities in rural areas of district Faisalabad, Pakistan. Mediterranean Journal of Social Sciences, 3, 153e159.

Barbagallo, A., & Cojocaru, M.-G. (2009). Continuity of solutions for parametric variational inequalities in Banach space. Journal of Mathematical Analysis and
Applications, 351, 707e720.

Basar, T., & Olsder, G. J. (1998). Dynamic noncooperative game theory. Society for Industrial and Applied Mathematics.
Basar, T., & Srikant, R. (2002). A Stackelberg network game with a large number of followers. Journal of Optimization Theory and Applications, 115(3),

479e490.
Bauch, C. T. (2005). Imitation dynamics predict vaccinating behaviour. Proceedings of the Royal Society of London B, 272, 1669e1675.
Bauch, C. T., & Earn, D. J. D. (2004). Vaccination and the theory of games. Proceedings of the National Academy of Sciences, 101, 13391e13394.
Brisson, M., & Edmunds, W. (2002). The cost-effectiveness of varicella vaccination in Canada. 20, 111e325.
Cojocaru, M.-G. (2008). Dynamic equilibria of group vaccination strategies in a heterogeneous population. Journal of Global Optimization, 40(1e3), 51e63.
Cojocaru, M.-G., & Bauch, C. (2007). Vaccination strategies of population groups with distinct perceived probabilities of infection. Journal of Inequalities in

Pure and Applied Mathematics, 10.
Cojocaru, M.-G., Bauch, C. T., & Johnston, M. D. (2007). Dynamics of vaccination strategies via projected dynamical systems. Bulletin of Mathematical Biology,

69(5), 1453e1476.
Cojocaru, M.-G., & Greenhalgh, S. (2012). Dynamic games and hybrid dynamical systems, Optimization and Engineering. Applications of Variational In-

equalities Issue, 13(Issue 3), 505e517.
Erickson, L. J., De Wals, P., & Farand, L. (2005). An analytical framework for immunization programs in Canada. Vaccine, 19, 2470e2476.
Fudenberg, D., & Tirole, J. (1991). Game theory. MIT Press.
Gibbons, R. (1992). Game theory for applied economists. Princeton University Press.
Helbing, D. (1992). A mathematical model for behavioral changes by pair interactions and its relation to game theory. Springer.
Ichiishi, T. (1983). Game theory for economic analysis. New York: Academic Press.
Katz, S. l., Strebel, P. M., Henao-Restrepo, A.-M., Hoekstra, E., Olive, J.-M., Papania, J., et al. (2004). Global measles elimination efforts: The significance of

measles elimination in the United States. The Journal of Infectious Diseases, 189(Issue Supplement 1), S251eS257.
Leyffer, S., & Munson, T. (2010). Solving multi-leadercommon-follower games. Optimization Methods and Software, 25(4), 601e623.

http://refhub.elsevier.com/S2468-0427(18)30034-4/sref1
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref1
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref1
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref2
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref2
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref2
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref3
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref4
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref4
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref4
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref5
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref5
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref6
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref6
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref7
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref7
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref8
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref8
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref8
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref9
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref9
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref10
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref10
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref10
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref11
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref11
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref11
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref12
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref12
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref13
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref14
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref15
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref16
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref17
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref17
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref17
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref18
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref18


M.-G. Cojocaru et al. / Infectious Disease Modelling 3 (2018) 256e265 265
Mylene, L., Haines, A., & Palmer, N. (2007). Conditional cash transfers for improving uptake of health interventions in low-and-middle-income countries: A
systematic review. Journal of the American Medical Association, 298(16), 1900e1910.

Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of Sciences, 36, 48e49.
Opiski, M. (2012). Anti-vaccination movement and parental refusals of immunization of children in USA. Pediatria Polska, 87(4), 381e385.
Shen, A. K., Sobzcyk, E., Buchanan, A., Wu, L., & Duggan-Goldstein, S. (2011). Second national immunization congress 2010: Addressing vaccine financing for the

future in the US.
Smith, P. J., Humiston, S. G., Marcuse, E. K., Zhao, Z., Dorell, C. G., Howes, C., et al. (2011). Parental delay or refusal of vaccine doses, childhood vaccination

coverage at 24 months of age, and the health belief model. Public Health Reports, 126(2_suppl), 135e146.
von Stackelberg, H. (2011). Market structure and equilibrium. Translation into English, Bazin, Urch & Hill (1st ed.). Springer. XIV.
Swetasudha, P., & Vorobeychik, Y. (2015). Stackelberg games for vaccine design. In Proceedings of the 2015 international conference on autonomous agents and

multiagent systems. International Foundation for Autonomous Agents and Multiagent Systems.
Von Neumann, J., & Morgenstern, O. (1945). Theory of games and economic behavior. Bulletin of the American Mathematical Society, 51, 498e504.
World Health Organization Report. (2010). World health statistics 2010. WHO Library Cataloging-in-Publication Data.
Zhi-Quan, L., Pang, J.-S., & Ralph, D. (1996). Mathematical programs with equilibrium constraints. Cambridge University Press.

http://refhub.elsevier.com/S2468-0427(18)30034-4/sref20
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref20
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref20
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref21
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref21
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref22
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref22
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref23
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref23
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref24
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref24
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref24
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref25
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref25
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref26
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref26
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref27
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref27
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref28
http://refhub.elsevier.com/S2468-0427(18)30034-4/sref29

	Adoption costs of new vaccines - A Stackelberg dynamic game with risk-perception transition states
	1. Introduction
	2. Model set up and background
	2.1. Nash and Stackelberg games
	2.2. Followers game
	2.3. Leader's game
	2.4. Copay size and equilibrium vaccine coverage

	3. Time dependent game with varying risk perceptions
	3.1. Policy-independent transition matrix
	3.2. Coverage-dependent transition matrix

	4. Conclusions and future work
	Acknowledgement
	References


