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Abstract: Necroptosisis a regulatory programmed form of necrosis. Receptor interacting protein
kinase 3 (RIPK3) is a robust indicator of necroptosis. RIPK3 mediates myocardial necroptosis
through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) in cardiac ischemia-
reperfusion (I/R) injury and heart failure. However, the exact mechanism of RIPK3 in advanced
glycation end products (AGEs)-induced cardiomyocytes necroptosis is not clear. In this study,
cardiomyocytes were subjected to AGEs stimulation for 24 h. RIPK3 expression, CaMKII expression,
and necroptosis were determined in cardiomyocytes after AGEs stimulation. Then, cardiomyocytes
were transfected with RIPK3 siRNA to downregulate RIPK3 followed by AGEs stimulation for 24 h.
CaMKIIδ alternative splicing, CaMKII activity, oxidative stress, necroptosis, and cell damage were
detected again. Next, cardiomyocytes were pretreated with GSK′872, a specific RIPK3 inhibitor to
assess whether it could protect cardiomyocytes against AGEs stimulation. We found that AGEs
increased the expression of RIPK3, aggravated the disorder of CaMKII δ alternative splicing, promoted
CaMKII activation, enhanced oxidative stress, induced necroptosis, and damaged cardiomyocytes.
RIPK3 downregulation or RIPK3 inhibitor GSK′872 corrected CaMKIIδ alternative splicing disorder,
inhibited CaMKII activation, reduced oxidative stress, attenuated necroptosis, and improved cell
damage in cardiomyocytes.

Keywords: advanced glycation end products; cardiomyocytes; necroptosis; receptor interacting
protein kinase 3; calcium/calmodulin-dependent protein kinase II; oxidative stress

1. Introduction

Diabetic cardiomyopathy (DCM) is defined by the existence of myocardial structural
abnormality and dysfunction in diabetes mellitus (DM) without coronary artery disease,
valve disease, hypertension, dyslipidemia, and other cardiovascular risk factors. The
incidence rate of diabetes cardiomyopathy in patients with diabetes was 16.9%, and the
mortality and disability rates were about 18% and 22%, respectively [1,2]. The early stage
of DCM manifests as recessive subclinical cardiac abnormalities, such as fibrosis, myocar-
dial hypertrophy and diastolic dysfunction. Then, it develops into systolic dysfunction,
eventually leading to heart failure [3]. Clinical trials have shown that the incidence of heart
failure in DM is between 19% and 26%, which is much higher than that in non-diabetic
patients [4,5]. The data suggests that elevated blood glucose is an important contributor
to heart failure in DM. The specific pathogenesis of DCM is still unclear. It is an urgent
scientific problem to clarify the pathogenesis of DCM and seek a reliable drug target for the
prevention and treatment of DCM.
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Long-term hyperglycemia in DM induces a non-enzymatic reaction between glucose
and proteins, lipids or nucleic acids, promoting advanced glycation end products (AGEs)
production [6]. Glycosylation leads to enzyme disfunction, protein cross-linking or aggrega-
tion, cell function and signal pathway disorder, and tissue damage [7]. AGEs accumulation
plays an important role in numerous diseases, such as diabetes, immune inflammation,
cardiovascular, and neurodegenerative diseases [8–10]. The patients with cardiometabolic
diseases reduced the intake of AGEs, significantly decreased the serum AGEs levels, and
improved the imbalance of redox regulation [11,12]. In addition, reducing the intake of
exogenous AGEs in type 2 diabetes or obesity can also effectively increase insulin sensitiv-
ity, inhibit inflammation, and improve mitochondrial function [13,14]. The above studies
suggest that AGEs play a key role in the occurrence and development of DCM.

Cell death is a fundamental phenomenon in development with distinct manifestations,
including necrosis, apoptosis, and autophagy [15]. Apoptosis is a strictly controlled process,
while necrosis is considered to be a passive and sporadic type of cell death. Another
type of cell death is called necroptosis [16]. Necroptosis is closely related to embryonic
development [17], inflammation [18], neurodegeneration [19], tumors [20], cardiovascular
disease [21], and other physiological and pathological processes. Receptor interacting
proteins kinase 3 (RIPK3) is a central indicator of necroptosis [22]. RIPK3 drives the
downstream molecule calcium/calmodulin-dependent protein kinase II (CaMKII), causing
myocardial necroptosis in cardiac ischemia/reperfusion (I/R) injury and heart failure [23].
In addition, GSK′872, a small molecule RIPK3 inhibitor, blocked TNF-α induced necroptosis
in human HT-29 cells in a concentration-dependent manner [24]. However, the role and
mechanism of RIPK3 in AGEs-induced cardiomyocyte necroptosis is still unclear.

CaMKII is encoded by different genes to form four subtypes, namely α, β, γ, and
δ, which show different but partially overlapping expression patterns [25,26]. CaMKII δ
alternative splicing occurs between exons 13–17 and 20–22, resulting in at least 11 splice
variants [27]. CaMKII δA, CaMKII δB, and CaMKII δC are major splice variants in the heart.
CaMKII δA is mainly located in T-tubules, muscle membranes, and nuclear membranes, and
are related to chronic heart failure [28]. CaMKII δB contains a nuclear localization sequence,
mainly located in the nucleus, regulating transcriptional functions [29]. CaMKII δC is
mainly located in the cytoplasm and affects cardiac excitation–contraction coupling [30].
Overall activation of CaMKII was upregulated 3-fold, and CaMKII δ expression was
increased 2-fold in heart failure [31]. However, it is not clear whether AGEs-induced
necroptosis depends on CaMKII activation mediated by RIPK3in cardiomyocytes.

In summary, this study first clarified the changes in RIPK3, CaMKII, and necroptosis
in AGEs-induced cardiomyocyte injury. Then, we explored whether downregulation of
RIPK3 could regulate CaMKII δ altered splicing and CaMKII activity, inhibit oxidative
stress, alleviate necroptosis, and reduce cell damage through RIPK3 siRNA interference or
RIPK3 inhibitor GSK′872. The study is conducive for clarifying the new pathogenesis of
DCM and provides a new scientific basis for clinical prevention and treatment of DCM and
related drug transformation.

2. Results
2.1. AGEs-Damaged Cardiomyocytes

A variety of enzymes in the cytoplasm are released into the culture medium due to
cell membrane destruction. Among them, the enzyme activity of LDH is relatively stable.
Therefore, the LDH release is considered as an important indicator for the integrity of
the cell membrane. ATP is a common energy carrier and is closely related to important
physiological and pathological processes. Normally, a drop in ATP levels indicates impaired
cell function. After AGEs stimulation for 24 h, LDH release into the culture medium and
cellular ATP level was detected to evaluate cardiomyocyte damage. The study found that
AGEs increased LDH release, but decreased ATP level (Figure 1A,B).
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Figure 1. AGEs damaged cardiomyocytes. Cardiomyocytes were stimulated with AGEs (200 µg/mL)
for 24 h. (A) LDH release into the culture medium was detected by LDH Cytotoxicity Assay Kit.
(B) Cellular ATP level was detected by Cell Titer-Lumi™ Luminescent Cell Viability Assay Kit. Plots
represent the mean ± SEM; n = 6. Statistical significance: * p < 0.05, ** p < 0.01 compared with control.

2.2. AGEs Induced Necroptosis in Cardiomyocytes

After AGEs stimulation for 24 h, the expression ofRIPK3 in the cardiomyocytes was
detected by immunofluorescence and Western blot. We found that AGEs increased the
expression of RIPK3 (Figure 2A,B).

Figure 2. AGEs induced necroptosis in cardiomyocytes. Cardiomyocytes were stimulated with AGEs
(200 µg/mL) for 24 h. (A) RIPK3 was immunofluorescence stained by Alexa Fluor 488 (Green)-
conjugated IgG. The nuclei were stained by DAPI (Blue). Bar = 25 µm. (B) The expression of RIPK3
was detected by Western blot in cardiomyocytes. GAPDH was used as a loading control. (C) The
apoptosis of cardiomyocytes was detected by One Step TUNEL Apoptosis Assay Kit. Bar = 75 µm.
(D) The expression of caspase 3 and Cleaved-caspase 3 was detected by Western blot in cardiomy-
ocytes. β-tubulin was used as a loading control. Plots represent the mean ± SEM; n = 6. Statistical
significance: * p < 0.05, ** p < 0.01 compared with control.

Apoptosis is also an important manifestation of necroptosis. After AGEs stimulation
for 24 h, the expression of Cleaved-caspase 3 and caspase 3 were detected by Western
blot and the apoptosis of cardiomyocytes was detected by TUNEL staining. The results
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showed that AGEs increased the expression of Cleaved-caspase 3, enhanced the ratio of
TUNEL positive cardiomyocytes, indicating that the level of cardiomyocyte apoptosis
increased (Figure 2C,D). The above data showed that AGEs aggravated the necroptosis in
cardiomyocytes.

2.3. AGEs Aggravated the Disorder of CaMKIIδ Alternative Splicing in Cardiomyocytes

Since there is no specific antibody against CaMKII δ variants, quantitative real-time
PCR was used to detect the gene expression of CaMKIIδA, CaMKIIδB, and CaMKIIδC
mRNA in cardiomyocytes after stimulation with 200 µg/mL AGEs for 24 h. The study
found that AGEs decreased the expression of CaMKII δA and CaMKII δB, but increased
the expression of CaMKII δC in cardiomyocytes, suggesting CaMKIIδ alternative splicing
was disordered after AGEs stimulation (Figure 3).

Figure 3. AGEs aggravated the disorder of CaMKIIδ alternative splicing in cardiomyocytes. Car-
diomyocytes were stimulated with AGEs (200 µg/mL) for 24 h. The mRNA expression of CaMKIIδA,
CaMKIIδB, and CaMKIIδC was detected by quantitative real-time PCR in cardiomyocytes. 18S was
used as a loading control. Plots represent the mean ± SEM; n = 6. Statistical significance: * p < 0.05,
** p < 0.01 compared with control.

2.4. AGEs Promoted CaMKII Activation in Cardiomyocytes

Previous studies have found that CaMKII can be activated through oxidation or
phosphorylation. After AGEs stimulation for 24 h, the expression of ox-CaMKII and
p-CaMKII were detected by Western blot. The results showed that AGEs increased the
expression of ox-CaMKII and p-CaMKII (Figure 4).

Figure 4. AGEs promoted CaMKII activation in cardiomyocytes. Cardiomyocytes were stimulated
with AGEs (200 µg/mL) for 24 h. (A) The expression of ox-CaMKII and CaMKII was detected by
Western blot in cardiomyocytes. GAPDH was used as a loading control. (B) The expression of
p-CaMKII and CaMKII was detected by Western blot in cardiomyocytes. GAPDH was used as a
loading control. Plots represent the mean ± SEM; n = 6. Statistical significance: * p < 0.05, ** p < 0.01
compared with control.
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2.5. siRNA Transfection Downregulated RIPK3 Expression in Cardiomyocytes

It was unclear whether inhibiting RIPK3 expression had a protective effect on car-
diomyocytes damaged by AGEs. Did RIPK3 act as an upstream of CaMKII to regulate-
CaMKII alternative splicing in cardiomyocytes? Could correcting the variants inhibit the
necroptosis of cardiomyocytes AGEs-induced by disorder of CaMKII? Therefore, RIPK3
expression was downregulated with RIPK3 siRNA transfection. Then, cell damage, necrop-
tosis, CaMKII δ alternative splicing, and CaMKII activation were detected again. The
transfection efficiency and effect of RIPK3 siRNA were detected by Western blot. RIPK3
siRNA 002 significantly reduced the expression of RIPK3 (Figure 5). Therefore, our follow-
up experiments were transfected with RIPK3 siRNA 002 to down regulate the expression
of RIPK3 in cardiomyocytes.

Figure 5. siRNA transfection downregulated RIPK3 expression in cardiomyocytes. Cardiomyocytes
were transfected with NC siRNA or RIPK3 siRNA (001, 002, 003) for 4 h and cultured in DME/F-12
medium containing 10% FBS for 24 h. The expression of RIPK3 was detected by Western blot in
cardiomyocytes. GAPDH was used as a loading control. Plots represent the mean ± SEM; n = 6.
Statistical significance: ** p < 0.01 compared with NC.

2.6. Downregulation of RIPK3 Attenuated Cell Damage in Cardiomyocytes

The cardiomyocytes were transfected with RIPK3 siRNA for 4 h followed by AGEs
stimulation for 24 h. LDH released into the culture medium and cellular ATP level were
detected to evaluate the cell damage. The results revealed that downregulation of RIPK3
reduced LDH release, improved ATP level, and attenuated cell damage in cardiomyocytes
(Figure 6A,B).

Figure 6. Downregulation of RIPK3 attenuated cell damage in cardiomyocytes. Cardiomyocytes
were transfected with RIPK3 siRNA for 4 h followed by 200 µg/mL AGEs stimulation for 24 h. (A)
LDH release into the culture medium was detected by LDH Cytotoxicity Assay Kit. (B) Cellular
ATP level was detected by CellTiter-Lumi™ Luminescent Cell Viability Assay Kit. Plots represent
the mean ± SEM; n = 6. Statistical significance: ** p < 0.01 compared with NC; # p < 0.05, ## p < 0.01
compared with NC+AGEs.
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2.7. Downregulation of RIPK3 Inhibited Necroptosisin Cardiomyocytes

The cardiomyocytes were transfected with RIPK3 siRNA for 4 h followed by AGEs
stimulation for 24 h. The expression of RIPK3, Cleaved-caspase 3, caspase 3, and the apop-
tosis of cardiomyocytes was detected to explore whether downregulation of RIPK3 could
inhibit AGEs-induced necroptosis. The results showed that downregulation of RIPK3 de-
creased the expression of RIPK3 (Figure 7A,B) and Cleaved-caspase 3 (Figure 7D), reduced
the ratio of TUNEL positive cardiomyocytes (Figure 7C), and inhibited the necroptosis.

Figure 7. Down regulation of RIPK3 inhibited necroptosis in cardiomyocytes. Cardiomyocytes
were transfected with RIPK3 siRNA for 4 h followed by 200 µg/mL AGEs stimulation for 24 h.
(A) RIPK3 was immunofluorescence stained by Alexa Fluor 488 (Green)-conjugated IgG. The nuclei
were stained by DAPI (Blue). Bar = 25 µm. (B) The expression of RIPK3was detected by Western blot
in cardiomyocytes. GAPDH was used as a loading control. (C) The apoptosis of cardiomyocytes
was detected by One Step TUNEL Apoptosis Assay Kit. Bar = 75 µm. (D) The expression of caspase
3 and Cleaved-caspase 3 was detected by Western blot in cardiomyocytes. GAPDH was used as a
loading control. Plots represent the mean ± SEM; n = 6. Statistical significance: * p < 0.05, ** p < 0.01
compared with NC; ## p < 0.01 compared with NC+AGEs.
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2.8. Downregulation of RIPK3 Ameliorated the Alternative Splicing Disorder of CaMKIIδ
in Cardiomyocytes

The gene expression of CaMKII variants was detected by real-time PCR after trans-
fection of RIPK3 siRNA for 4 h followed by AGEs stimulation for 24 h. The study found
that downregulation of RIPK3 significantly increased the expression of CaMKIIδA and
CaMKIIδB, and decreased the expression of CaMKIIδC, indicating that downregulation of
RIPK3 corrected AGEs-induced CaMKIIδ alternative splicing disorder (Figure 8).

Figure 8. Down regulation of RIPK3 ameliorated the alternative splicing disorder of CaMKIIδ in
cardiomyocytes. Cardiomyocytes were transfected with RIPK3 siRNA for 4 h followed by 200 µg/mL
AGEs stimulation for 24 h. The mRNA expression of CaMKIIδA, CaMKIIδB, and CaMKIIδC was
detected by quantitative real-time PCR in cardiomyocytes. 18S was used as a loading control. Plots
represent the mean ± SEM; n = 6. Statistical significance: ** p < 0.01 compared with NC; ## p < 0.01
compared with NC+AGEs.

2.9. Downregulation of RIPK3 Inhibited CaMKII Activation in Cardiomyocytes

The expression of ox-CaMKII and p-CaMKII was detected after transfection of RIPK3
siRNA for 4 h followed by AGEs stimulation for 24 h. The study found that downregulation
of RIPK3 decreased the expression of ox-CaMKII and p-CaMKII (Figure 9), indicating that
down regulating RIPK3 inhibited CaMKII activation induced by AGEs.

Figure 9. Downregulation of RIPK3 inhibited CaMKII activation in cardiomyocytes. Cardiomyocytes
were transfected with RIPK3 siRNA for 4 h followed by 200 µg/mL AGEs stimulation for 24 h.
(A) The expression of ox-CaMKII and CaMKII was detected by Western blot in cardiomyocytes.
GAPDH was used as a loading control. (B) The expression of p-CaMKII and CaMKII was detected by
Western blot in cardiomyocytes. GAPDH was used as a loading control. Plots represent the mean ±
SEM; n = 6. Statistical significance: * p < 0.05, ** p < 0.01 compared with NC; # p < 0.05, ## p < 0.01
compared with NC+AGEs.
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2.10. Downregulation of RIPK3 Reduced Oxidative Stress in Cardiomyocytes

The intracellular oxidative stress increase causes cell and tissue damage. Superoxide
anion is the main reactive oxygen species in the mitochondria, and its level can be detected
by MitoSOX staining. The decrease in mitochondrial membrane potential induces excessive
production of ROS, which aggravates the impairment of mitochondrial function. The level
of mitochondrial membrane potential can be detected by JC-1 staining. The study found
that AGEs increased mitochondrial ROS (Figure 10A), decreased mitochondrial membrane
potential (Figure 10B), and enhanced oxidative stress; downregulation of RIPK3 reduced
the production of mitochondrial ROS (Figure 10A) and improved mitochondrial membrane
potential (Figure 10B) to attenuate oxidative stress.

Figure 10. Down regulation of RIPK3 reduced oxidative stress in cardiomyocytes. Cardiomyocytes
were transfected with RIPK3 siRNA for 4 h followed by 200 µg/mL AGEs stimulation for 24 h.
(A) The generation of superoxide anion reactive oxygen species in mitochondria was detected by
MitoSOX (Red) staining. Mito-Tracker (Green) co-localized mitochondria. The nuclei were stained
by DAPI (Blue). Bar = 25 µm. (B) Mitochondrial membrane potential was detected by JC-1staining.
When it is high, JC-1 aggregates in the matrix (Red). When it is low, JC-1 is mainly monomers (Green).
The nuclei were stained by DAPI (Blue). Bar = 25 µm.
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2.11. GSK′872 Pretreatment Inhibited Necroptosis in Cardiomyocytes

The above results confirmed that downregulation of RIPK3 alleviated AGEs-induced
necroptosis of cardiomyocytes and had a protective effect on cardiomyocytes. Next, we
suppressed the expression of RIPK3 by pharmacological means, and provided a basis
for finding a new drug that antagonizes diabetic myocardial damage. GSK′872 is a small
molecule specific RIPK3 inhibitor. Cardiomyocytes were pretreated with 10 µM GSK′872 for
4 h followed by 200 µg/mL AGEs stimulation for 24 h. The expression of RIPK3, Cleaved-
caspase 3, caspase 3, and the apoptosis of cardiomyocytes were assessed to explore whether
GSK′872 alleviated the necroptosis induced by AGEs. The results showed that GSK′872
pretreatment significantly inhibited the expression of RIPK3 (Figure 11A,B) and Cleaved-
caspase 3 (Figure 11D), reduced the ratio of TUNEL positive cardiomyocytes (Figure 11C),
indicating that RIPK3 inhibitor GSK′872 attenuated necroptosis of cardiomyocytes induced
by AGEs.

Figure 11. GSK′872 pretreatment inhibited necroptosis in cardiomyocytes. Cardiomyocytes were
pretreated with 10 µM GSK′872 for 4 h followed by 200 µg/mL AGEs stimulation for 24 h. (A) RIPK3
was immunofluorescence stained by Alexa Fluor 488 (Green)-conjugated IgG. The nuclei were
stained by DAPI (Blue). Bar = 75 µm. (B) The expression of RIPK3was detected by Western blot in
cardiomyocytes. GAPDH was used as a loading control. (C) The apoptosis of cardiomyocytes was
detected by One Step TUNEL Apoptosis Assay Kit. Bar = 75 µm. (D) The expression of caspase 3 and
Cleaved-caspase 3 was detected by Western blot in cardiomyocytes. GAPDH was used as a loading
control. Plots represent the mean ± SEM; n = 6. Statistical significance: && p < 0.01 compared with
control; $$ p < 0.01 compared with AGEs.
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2.12. GSK′872 Pretreatment Ameliorated the Alternative Splicing Disorder of CaMKIIδ
in Cardiomyocytes

Cardiomyocytes were pretreated with GSK′872 for 4 h followed by 200 µg/mL AGEs
stimulation for 24 h. Use 10 µM GSK′872 mRNA expression of CaMKII δA, CaMKII δB, and
CaMKII δC were detected by real-time PCR. The study found that GSK′872 pretreatment
increased the expression of CaMKII δA and CaMKII δB, but decreased the expression of
CaMKII δC, suggesting that GSK′872 corrected the AGEs-induced CaMKII δ alternative
splicing disorder in cardiomyocytes (Figure 12).

Figure 12. GSK′872 pretreatment ameliorated the alternative splicing disorder of CaMKII δ in
cardiomyocytes. Cardiomyocytes were pretreated with 10 µM GSK′872 for 4 h followed by 200 µg/mL
AGEs stimulation for 24 h. The mRNA expression of CaMKII δA, CaMKII δB, and CaMKII δC was
detected by quantitative real-time PCR in cardiomyocytes. 18S was used as a loading control. Plots
represent the mean ± SEM; n = 6. Statistical significance: && p < 0.01 compared with control;
$$ p < 0.01 compared with AGEs.

2.13. GSK′872 Pretreatment Inhibited CaMKII Activation in Cardiomyocytes

Cardiomyocytes were pretreated with 10 µM GSK′872 for 4 h followed by 200 µg/mL
AGEs stimulation for 24 h and detected the expression of ox-CaMKII and p-CaMKII.
The study found that GSK′872 pretreatment significantly decreased the expression of
ox-CaMKII and p-CaMKII induced by AGEs (Figure 13), suggesting that the GSK′872
attenuated CaMKII activation induced by AGEs.
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Figure 13. GSK′872 pretreatment inhibited CaMKII activation in cardiomyocytes. Cardiomyocytes were
pretreated with 10 µM GSK′872 for 4 h followed by 200 µg/mL AGEs stimulation for 24 h. (A) The
expression of ox-CaMKII and CaMKII was detected by Western blot in cardiomyocytes. GAPDH was
used as a loading control. (B) The expression of p-CaMKII and CaMKII was detected by Western blot in
cardiomyocytes. GAPDH was used as a loading control. Plots represent the mean± SEM; n = 6. Statistical
significance: && p < 0.01 compared with control; $$ p < 0.01 compared with AGEs.

2.14. GSK′872 Pretreatment Attenuated Oxidative Stress in Cardiomyocytes

Cardiomyocytes were pretreated with 10 µM GSK′872 for 4 h followed by 200 µg/mL
AGEs stimulation for 24 h. MitoSOX and JC-1 staining showed that GSK′872 pretreatment
decreased the production of mitochondrial ROS (Figure 14A), improved the mitochondrial
membrane potential (Figure 14B), suggesting that the GSK′872 pretreatment reduced
oxidative stress induced by AGEs.

Figure 14. Cont.
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Figure 14. GSK′872 pretreatment attenuated oxidative stress in cardiomyocytes. Cardiomyocytes
were pretreated with 10 µM GSK′872 for 4 h followed by 200 µg/mL AGEs stimulation for 24 h.
(A) The generation of superoxide anion reactive oxygen species in mitochondria was detected by
MitoSOX (Red) staining. Mito-Tracker (Green) co-localized mitochondria. The nuclei were stained
by DAPI (Blue). Bar = 25 µm. (B) Mitochondrial membrane potential was detected by JC-1staining.
When it is high, JC-1 aggregates in the matrix (Red). When it is low, JC-1 is mainly monomers (Green).
The nuclei were stained by DAPI (Blue). Bar = 25 µm.

3. Discussion

DCM refers to abnormal cardiac structure and function in the absence of other cardiac
risk factors. Recently, many intracellular pathways involved in the pathogenesis of DCM
and potential strategies to protect DCM have been discovered, including antifibrotic agents,
anti-inflammatory agents, and antioxidants. However, effective methods for preventing
and treating DCM are still limited.

AGEs play a key role in the pathogenesis of cardiovascular diseases (CVDs) [32].
Previous studies have shown that whether you have diabetes or not, the high level of serum
AGEs is related to the increased incidence of CVDs, such as arterial stiffness, atheroscle-
rotic plaque formation, and endothelial dysfunction [33]. In diabetes, the high levels of
glucose residues and metabolites promote AGEs production and destroy the function of
cardiomyocytes and endothelial cells [34]. Based on the above research, this experiment
used 200 µg/mL AGEs to stimulate cardiomyocytes for 24 h. It was found that after AGEs
stimulation, the LDH release increased, but the ATP level decreased, which successfully
simulated the cardiomyocyte damage in diabetes.

RIPK3 is an intracellular signaling protein that plays a key role in necroptosis. Studies
have found that oxidized low-density lipoprotein upregulates the expression of RIPK3 and
induces macrophages necroptosis in a RIPK3-dependent manner, leading to the atheroscle-
rotic plaque formation [35,36]. A significant increase in the expression of RIPK3 mRNA and
its phosphorylated protein can also be observed after myocardial infarction in rodents [37].
In addition, apoptosis is also an important manifestation of necroptosis. It should be
noted that the activation of caspases mediates signal transduction and the execution of
apoptotic cell death, while necroptosis can be activated under the condition of insufficient
apoptosis, leading to cell death [38]. Our study found that AGEs increased the expression
of RIPK3 and Cleaved-caspase 3, enhanced the ratio of TUNEL positive cardiomyocytes,
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suggesting that AGEs induced necroptosis in cardiomyocytes, which may be the important
pathophysiological basis of cell damage.

CaMKII is a myocyte regulator associated with calcium homeostasis, which medi-
ates cardiomyocyte death and cardiovascular related diseases [39,40]. CaMKII can be
alternatively spliced. CaMKII δA is necessary for enhancing the L-type calcium current
in neonatal cardiomyocytes [41]. During cardiac development, the CaMKII δA variant
gradually transformed into the CaMKII δB and CaMKII δC variants [31]. CaMKII δB in-
hibits cardiomyocyte apoptosis induced by adriamycin and oxidative stress, and mediates
cardioprotection [42,43]. In addition, CaMKII δC overexpression in mice accelerates the
progression of heart failure and death [44]. We found that AGEs aggravated the disorder of
CaMKIIδ alternative splicing, in which the mRNA expression of CaMKII δA and CaMKII
δB decreased, but the mRNA expression of CaMKII δC increased.

Although CaMKII δB and CaMKII δC may have different or even opposite effects on
cardiomyocyte viability, most studies have shown that excessive activation of CaMKII δ is
involved in arrhythmia [45], interstitial fibrosis [46], and apoptosis [47]. The activation of CaMKII
is enhanced in myocardial tissue of hypertrophic cardiomyopathy mice; inhibition of CaMKII
activation improves diastolic function and delays the progression of cardiac remodeling [48]. In
I/R injury, inhibiting CaMKII activation can reduce inflammation and fibrosis by regulating
NF-κB and MAPK signaling pathways [27]. We found that AGEs increased the expression of
ox-CaMKII and p-CaMKII and promoted CaMKII activation in cardiomyocytes.

In ischemia and oxidative stress injury, RIPK3 mediates the activation of CaMKII δ, in-
duces myocardial necroptosis and apoptosis, and causes decompensated cardiac remodeling
and heart failure [23]. However, it is not clear whether the AGEs-induced necroptosis of
cardiomyocytes depends on the RIPK3-CaMKII pathway. Therefore, we downregulated the
expression of RIPK3 by RIPK3 siRNA transfection, and found that RIPK3 downregulation cor-
rected CaMKII δ alternative splicing disorder, inhibited CaMKII activation, reduced oxidative
stress, attenuated necroptosis, and improved cell damage in cardiomyocytes.

The above studies have shown that RIPK3 downregulation has a protective effect on
the heart, suggesting that RIPK3 is a potential target to reduce AGEs-induced cardiomy-
ocyte damage. Pharmacological reduction of RIPK3 expression may provide a new strategy
for the prevention and treatment of DCM.

The RIPKs family contains seven members, RIPK1-7, which are key mediators of
cell survival, cell death, and death domain receptor signal transduction, cell stress, and
inflammation [49]. At present, many small molecule drugs targeting RIPK1 have been
successfully developed. Among them, the first RIPK1 inhibitor GSK2982772 has entered
clinical trials for the treatment of ulcerative colitis, psoriasis, rheumatoid arthritis, and
other inflammatory diseases [50]. Based on this, the research of small molecule RIPK3 in-
hibitors has also received more and more support. Compared with RIPK1 inhibitors, RIPK3
inhibitors can protect cells from more extensive harmful stimulation. RIPKs inhibitors have
three kinase binding modes. Type I kinase inhibitors occupy the ATP binding site and
target the active DFG-in conformation [51]. Type II kinase inhibitors target the ATP binding
site and combine with the inactive DFG-out state [52]. Type III kinase inhibitors bind to
the hydrophobic pocket of the kinase domain and target the inactive DFG-out state, with
or without ATP competition. GSK′872 is a small molecule inhibitor with high affinity to
the kinase domain of RIPK3 and specifically inhibits RIPK3 activity. However, the specific
binding mode of RIPK3 is not yet clear, so it is an unclassified inhibitor. A preclinical study
has proved that GSK′872 can reduce ischemic brain injury [21]. Similarly, in the middle
cerebral artery embolism, GSK′872 significantly reduced cerebral infarction volume [53].
However, the role of GSK′872 in the prevention and treatment of DCM remains unclear.
We pretreated cardiomyocytes with GSK′872 for 4 h and then stimulated with AGEs for 24
h. The results showed that RIPK3 inhibitor GSK′872 corrected CaMKIIδ alternative splicing
disorder, inhibited CaMKII activation, reduced oxidative stress, attenuated necroptosis,
and improved cell damage in cardiomyocytes. GSK′872 may be a potential small molecule
drug for the prevention and treatment of diabetic cardiomyopathy.
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However, our research still has some limitations. This study mainly clarified the
upstream and downstream relationship between RIPK3, CaMKII, and necroptosis by
RIPK3 downregulation. It lacked the verification of the regulation feedback test of CaMKII
and necroptosis. In addition, there was no overall animal-level discussion.

In conclusion, AGEs increased the expression of RIPK3, aggravated the disorder of
CaMKII δ alternative splicing, promoted CaMKII activation, enhanced oxidative stress,
induced necroptosis, and damaged cardiomyocytes. RIPK3 downregulation or RIPK3
inhibitor GSK′872 corrected CaMKII δ alternative splicing disorder, inhibited CaMKII
activation, reduced oxidative stress, attenuated necroptosis, and improved cell damage in
cardiomyocytes (Figure 15). The research suggests that RIPK3 may be an important target
of diabetic myocardial damage, which provides a new idea for prevention and treatment of
diabetic cardiomyopathy.

Figure 15. Mechanism of AGEs-induced necroptosis in cardiomyocytes. AGEs increased the ex-
pression of RIPK3, aggravated the disorder of CaMKII δ alternative splicing, promoted CaMKII
activation, enhanced oxidative stress, induced necroptosis, and damaged cardiomyocytes. RIPK3
downregulation or RIPK3 inhibitor GSK′872 corrected CaMKII δ alternative splicing disorder, inhib-
ited CaMKII activation, reduced oxidative stress, attenuated necroptosis, and improved cell damage
in cardiomyocytes.
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4. Methods and Materials
4.1. Cell Culture and Treatment

The primary cardiomyocytes were isolated from 1–3-day-old Sprague Dawley (SD)
rats by trypsin (Beyotime, Shanghai, China) digestion. The cardiomyocytes were cultured
in DME/F-12 medium (Hy Clone, Logan, UT, USA) containing 10% FBS (Gibco, Temecula,
CA, USA) for 24 h. The cardiomyocytes were subsequently treated with AGEs (200 µg/mL,
BioVision, Milpitas, CA, USA) for 24 h. In addition, cardiomyocytes were transfected with
RIPK3 siRNA (RiboBio, Guangzhou, China) or RIPK3 inhibitor GSK′872 (10 µM, GlpBio,
Montclair, CA, USA) for pretreatment for 4 h followed by AGEs stimulation for 24 h.

The experiment complied with Guidelines for Care and Use of Laboratory Animals
from the US National Institutes and was approved by the Instructional Animal Care and
Use Committee of Nantong University (approval no. NTU-20161225).

4.2. RIPK3 siRNA Transfection

Three RIPK3 siRNA (001: 5′-GGAAAGGCTTCTAAAGCAA-3′, 002: 5′-GCTGGAGTT
CTGAGCCTAA-3′, 003: 5′-GGACTGAAGGAGTTAATGA-3′) and NC siRNA (RiboBio,
Guangzhou, China) were obtained commercially.

After serum deprivation for 24 h, cardiomyocytes were transfected with the above-
mentioned siRNA into cardiomyocytes by lipofectamine 2000 (Invitrogen, Carlsbad, CA,
USA) for 4 h followed by AGEs stimulation for 24 h.

4.3. Lactate Dehydrogenase (LDH) Measurement

LDH release into the culture medium was detected by LDH Cytotoxicity Assay Kit
(Beyotime, Shanghai, China) according to the manufacturer’s instructions. Cardiomyocytes
were cultured in a 96-well plate with density less than 80–90%. After treatment, 120 µL
supernatant of each well and 60 µL LDH detection working solution were mixed and
incubated for 30 min in the dark. LDH release into the culture medium was calculated
according to the absorbance at 490 nm.

4.4. Adenosine Triphosphate (ATP) Measurement

Cellular ATP level was detected by CellTiter-Lumi™ Luminescent Cell Viability Assay
Kit (Beyotime, Shanghai, China) according to the manufacturer’s instructions. About 20,000
cardiomyocytes were cultured in each well of a 96-well plate. After equilibrating to room
temperature, 100 µL ATP detection reagent was mixed with culture medium in each well,
and incubated in the dark for 10 min. The ATP content of cardiomyocytes was calculated
according to chemiluminescence reading.

4.5. Real-Time PCR

Cardiomyocytes were lysed with Trizol to obtain total RNA. RNA samples of car-
diomyocytes were reverse transcribed into cDNA according to Prime Script™ RT Master
Mix Kit (Takara, Kyoto, Japan) instructions. CaMKIIδ and housekeeper mRNA primer
sequences were synthesized by Sangon Biotech (Shanghai, China) (Table 1). Each group
of cardiomyocyte cDNA was analyzed by real-time PCR three times. 18S was used as
the reference gene group. The relative expression level of CaMKIIδA, CaMKIIδB, and
CaMKIIδC mRNA was calculated according to the reference.

Table 1. The sequences of the primers for real-time PCR.

Gene Forward Primer Reverse Primer

CaMKIIδA 5′-CGAGAAATTTTTCAGCAGCC-3′ 5′-ACAGTAGTTTGGGGCTCCAG-3′

CaMKIIδB 5′-CGAGAAATTTTTCAGCAGCC-3′ 5′-GCTCTCAGTTGACTCCATCATC-3′

CaMKIIδC 5′-CGAGAAATTTTTCAGCAGCC-3′ 5′-CTCAGTTGACTCCTTTACCCC-3′

18S 5′-AGTCCCTGCCCTTTGTACACA-3′ 5′-CGATCCGAGGGCCTCACTA-3′
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4.6. Western Blot

Cardiomyocyte protein was extracted by NP-40 Lysis Buffer (Beyotime, Shanghai,
China) and PMSF (Beyotime, Shanghai, China). The protein samples were separated by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to
polyvinylidene fluoride (PVDF) membrane (Millipore, Burlington, MA, USA). After being
blocked by 5% skim milk for 2 h, the PVDF membrane was incubated with the primary
antibody at 4 ◦C overnight. The primary antibody solution included: anti-RIPK3 (1:1000,
Novusbio, Littleton, CO, USA), anti-caspase 3, anti-Cleaved-caspase3 (1:1000, Cell Signaling
Technology, Danvers, MA, USA), anti-CaMKII (1:1000, Abcam, Cambridge, UK), anti-ox-
CaMKII (1:1000, Millipore, NJ, USA), anti-p-CaMKII (1:1000, Thermo Fisher Scientific,
Rockford, IL, USA), anti-GAPDH (1: 5000, CONSON, Shanghai, China). Then, the PVDF
membrane was incubated with horseradish peroxidase (HRP)-conjugated IgG (ZSGB-BIO,
Beijing, China) for 2 h. The enhanced chemiluminescence solution (ECL, Thermo Fisher
Scientific Inc., Rockford, IL, USA) was dropped on the PVDF membrane to observe the
protein band.

4.7. Immunofluorescence Staining

Cardiomyocytes were cultured in cell climbing sheets. After treatment, cardiomy-
ocytes were incubated with anti-RIPK3 (1:100, Novusbio, Littleton, CO, USA) at 4 ◦C
overnight. Next, cardiomyocytes were incubated with Alexa Fluor 488 (1:500, Beyotime,
Shanghai, China) for 2 h. RIPK3 expression was evaluated according to the fluorescence
intensity.

4.8. TdT-Mediated dUTP Nick End Labeling (TUNEL) Staining

The apoptosis of cardiomyocytes was detected by One Step TUNEL Apoptosis Assay
Kit (Beyotime, Shanghai, China) according to the manufacturer’s instructions. Cardiomy-
ocytes were cultured in cell climbing sheets. After treatment, cardiomyocytes were incu-
bated with 50 µL TUNEL detection solution at 37 ◦C for 1 h in the dark. The apoptosis of
cardiomyocytes was assessed according to the green fluorescence intensity.

4.9. MitoSOX and Mito-Tracker Staining

Cardiomyocytes were cultured in cell climbing sheets. After treatment, cardiomy-
ocytes were incubated with MitoSOX Red (YEASEN, Shanghai, China) and Mito-Tracker
Green (Beyotime, Shanghai, China) staining solutions at 37 ◦C for 15 min in the dark. The
mitochondrial oxidative stress was evaluated according to fluorescence intensity.

4.10. Mitochondrial Membrane Potential (∆Ψm) Measurement

The mitochondrial membrane potential of cardiomyocytes was detected by Mitochon-
drial Membrane Potential Assay Kit with JC-1 (Beyotime, Shanghai, China) according to
the manufacturer’s instructions. Cardiomyocytes were cultured in cell climbing sheets.
After treatment, cardiomyocytes were incubated with JC-1 staining solution at 37 ◦C for
20 min in the dark. The ∆Ψm was evaluated according to the red fluorescence intensity of
JC-1 aggregates and the green fluorescence intensity of JC-1 monomers.

4.11. Statistical Analysis

The data were expressed as mean ± standard error (±S.E.M), processed by GraphPad
Prism software, and analyzed by one-way ANOVA, Student–Newman–Keuls (SNK) test.
P-values lower than 0.05 were considered statistically significant.
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DCM Diabetic cardiomyopathy
DM Diabetes mellitus
AGEs Glycation end products
RIPK3 Receptor interacting proteins kinase 3
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mPTP Mitochondrial permeability transition pore
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