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A B S T R A C T   

The SARS-CoV-2 virus was first detected in December 2019, which prompted many researchers to investigate 
how the virus spreads. SARS-CoV-2 is mainly transmitted through respiratory droplets. Symptoms of the SARS- 
CoV-2 virus appear after an incubation period. Moreover, the asymptomatic infected individuals unknowingly 
spread the virus. Detecting infected people requires daily tests and contact tracing, which are expensive. The 
early detection of infectious diseases, including COVID-19, can be achieved with wastewater-based epidemi-
ology, which is timely and cost-effective. In this study, we collected wastewater samples from wastewater 
treatment plants in several cities in North Dakota and then extracted viral RNA copies. We used log-RNA copies 
in the model to predict the number of infected cases using Quantile Regression (QR) and K-Nearest Neighbor 
(KNN) Regression. The model's performance was evaluated by comparing the Mean Absolute Percentage Error 
(MAPE). The QR model performs well in cities where the population is >10000. In addition, the model pre-
dictions were compared with the basic Susceptible-Infected-Recovered (SIR) model which is the golden standard 
model for infectious diseases.   

Introduction 

The SARS-CoV-2 virus emerged in December 2019 and has severely 
affected the world. Scientists and researchers have been working tire-
lessly to understand and combat the virus as it spreads rapidly around 
the world. One critical aspect of the virus that has garnered much 
attention is its transmission. Transmission of SARS CoV-2 is thought to 
be principally through respiratory droplets, although there is growing 
evidence that airborne transmission may also play a role [1,2]. Some 
individuals may remain asymptomatic even after the incubation period, 
posing significant challenges for contact tracing and frequent testing 
that can be both time-consuming and costly [3–8]. Therefore, early 
detection and containment of COVID-19 disease is essential for pre-
venting transmission and limiting its spread. 

Wastewater-based epidemiology (WBE) has emerged as a promising 

approach to detecting the presence of infectious agents including SARS- 
CoV-2, in a cost-effective manner. Wastewater surveillance involves 
analyzing sewage samples from communities, which can provide in-
formation on the prevalence of diseases within that population [9]. The 
approach has been used in the past to detect outbreaks of diseases such 
as polio and hepatitis A, and it is now being applied to COVID-19 
[10–13]. The virus can be shedded in the feces, urine, blood, and 
sputum of infected individuals [14–19] and these shedded viral particles 
can be detected in wastewater samples. Therefore, wastewater surveil-
lance can capture the presence of the SARS-CoV-2 virus even in 
asymptomatic individuals, enabling early detection of the disease before 
it spreads further [20–23]. 

Moreover, wastewater surveillance is a timely and cost-effective 
method for detecting infectious agents. Traditional methods of testing, 
such as individual testing or population-wide testing, can be expensive 
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and time-consuming, requiring significant resources. In contrast, 
wastewater surveillance can provide information on the prevalence of 
the disease in an entire community at a fraction of the cost of individual 
testing. The cost of COVID-19 testing can vary based on the type of the 
test, healthcare provider, and location. Personal tracking tests involve 
individual testing, where people are tested for COVID-19 using methods 
such as PCR (polymerase chain reaction) tests, antigen tests, or antibody 
tests. On average, PCR tests are considered more accurate but may be 
more expensive than rapid antigen tests. The cost of clinical testing is 
estimated to be $5.80 per person per year in Latin America and the 
Caribbean from September 2020 to September 2021 [24]. 

The cost of wastewater sample analysis can be more cost-effective 
when considering large populations, as it allows monitoring of a com-
munity's infection trends without testing each individual separately. The 
amount charged can fluctuate relative to the magnitude and regularity 
of screening, the technology employed, and the research laboratory 
administering the examination. However, it's considered a more 
economical approach for tracking COVID-19 in large groups of people. 
The cost of wastewater testing per person per year is estimated as $0.50 
[24]. Thus, researchers and public health entities are increasingly 
interested in the potential for surveillance of pathogens such as SARS- 
CoV-2 through routine or episodic testing of wastewater. 

Background 

SARS CoV-2 has been shown to be reliably shed in the stool of 
infected patients for up to seven months [25]. A study published by Park 
et al. [4] investigated gastrointestinal symptoms of COVID-19 patients 
with mild and asymptomatic symptoms, as well as the shredding of the 
SARS-CoV-2 virus into their feces. Zhang et al. [26] performed a mo-
lecular and serological investigation of COVID-19 patients and found 
that viral RNA can be detected in anal swabs and blood samples when 
viral nucleotide has not been detected in oral swabs. Xu et al. [27] 
clinically investigated the characteristics of pediatric SARS-CoV-2 
infection in 10 children and found that there is potential for fecal viral 
excretion and that testing contaminated water is a viable method for the 
detection of viral loads. Van Doorn et al. [28] performed a systematic 
review and meta-analysis of studies based on the fecal-oral transmission 
of the SARS-CoV-2 virus and found that testing stool samples or anal 
swabs are more reliable than testing respiratory samples. Additionally, 
Cheung et al. [29] conducted a systematic review and meta-analysis, 
and a cohort study and found that stool samples were positive for 
virus RNA despite negative respiratory samples. Therefore, wastewater 
surveillance is a good approach to detecting the SARS-CoV-2 virus since 
it does not rely on the person having symptoms, nor presenting with 
illness. However, the likelihood of transmission of SARS-CoV-2 virus 
from sewage-contaminated water or food is very low as reported by 
Jones et al. [30]. Furthermore, the replicability of SARS-CoV-2 virus is 
very limited as mentioned by Cerrada-Romero et al. [31]. 

Furthermore, there are several studies in which wastewater-based 
epidemiology is used for estimating COVID-19 cases [32–36]. Ahmed 
et al. [37] collected untreated wastewater samples from one suburban 
pumping station and two wastewater treatment plant catchments in 
urban areas in Southeast Queensland and developed a simple equation 
to estimate positive cases based on the total number of viral RNA copies 
in wastewater and the number of SARS-CoV-2 RNA copies shed in stool 
by infected individuals. McMahan et al. [38] implemented a Susceptible- 
Exposed-Infected-Recovered (SEIR) model to predict the number of 
infected individuals using the SARS-CoV-2 RNA mass rates in sewage 
samples. Fazil et al. [39] proposed a stochastic wastewater-based SEIR 
model, which is similar to the SEIR model proposed by McMahan et al. 
[38] 

Objective 

During an outbreak of infectious disease, hospitals need to expand 

their capacity by adding emergency facilities and increasing medical 
supplies, staff, and medications. Control measures such as mask man-
dates, vaccine mandates, social distancing, and business closures are 
difficult to implement and often controversial. Government and public 
health authorities must have accurate estimates of disease incidence and 
prevalence in order to make sound policy decisions. As noted earlier, 
traditional surveillance methods are severely limited in estimating dis-
ease burden when it comes to SARS-CoV-2 transmission due to asymp-
tomatic spread, home testing, and delays in reporting. This study aims to 
provide further evidence of the utility of wastewater testing for SARS 
CoV-2 virus to estimate the burden of infection in selected North Dakota 
populations during key periods of the pandemic, using the K-Nearest 
Neighbor (KNN) Algorithm [40] and Quantile regression (QR) [41] 
compared with the Susceptible-Infected-Recovered (SIR) model [42]. By 
doing so, we can provide an effective method for estimating the number 
of infected individuals during an outbreak in different populations. 

Data collection, viral isolation, and quantification 

Wastewater samples were obtained from the intake stream of 
wastewater treatment plants in various cities in North Dakota. The GLS 
compact samplers (Teledyne ISCO) were used to collect 24-h composite 
samples. Subsequently, 250 ml of the composite samples were treated at 
60 ◦C for 30 min and then centrifuged at 4500 ×g for 10 min at room 
temperature. The supernatant (100 ml) was collected and HCl was 
added to adjust the samples to pH 4. Samples were vacuum filtered 
through 0.45 μm MCE membranes (Millipore Sigma). RNeasy Power-
Microbiome kits (Qiagen) were used to extract total RNA from the 
membranes. Samples were eluted in 50 μl of elution buffer and 5 μl was 
used for quantitative real-time PCR (Polymerase Chain Reaction). For 
PCR reactions, we used N1 primers from the 2019-nCoV RUO kit by 
Integrated DNA Technologies (IDT), along with the Applied Biosystems 
TaqPath 1-Step RT-qPCR Master Mix. To construct the standard curve, 
we employed the 2019-nCoV_N Positive control plasmid from IDT. 

Statistical methodology 

The primary aim of our research is to estimate the number of COVID- 
19 cases through the analysis of SARS-CoV-2 RNA copies derived from 
wastewater samples. To achieve this, we will use a combination of sta-
tistical modeling and quantitative analysis. For a selected time, we will 
employ three distinct models to predict the number of infected cases 
based on natural logarithm-transformed data of viral RNA copies as the 
independent variable. These models include the KNN regression model, 
the QR model, and the basic SIR model. The following section summa-
rizes some basic ideas behind each of the above models. 

K-nearest neighbor algorithm (KNN) 

KNN algorithm is a supervised machine learning algorithm, which 
can be used to solve classification and regression problems. The KNN 
model was first developed by Evelyn Fix and Joseph Hodges in 1951 
[40]. In this method, the similarities of the features of k-nearest neigh-
bors are used to predict the outcome variable. The Euclidean distance 
measure, Manhattan distance, and Minkowski distance methods are 
commonly used to calculate the similarities of nearest neighbors. Sup-
pose ŷ is the predicted target variable value for a given input data point 
and yi is the target variable value of the ith nearest neighbor to the input 
data point. If k is the number of nearest neighbors to consider, then, 

ŷ =
1
k

∑k

i=1
yi (1) 

To perform KNN regression, first, we need to calculate the distance 
between the input data point and all the data points in the dataset. Then, 
using the distance metric, select k-nearest neighbors and use their target 
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variable values to calculate ŷ for the input data point. The smaller the k 
value, the more likely the model will overfit, and the larger the k value, 
the more likely it will underfit. Therefore, we performed 10-fold cross- 
validation to select the optimal k using the tidymodels package in R. In 
most of the cities k = 9, 10, or 11 were observed as optimal k. Therefore, 
we used k = 10 for all cities for convenience. 

Quantile regression (QR) 

Quantile regression [41] is a type of regression analysis that models 
the relationship between the independent variables and the quantile of 
the dependent variable. Unlike ordinary least-square regression models, 
QR models need no assumptions. The QR model for the τth quantile for ith 

observation for p variables can be written as 

Qτ(yi) = β0(τ)+ β1(τ)xi1 +…+ βp(τ)xip, i = 1, 2,…, n (2) 

The coefficients βj(τ) of the model can be estimated by solving the 
following minimization problem [43]. 

min
β0(τ)…βp(τ)

∑n

i=1
ρτ

(

yi − β0(τ) −
∑p

j=1
βj(τ)xij

)

(3) 

Where, ρτ(r) = τ max(r, 0) + (1 − τ)max( − r, 0) and r is the error of a 
single data point. This minimization involves the sum of absolute de-
viations which places equal weight on all observations regardless of 
their magnitude. In this study, we used a specific case of QR model 
where τ = 0.5. This corresponds to the median quantile regression 
estimator, which is robust to outliers in the dependent variable. 

Susceptible-infected-recovered (SIR) compartmental model 

The SIR model is the first deterministic epidemic model, introduced 
by Kermack and McKendrick [44]. In this model, the population is 
divided into three compartments, such as Susceptible (S), Infected (I), 
and Recovered (I) and we assumed a fixed total population and no new 
births or deaths. Further, we assumed that all the infected individuals 
are contagious, and the recovered individuals are immune to the disease. 
Then, the dynamic of the model compartments can be evaluated using 
the ordinary differential equations (ODE) as follows. 

dS
dt

= − βI
S
N

(4)  

dI
dt

= βI
S
N
− γI (5)  

dR
dt

= γI (6) 

Where,: Total population, N = S+ I+ R 
β: Infection Rate - The expected amount of people an infected person 

infects per day. 
γ: The proportion of infected recovering per day. 
Our research aimed to estimate the prevalence of COVID-19 in 

various cities located in North Dakota State. To achieve this goal, we 
utilized two distinct modeling techniques, namely KNN regression and 
QR. In both models, we utilized the natural logarithm-transformed RNA 
copies as the explanatory variable. We then generated predictions using 
these models and compared their results with those obtained from the 
basic SIR model. This comparison allowed us to assess the accuracy and 
reliability of each approach in estimating the number of SARS-CoV-2 
infections in the study population. 

By comparing the outcomes of these three models, our study pro-
vides valuable insights into the efficacy and accuracy of different 
modeling techniques in predicting the prevalence of COVID-19 disease 
in various population groups. This information can help inform public 
health policies and strategies to manage the ongoing pandemic 

effectively. Our research has the potential to contribute to efforts aimed 
at mitigating the spread of the virus and controlling its impact on the 
affected communities. 

Results 

We analyzed a dataset that included variables such as date of data 
collection, RNA copies, and clinical SARS-CoV-2 infections for various 
cities in North Dakota. All the analysis were performed using the R 
software version 4.1.3. The data was collected between January 
1st,2021, to May 5th,2022. The prevalence of SARS-CoV-2 infections 
was predicted for this time frame using KNN regression and QR models 
with log-transformed RNA copies as explanatory variables. Further, we 
fitted an SIR model using clinical cases for the period of January 19th, 
2022, to May 5th, 2022. We selected only a certain period to fit the SIR 
model as SIR model is less effective in predicting multiple waves of the 
virus. We compared these fitted values from SIR model with the KNN 
and QR models predictions of January 19th, 2022, to May 5th, 2022. 
Further, we compared the model performance by location, where Group 
1 cities have a population > 10000 and Group 2 cities have a population 
≤ 10000 [45]. The fitted values from the models were compared with 
the observed counts of SARS-CoV-2 infections and the results are pre-
sented in Fig. 1a and Fig. 1b for two specific cities, where Group 1 City 8 
has a population > 10000 and Group 2 City 7 has a population ≤ 10000. 
The model fits for the other cities are provided in the appendix. 

We used mean absolute percentage errors (MAPE) of observed and 
fitted values to evaluate the performance of the models. 

MAPE =
1
n

∑n

i=1

⃒
⃒
⃒
⃒
Ai − Fi

Ai

⃒
⃒
⃒
⃒ (7) 

Where, n: Number of observations. 
Ai : Actual value. 
Fi : Fitted value. 
Our results showed that the performance of the models varied be-

tween cities, with the SIR model outperforming both KNN and QR 
models in many cities. In addition, we found that the QR model per-
formed better than the KNN model in Group 1 areas, while the KNN 
model was effective in predicting the prevalence of COVID-19 in some 
Group 2 areas. We presented a comparison of the MAPE values of the 
KNN and QR models in various Group 1 and Group 2 areas of North 
Dakota. The results are summarized in Table 1 and Fig. 2 for Group 1 
areas, and Table 2 and Fig. 3 for Group 2 areas. These comparisons 
provide insight into the relative performance of the KNN and QR models 
in predicting the prevalence of COVID-19 cases across different regions 
of North Dakota. (See Table 3.) 

The graph presented in Fig. 2 shows that the mean absolute per-
centage error of the KNN method is consistently higher than that of the 
QR method for Group 1 areas. Based on this finding, we suggest using 
the QR model to predict the number of COVID-19 cases in cities with 
larger populations. This model is likely to provide more accurate pre-
dictions compared to the KNN model in such areas, as indicated by its 
lower MAPE values. By selecting the appropriate modeling technique, 
we can improve our ability to estimate the prevalence of COVID-19 
disease and develop effective strategies to manage its spread in areas 
with higher populations. 

The graph provided in Fig. 3 indicates that the MAPE values obtained 
from the KNN method are lower for Group 2 areas, particularly when the 
population size is very small. The graph also illustrates that the QR 
method performs well for larger populations. Overall, these findings 
suggest that the choice of modeling technique should be informed by the 
population size of the study area. In Group 2 areas with smaller pop-
ulations, the KNN method may provide more accurate predictions. In 
contrast, for larger populations, the QR method may be a better choice. 
By carefully selecting the appropriate modeling technique, we can 
improve the accuracy of our COVID-19 disease predictions and inform 
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effective public health interventions. 
In our study, we evaluated the relative performance of QR and KNN 

models in predicting COVID-19 prevalence in different North Dakota 
regions. The Wilcoxon-Sign Rank test was applied to compare the MAPE 
values of QR and KNN models in Group 1 and Group 2 areas. The 
Wilcoxon-Sign Rank Test is a non-parametric statistical test, used to 
determine whether two related samples are drawn from populations 
with the same distribution. As we used the same data in both methods, 

MAPE values can be considered as matching pairs. 
The Wilcoxon signed rank test results indicate that there is no sta-

tistically significant difference (P value = 0.8311) in the results ob-
tained from the QR and KNN methods when applied to data from Group 
2 areas. However, a significant difference exists between the two 
methods (P value = 0.007813) when applied to data collected from 
Group 1 areas. 

These findings suggest that the choice of modeling technique should 
be adapted to the characteristics of the study area. In Group 2 areas, 
either the QR or KNN method can be used to obtain similar results. 
However, in Group 1 cities, the QR method may be a more suitable 
choice for predicting the spread of COVID-19 disease compared to the 
KNN method. By considering these factors when choosing a modeling 
approach, we can improve the accuracy of our predictions and inform 
effective public health interventions. 

Discussion 

Our analysis was based on data collected from sewage samples and 
clinical cases observed in several North Dakota cities. The SIR model 

Fig. 1. a. Observed and fitted values comparisons for SIR, KNN, and QR Models for a City in Group 1. 
b Observed and fitted values comparisons for SIR, KNN, and QR Models for a City in Group 2. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
Note: The graphs presented in Fig. 1a for a city (population > 10000) and Fig. 1b for a city (population ≤ 10000) depict a comparison between the observed (orange 
points) and fitted values of SARS-CoV-2 infections, employing three different models, namely SIR (blue line), KNN (green points), and QR (red points). The number of positive 
cases was estimated using log-RNA copies as the explanatory variable in the KNN and QR models, whereas the observed clinical cases were used to fit the SIR model. 

Table 1 
MAPE values of QR and KNN models for Group 1 (population > 10000) cities.  

City MAPE (QR) MAPE (KNN) 

City 1 94.14 127.32 
City 2 72.73 93.82 
City 3 86.07 109.33 
City 4 94.21 107.61 
City 5 88.52 105.85 
City 6 108.72 140.95 
City 7 90.93 116.68 
City 8 115.69 139.52  
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based on clinical cases, alone predicted the prevalence of COVID-19 
cases better than the KNN and QR methods. Using clinical cases alone 
for surveillance can be expensive and does not always account for 
asymptomatic cases. Therefore, using wastewater analysis is a more 
cost-effective and efficient way to determine the prevalence of COVID- 
19 cases in a community before the disease spreads. 

It is worth noting that the KNN and QR methods also used clinical 
cases as a dependent variable in their models, which may have 
contributed to some limitations. The number of COVID-19 cases is based 
on the entire city, while our water treatment plants may not collect 
wastewater from the entire city. Capturing the required viral loads can 

also be difficult due to the collected small volume of wastewater sam-
ples. This would lead to an underestimation of the number of cases. 
Despite possible limitations, such as incomplete coverage of sewage in 
certain areas and lower viral load in smaller sample volumes, our study 
provides a good estimate of the prevalence of COVID-19 in whole cities 
using sewage samples. 

Overall, our study highlights the potential of wastewater-based 
analysis as a valuable tool for disease surveillance in communities. 
This approach requires further development and optimization to address 
limitations but holds great promise for better surveillance of COVID-19 
disease and other infectious diseases in the future. 
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