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An enhanced dual IDW method 
for high‑quality geospatial 
interpolation
Zhanglin Li

Many geoscience problems involve predicting attributes of interest at un‑sampled locations. Inverse 
distance weighting (IDW) is a standard solution to such problems. However, IDW is generally not 
able to produce favorable results in the presence of clustered data, which is commonly used in the 
geospatial data process. To address this concern, this paper presents a novel interpolation approach 
(DIDW) that integrates data‑to‑data correlation with the conventional IDW and reformulates it within 
the geostatistical framework considering locally varying exponents. Traditional IDW, DIDW, and 
ordinary kriging are employed to evaluate the interpolation performance of the proposed method. 
This evaluation is based on a case study using the public Walker Lake dataset, and the associated 
interpolations are performed in various contexts, such as different sample data sizes and variogram 
parameters. The results demonstrate that DIDW with locally varying exponents stably produces more 
accurate and reliable estimates than the conventional IDW and DIDW. Besides, it yields more robust 
estimates than ordinary kriging in the face of varying variogram parameters. Thus, the proposed 
method can be applied as a preferred spatial interpolation method for most applications regarding its 
stability and accuracy.

Abbreviations
D-D  Data to data
D-U  Data to unmeasured/unsampled location
SI  Spatial interpolation
IDW  Inverse distance weighting; a typical SI method only considering D-D distances
DIDW  Dual IDW; an improvement of IDW, simultaneously considering D-D and D-U distances
SDIDW  A simplified DIDW, using the same value for D-U and D-D exponents of DIDW
OK  Ordinary kriging; a typical SI method in geostatistics
LVEs  Locally varying exponents (the exponent of a distance is a crucial parameter of IDW)
IDW-G  IDW with one globally constant D-U exponent
IDW-L  IDW with locally varying D-U exponents
DIDW-GG  DIDW with globally constant D-U and D-D exponents
DIDW-LG  DIDW with one locally varying D-U exponent and one globally constant D-D exponent
DIW-LL  DIDW with locally varying D-U and D-D exponents
SDIDW-LL  SDIDW with locally varying D-U and D-D exponents

Spatial interpolation (SI) or spatial prediction is a crucial topic in geosciences and related fields such as  geology1,2, 
 geography3–5,  hydrology6,7,  environment8–11, and  agriculture12. To address various concerns in these disciplines, 
a series of SI methods are developed, which differ in interpolation objectives and  basics13,14.

Nevertheless, no matter what kinds of contexts are being faced, enhancing the estimation accuracy and 
reliability is a common goal that most SI methods pursue, and so does the typical SI method—inverse distance 
weighting (IDW)1,5,15–21. In general, the interpolation accuracy of the conventional IDW or its variants could 
be improved by choosing a set of appropriate parameters such as the search model of local samples or observed 
 data3,22–24, the type of distance  metric19,25,26, and the exponent imposed on the  distance7,22,23,27,28. One exception 
is that such parameters are not available for traditional IDW when an uneven sampling rule (which is com-
monly used in geosciences) is the dominant factor that leads to its low-accuracy estimates. The reason caused 
this exception is that classical IDW omits the data-to-data relationship.

OPEN

1Computer School, China University of Geosciences, Wuhan 430074, China. 2Hubei Key Laboratory of Intelligent 
Geo-Information Processing, China University of Geosciences, Wuhan 430074, China. email: lizhl@cug.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-89172-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9903  | https://doi.org/10.1038/s41598-021-89172-w

www.nature.com/scientificreports/

To overcome this drawback, a modified version of the traditional IDW, dual IDW (DIDW), is proposed in our 
previous  study29. By incorporating the D-D correlation into classical IDW, DIDW achieves appropriate estimates 
in the presence of clustered data. Specifically, DIDW takes into account two kinds of distances: (1) the data-to-
data (D-D) distance among local sample data participating in the estimation; and (2) the data-to-unmeasured 
(D-U) distance from local samples to the location being estimated. Accordingly, two exponents are employed to 
adjust the relative influence of these two distances on DIDW estimation.

Despite these merits above, the traditional  DIDW29 suffers from the invariance of its exponents across the 
study area and a lack of a practicable criterion for evaluating and finding appropriate DIDW exponents, leading 
to its limited ability to generate high-quality estimates. Thus, this study proposes an enhanced framework of 
DIDW with locally varying exponents (LVEs) that significantly improves the interpolation process’s flexibility, 
with enough rationality in accounting for local spatial data configuration and its relationship to the estimated 
point. To obtain appropriate LVEs, a generalized objective function is developed, which is implemented based 
on the estimation error variance commonly used in  geostatistics1,30. The main flowcharts of the traditional and 
improved DIDW methods are shown in Fig. 1. Compared to globally constant exponents used in the traditional 
DIDW, LVEs are appropriately incorporated and optimized in the proposed method.

Three methods comprising the traditional IDW with LVEs (IDW-L), DIDW with two global exponents 
(DIDW-GG), and ordinary kriging (OK) are applied to evaluate the interpolation performance of the proposed 
method. This evaluation is based on a case study using the public Walker Lake  dataset1, and the associated 
interpolations are performed in various contexts, such as different sample data sizes and variogram parameters. 
Our results demonstrate that the DIDW with LVEs stably produces more accurate estimates than IDW-L and 
DIDW-GG; it also yields more robust estimates than OK in the face of varying variogram parameters.

The major contributions of this research can be summarized as follows: (1) traditional DIDW is reformulated 
to incorporate locally varying exponents; (2) the appropriate exponents for each estimated location are adaptively 
determined using a generalized objective function; and (3) the performance evaluation of the proposed method 
is also elaborated, confirming its feasibility and stability. Thus, DIDW with LVEs can be applied as a preferred 
SI method for most applications regarding its stability and accuracy.

Figure 1.  Flowcharts of the traditional DIDW with globally constant exponents (a) and the enhanced version 
with locally varying exponents (b).
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Methods
In this section, traditional DIDW-GG is first introduced. Its improved versions, DIDW with two locally varying 
exponents (DIDW-LL) and the simplified DIDW-LL (SDIDW-LL), are proposed and elaborated in detail. A brief 
introduction to OK is illustrated in Supplementary Method online.

DIDW‑GG. Let xi(i = 1, 2, . . . , N) be a coordinate point in q 
(

q ≥ 1
)

 dimensional space and z(xi) be the 
sampled (observed) value of a variable z at this location. For an unsampled point x0 to be estimated, the widely 
used linear regression estimator ẑ(x0) is defined  as1,30:

with

where �i(x0) is the estimation weight assigned to the i-th measured value z(xi) , and n(x0) represents the number 
of data closest to the estimated location x0.

For DIDW-GG, its estimation weight is calculated  by29:

where d0i is the D-U distance from the i-th data to the estimated location x0 ; dij represents the D-D distance 
between the i-th and j-th sample locations; and p1 ( p1 ≥ 0 ) and p2 ( p2 ≥ 0 ) are the corresponding D-U and 
D-D exponents to adjust the contributions of d0i and dij to the estimation, respectively.

Note that in the case of p2 = 0 , DIDW-GG degrades into the traditional IDW-G, of which the estimation 
weight is:

It is also notable that both D-U and D-D exponents in Eq. (3) are global constants across the study region. 
This feature may limit DIDW-GG to produce high-quality estimates, especially when the spatial phenomenon 
under study is involved and the sampling data is irregularly distributed.

DIDW‑LL. Aiming to integrate locally varying exponents in the estimation, each DIDW-GG exponent in 
Eq. (3) is interpreted as a function of the location being estimated. As a result of this interpretation, the DIDW-
LL weight is calculated as follows:

where p1(x0) and p2(x0) are the local exponents that can be applied to adjust the contributions of d0i and dij , 
respectively.

To a large extent, the two locally varying exponents in Eq. (5) entail the flexibility and suitability of the 
improved DIDW. For an estimated point surrounded by a set of highly clustered local samples, a large D-D 
exponent (i.e., p2(x0) ) should be adopted to produce significant declustering weights. Conversely, if this point 
is close to a group of regularly distributed samples, a relatively small D-D exponent is preferred to avoid such a 
strong declustering effect.

Similarly, in the case of p2(x0) = 0 , DIDW-LL in Eq. (5) degrades into the traditional IDW-L23, of which the 
estimation weight can be expressed as:

 Besides, if p1(x0) and p2(x0) were constant for every estimated location, Eqs. (5) and (3) would be equal; in other 
words, DIDW-LL degrades into DIDW-GG in this situation.
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SDIDW‑LL. As compared with IDW-L, the flexibility of DIDW-LL is at the cost of complexity. Thus, the 
estimation weights in Eq. (5) are simplified by assuming that p1(x0) equals p2(x0) , resulting in the SDIDW-LL 
estimation weights:

where p1(x0) is the local exponent to simultaneously adjust the influences of d0i and dij to the estimation.

Determination of locally varying exponents. Suppose p is a vector consisting of DIDW-LL exponents 
to be optimized (e.g., p =

[

p1(x0), p2(x0)
]T ), and OL

(

p
)

 is the objective function to evaluate the suitability of 
these parameters. Then, the corresponding optimization of the local exponents is:

where D is the definition domain of the vector p , and D ⊂ R
2.

The objective function could be implemented in terms of different assessment criteria, such as the typical 
error measurements (i.e., true error, absolute error, and so on), interpolation selection  index31, estimation error 
 variance1,30,32, and the intensity of neighboring  data28. Among these measurements, the error variance is fre-
quently employed in geostatistical  methods23,33 and considered in this research.

According to the statistical theory on random function  model1, all of the data z(xi) could be interpreted as a 
realization of the random variable (RV) Z(xi) . Likewise, this interpretation of the unknown value z(x0) and 
measured value z(xi) as realizations of the RVs Z(x0) and Z(xi) allows one to define the estimation error as an 
RV, 

[

Ẑ(x0)− Z(x0)
]

 . Under the stationarity assumption, the estimation error variance can be calculated  by23,30:

where C(·) stands for the covariance function model used for the study area.
Note that �i(x0) and Ẑ(x0) are expressed as �i(x0; p) and Ẑ(x0; p) in Eq. (9), respectively. This expression is 

to explicitly indicate that the DIDW-LL estimate and weight are related to the parameter vector p . Based on Eqs. 
(8) and (9), the optimized exponents can be rewritten as:

The parameter vector p in this optimization process is flexible to be specified. For example, it can contain only 
the D-D or D-U exponent, or both. In this research, three typical application scenarios are chosen as follows:

1) DIDW with locally varying D-U and D-D exponents (i. e., DIDW-LL). In this way, both D-D and D-U 
exponents are locally optimized in Eq. (10);

2) SDIDW with locally varying D-U and D-D exponents (i. e., SDIDW-LL). The two exponents are equal for 
SDIDW-LL, and thus only one element needs to be placed in the vector being optimized;

3) DIDW with a local D-U exponent and a global D-D exponent (i. e., DIDW-LG). In this situation, the local 
D-U exponent is optimized in Eq. (10), while the global D-D exponent can be determined by minimizing 
cross-validated estimation error.

Algorithm implementations. The pseudocodes of DIDW-LL and DIDW-LG are described in Algo-
rithm 1 and 2, respectively. It is worth noting that it is necessary to search for an appropriate global D-D expo-
nent based on cross-validation before DIDW-LG is performed.
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Figure 2.  (a) 470 sample data and (b) 780 grid nodes (10 m by 10 m) to be estimated and their actual  values29. 
The sample configuration within the marked search circle is illustrated in Fig. 5.
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Figure 3.  (a) Local sample numbers, and (b) the variance of the numbers of neighborhood samples in the four 
quadrants.
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Results
Experiment design. For the sake of consistency and comparability between this research and our previous 
work on DIDW-GG29, similar experiment data and calculation parameters to that work are adopted in this study.

Experiment data. The standard Walker Lake  dataset1,29 is employed in this research, which is derived from 
a digital elevation model (DEM) from the western United States, the Walker Lake area in Nevada. Following the 
interpolation applications  in1, 470 irregularly spaced samples and 780 regularly distributed locations from this 
dataset are used as sampled and estimated data, respectively. The origin of the 780 regular points is 5E, 5 N (i.e., 
X = 5 m, Y = 5 m), and the spacing between points is 10 m in both the north–south and the east–west directions.

The locations and the associated attribute values are shown in Fig. 2, along with the complete data in Sup-
plementary Data online. An extensive description of the dataset can be found  by1.

Experiment methods. The conventional IDW-L and DIDW-GG are used as benchmarks to assess the 
interpolation performance of the proposed method. Also, since OK possesses the same optimization objective as 
DIDW-LL and IDW-L, it is applied as a reference to accomplish the performance evaluation.

Accordingly, there are six methods to be evaluated: DIDW-LL, SDIDW-LL, DIDW-LG, DIDW-GG, IDW-L, 
and OK. These methods are applied to estimate the 780 grid nodes using the 470 irregular sample points (Fig. 2); 
their estimates are then compared with the actual values to generate reliable estimation errors. To distinguish 
it from cross-validated interpolation, this process of interpolating the 780 grid nodes is referred to as "actual 
interpolation" in the following test.

Experimental parameters. A series of D-U and D-D exponents ranged from 0.0 to 20.0 with step 0.1, are 
considered to exhibit the interpolation behavior of the developed methods. Given these exponent candidates, 
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DIDW-LL, SDIDW-LL, DIDW-LG, and IDW-L search for appropriate ones using Eq. (10); DIDW-GG finds its 
suitable exponents by a cross-validation-based  optimization29.

All local samples within 25 m are chosen to participate in the estimations. Besides, to observe the clustering 
feature of neighborhood samples, the available data are divided into quadrants, and the variance of the number 
of samples in the four quadrants could be used as an index of  clustering1. Note that the reliability of these indices 
depends on the total number of conditioning data within each neighborhood (in Fig. 3a); an index resulting from 
a large number of local samples is more reliable than that with a small sample size. Therefore, the sub-region 
highlighted by the red ellipse in Fig. 3b is of higher reliability than other locations under study.

To obtain the covariance coefficients in Eq. (10), N14°W is chosen as the direction of maximum continuity, 
and its variogram adopted  is1:

In the direction of minimum continuity (N76°E), the model is:

The accompanying experimental and theoretical variograms in these two directions are shown in Fig. 4.

An illustration of DIDW‑LL weights. A representative estimation instance corresponding to the sample 
configuration marked by the search circle in Fig. 2 is depicted in Fig. 5. The associated DIDW-LL, DIDW-GG, 
IDW-L, and OK estimation weights are illustrated in Fig. 6. Some observations can be made about this figure.

First, IDW-L yields unreasonable sample weights with respect to data redundancy. For example, this approach 
does not recognize the relative importance of the samples indicated by the pentagons in Fig. 5. In contrast, DIDW-
LL, DIDW-GG, and OK reasonably account for the underlying data redundancy in this sample configuration.

Besides, the resulting weights from DIDW-LL and OK are quite similar due to the same estimation objective, 
implying that DIDW-LL would approximate OK in terms of estimates and the associated error variances. This 
phenomenon for DIDW-LL is reasonable and expectable since kriging’s underlying declustering mechanism is 
widely  accepted1,34. On the other hand, DIDW-GG does not bear such a significant resemblance to OK, especially 
for the first data point (i.e., the sample with an ID of "1") in Fig. 6. It should be pointed out that, by tuning its 
D-D and D-U exponents, DIDW-GG could account for a specific data configuration satisfactorily. However, it 
may be difficult for DIDW-GG to search for very suitable D-D and D-U exponents simultaneously for multiple 
estimated points because its exponents are constant across the study area. Further analyses on the correlation 
between OK and DIDW-LL, DIDW-LG, IDW-L are illustrated in the following sections.

Moreover, note that the negative OK weights can be observed. Although these weights are valid and accept-
able in theory, they would also lead to unrealistic estimates in some practical  applications35. Noticeably, this issue 
will not arise in the developed methods as the basic idea of weight assignment of IDW is inherited by DIDW.

Consequently, DIDW-LL has favorable characteristics in the following aspects: (1) compared with IDW-L, it 
can recognize the clustered sample data more accurately; (2) relative to OK, it entails non-negative estimation 
weights; and (3) as compared with DIDW-GG, it has more opportunities to appropriately account for the sample 
configuration regarding every single estimated point.

DIDW‑LL and SDIDW‑LL estimations. As stated above, all of the test estimators are applied to interpo-
late the 780 grid nodes (in Fig. 2). Figure 7a exhibits the D-D exponents resulting from the DIDW-LL estimation. 
As expected, they are overall in line with the clustering degree of local data represented in Fig. 3b, especially for 
the highlighted elliptical sub-area. Generally, the more strong clustering is observed, the larger D-D exponents 
will be.
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Figure 6.  Resulting weights associated with the data pattern shown in Fig. 5 using the four different estimators. 
For the DIDW-GG, its D-D and D-U exponents are both set as 2.0.
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Figure 7b–d represents the corresponding D-U exponents from the DIDW-LL, SDIDW-LL, and IDW-L 
methods, respectively. They have similar spatial distribution patterns to the local data numbers shown in Fig. 3a. 
The overall feature is that the estimated locations with a large number of conditioning data tend to be attached 
with a high D-U exponent; conversely, a relatively low D-U exponent is applied when the number of local sam-
ples is small.

Figure 8 depicts the comparisons of the actual values and estimates from DIDW-LL, SDIDW-LL, and the 
reference estimators (IDW-L, DIDW-GG, and OK). DIDW-LL, SDIDW-LL, and OK possess very similar inter-
polation accuracy, superior to either IDW-L or DIDW-GG. The scatterplots represented are similar to each other, 
especially for the variogram-based estimators (i.e., DIDW-LL, SDIDW-LL, IDW-L, and OK). This feature is 
further exhibited in Fig. 9, which indicates that the estimates and the associated error variances from DIDW-LL 
and SDIDW-LL bear a more significant correlation to the OK results than those from IDW-L and DIDW-GG. 
This phenomenon is expectable because IDW-L ignores the D-D correlation, and DIDW-GG does not aim to 
minimize the estimation error variance.

00  11 22 33  44 55 >>==66

00 2255 5500 7755 110000 112255 115500 117755 220000 222255 225500
00

2255

5500

7755

110000

112255

115500

117755

220000

222255

225500

227755

330000
((aa))  ((bb))  

((cc))  ((dd)) 
Figure 7.  (a) D-D and (b) D-U exponents of DIDW-LL; D-U exponents of (c) SDIDW-LL and (d) IDW-L.
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Consequently, DIDW-LL and SDIDW-LL produce very similar estimates and error variances to OK; both 
estimators are superior to the traditional IDW-L and DIDW-GG concerning the flexibility, interpolation accuracy, 
and the ability to produce a lower estimation error variance.

DIDW‑LG estimation. To evaluate the interpolation performance of DIDW-LG, cross-validation is first 
applied to determine an appropriate global D-D exponent, which is then employed to accomplish the interpola-
tion for the 780 estimated locations.

Cross‑validations. In the process of cross-validation using DIDW-LG, four classical error measurements, 
including mean true error (MTE), mean absolute error (MAE), root mean square error (RMSE), and the cor-
relation coefficient between actual and estimated values, are used to explore the interpolation accuracy as well 
as to determine an appropriate global D-D exponent. The corresponding results are shown in Fig. 10, and some 
observations can be made as follows.

First, in Fig. 10a, as the D-D exponent increases, the MTE presents a monotonic decreasing tendency, indi-
cating a continuous decrease of the associated estimates in total. This decline of the estimates, resulting from 
the declustering, is in line with the sampling strategy (the samples are preferentially collected in the high-value 
areas as shown in Fig. 2a) and thus demonstrates the validity of DIDW-LG.

Additionally, it is also notable that the origin of each subplot in Fig. 10 corresponds to the case when IDW-L 
is used. Obviously, there are numerous D-D exponents, which would entail that DIDW-LG is more accurate 
than IDW-L.

Moreover, both MAE and RMSE indicate that a D-D exponent of 4.0 is appropriate, thus employed in the 
actual interpolation below.

Actual interpolations. Based on the optimal D-D exponent stated above, the actual interpolation using DIDW-
LG is conducted, and the corresponding results are depicted in Fig. 11. Overall, the essential characteristics of 
DIDW-LG results, including the D-U exponents, interpolation accuracy, and the similarity compared with OK, 
are consistent with DIDW-LL and SDIDW-LL (shown in Fig. 7). This consistency demonstrates that DIDW-LG 
also produces more favorable estimates than IDW-L and DIDW-GG.

Moreover, it is still worth providing qualitative insights into the actual interpolation performance of DIDW-
LG with different D-D exponents. In Fig. 12, it can be observed that the behavior of MTE from DIDW-LG is 
normal as expected, which is rather similar to what is revealed in Fig. 10a. Likewise, as exhibited by RMSE or 
MAE, there are numerous D-D exponents that would yield more accurate DIDW-LG estimates than the con-
ventional IDW-L.
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Figure 8.  Scatterplots of the measured values vs. estimates from (a) DIDW-LL; (b) SDIDW-LL; (c) IDW-L, (d) 
DIDW-GG, and (e) OK.
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Figure 9.  Comparisons between estimates and error variances from OK and those from (a) DIDW-LL; (b) 
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Sensitivity analysis. In this section, a series of different sample datasets and spatial correlation parameters 
are generated to test the reliability and stability of the developed methods.

Test with different datasets. Ten sample sub-datasets, drawn as 10%, 20%, …, 100% of the data from the 470 
sample points and orderly named as S10, S20, …, S100, are applied to estimate the 780 grid nodes by the tested 
estimators. The detailed sample locations of these datasets can be found as Supplementary Fig. S1 online.

As exhibited in Fig. 13 and its accompanying result in Table 1, in general, IDW-L produces the most inaccurate 
results among the test methods. The main reason should be that IDW-L completely ignores the correlation among 
sample data. On the contrary, OK yields the most accurate estimates. Following OK, DIDW-LL and DIDW-LG 
yield very similar estimation results, which are slightly more accurate than SDIDW-LL. Despite this, SDIDW-LL 
is still superior to either IDW-GG or IDW-L with respect to interpolation accuracy.

These characteristics are generally consistent with those illustrated in the above tests (as shown in Sect. 4.3 
and 4.4), implying the stability of the developed methods in the context of various sample datasets.

Test with different variogram parameters. It is widely accepted that the practical success of kriging estimators 
heavily depends on the suitability of the chosen variogram 36. Likewise, due to the introduction of the error 
variance in Eq. (10), either DIDW-LL or DIDW-LG is unavoidably dependent on the reliability of the spatial 
structure. Nevertheless, the degree of this dependence is not very clear, which deserves to be elaborated.

To achieve this elaboration, the reference variogram model in Eq. (11) is perturbed to generate a set of spatial 
structures in the following two aspects: (1) ten main anisotropy angles, evenly dividing the search space, are 
designed based on the main anisotropic direction (340°) of the reference variogram model; (2) likewise, the 
first range, 30 m, along the direction of maximum continuity in Eq. (11) is applied to create ten new variogram 
models through equally increasing its value by 0 m, 10 m, 20 m, …, 90 m.

Figure 14 exhibits the resulting interpolation accuracies of the five variogram-based methods with various 
anisotropy angles. Judging from the bend degree of the RMSE or correlation coefficient curves, the most sensitive 
method to the main anisotropy angle is OK, followed by IDW-L, DIDW-LL, and SDIDW-LL, which bear similar 
sensitivities; DIDW-LG presents significant stability under the condition of various directions of maximum con-
tinuity. The tested methods sorted by the overall interpolation accuracy from best to worst are OK, DIDW-LG, 
DIDW-LL, SDIDW-LL, and IDW-L, respectively. Nevertheless, it is noticeable that the DIDW-LG with several 
main anisotropy angles, such as 40° and 58°, also generates more accurate estimates than OK.

Figure 15 reveals the corresponding estimates in the case of varying variogram ranges. Most methods rep-
resent favorable stability except OK, which tends to yield less accurate estimates than IDW-L in terms of the 
RMSE or correlation coefficient.
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Consequently, all three implementations of the proposed DIDW with LVEs (i.e., DIDW-LL, SDIDW-LL, 
and DIDW-LG) are significantly superior to the traditional IDW-L and DIDW-GG. When the spatial correla-
tion is accurately captured, their results could bear significant similarity to OK outcomes; otherwise, they may 
outperform OK, especially for DIDW-LG.

Discussion
To some extent, it is rational to consider that DIDW with LVEs approximates OK since they share the same opti-
mization goal, minimizing estimation error variance. This approximation would be enhanced by using variogram 
distance instead of the Euclidean metric employed in this study, probably improving the estimation accuracy 
when spatial anisotropy in the study region is significant. However, this replacement should be cautiously applied 
since it may increase the dependency of the proposed method on the spatial structure.

Moreover, the designed objective function could be implemented more flexibly. For instance, other estimation 
parameters in the proposed method, such as the type of search model and search radius, can also be added into 
the vector p in Eq. (10), and optimized together with the local exponents to further improve the interpolation 
accuracy. For the sake of practicability, more advanced optimization technologies in machine learning methods, 
such as the genetic  algorithm37,38 and simulation  annealing39, would be helpful to achieve this goal.

Finally, the main characteristics of OK and DIDW with LVEs is summarized in Table 2. In addition to the 
two methods, the radial basis function interpolation (RBFI)40,41 is described in this table, because it is also a 
frequently used SI method that accounts for the effect of clustering. It is notable that, unlike RBFI and OK, the 
proposed method does not need to solve a system of equations. This feature would be attractive in a big data or 
high-dimensional context, where numerical instability of the solution to the system exists.
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Conclusions
In this paper, a new dual IDW framework (DIDW with LVEs) that can account for the D-D and D-U correlations 
flexibly is proposed. It involves two key points: (1) the original DIDW formalism is modified to incorporate 
the LVEs; (2) a generalized objective function aiming to minimize the estimation error variance is developed 
to determine appropriate LVEs. Within this framework, DIDW can self-adaptively choose suitable exponents 
according to local data configuration and correlation. This feature entails that DIDW can capture locally changed 
physical features, thereby increasing the accuracy and reliability of its estimates.

The real-world application shows that DIDW with LVEs is more flexible and robust than the traditional 
IDW-L and DIDW-GG. Besides, it is superior to OK in many aspects; for instance, it is immune to negative 
estimation weights, applicable for high-dimensional SI issues, and less sensitive to variogram parameters.

In future work, the author plans to empower DIDW with enough capabilities in accounting for complex 
spatial  dependency42–44 and finding more efficient means to seek appropriate LVEs.
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Table 1.  RMSE and correlation coefficient (CC) corresponding to various estimators using different sample 
datasets.

Dataset

DIDW-LL SDIDW-LL DIDW-LG IDW-L DIDW-GG OK

RMSE CC RMSE CC RMSE CC RMSE CC RMSE CC RMSE CC

S10 260.49 0.5854 260.96 0.5817 260.63 0.5834 261.30 0.5826 261.80 0.6012 259.86 0.5873

S20 206.40 0.6512 207.47 0.6467 209.01 0.6500 208.25 0.6448 209.98 0.6569 205.38 0.6560

S30 200.51 0.6706 201.09 0.6672 200.03 0.6672 203.47 0.6682 202.72 0.6539 199.26 0.6765

S40 185.66 0.6987 186.16 0.6950 185.62 0.6927 189.46 0.6921 186.75 0.6904 184.36 0.7040

S50 168.47 0.7517 169.54 0.7471 169.37 0.7444 172.65 0.7442 172.50 0.7312 167.22 0.7566

S60 163.78 0.7646 164.89 0.7604 163.67 0.7606 169.64 0.7530 167.03 0.7481 161.55 0.7722

S70 156.60 0.7838 157.24 0.7816 155.90 0.7835 162.58 0.7704 158.00 0.7767 153.85 0.7915

S80 153.40 0.7935 154.92 0.7886 153.49 0.7909 160.17 0.7784 155.92 0.7830 150.74 0.7999

S90 149.85 0.8035 150.77 0.8007 149.27 0.8037 156.89 0.7875 152.02 0.7947 147.05 0.8098

S100 146.46 0.8124 146.78 0.8118 145.50 0.8149 152.11 0.7999 150.44 0.8008 144.13 0.8178
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Figure 14.  Actual interpolation accuracies of the tested methods with varying anisotropy angles, measured by 
(a) RMSE and (b) correlation coefficient.
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Figure 15.  Actual interpolation accuracies of the tested methods with varying variogram ranges, measured by 
(a) RMSE and (b) correlation coefficient.

Table 2.  Main characteristics of OK, radial basis function interpolation (RBFI), and DIDW with LVEs.

Main characteristics OK RBFI DIDW with LVEs

Is it dependent on statistical theory? Yes No Yes

Does it include a declustering mechanism? Yes Yes Yes

Does it need to solve a system of equations? Yes Yes No
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