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ABSTRACT: Production of hydrogen through water splitting is
one of the green and the most practical solutions to cope with the
energy crisis and greenhouse effect. However, oxygen evolution
reaction (OER) being a sluggish step, the use of precious metal-
based catalysts is the main impediment toward the viability of
water splitting. In this work, amorphous copper oxide and doped
binary- and ternary-metal oxides (containing CoII, NiII, and CuII)
have been prepared on the surface of fluorine-doped tin oxide by a
facile electrodeposition route followed by thermal treatment. The
fabricated electrodes have been employed as efficient binder-free
OER electrocatalysts possessing a high electrochemical surface area
due to their amorphous nature. The cobalt−nickel-doped copper
oxide (ternary-metal oxide)-based electrode showed promising OER activity with a high current density of 100 mA cm−2 at 1.65 V
versus RHE that escalates to 313 mA cm−2 at 1.76 V in alkaline media at pH 14. The high activity of the ternary-metal oxide-based
electrode was further supported by a smaller semicircle in the Nyquist plot. Furthermore, all metal-oxide-based electrodes offered
high stability when tested for continuous production of oxygen for 50 h. This work highlights the synthesis of efficient and cost-
effective amorphous metal-based oxide catalysts to execute electrocatalytic OER employing an electrodeposition approach.

1. INTRODUCTION

The depletion and hazardous effects of fossil fuels have raised
concerns to seek alternative renewable and green energy
sources.1−3 Hydrogen is a clean fuel and a charming alternate
that yields water as the only byproduct during the combustion
reaction. Electrocatalytic water splitting utilizes water as an
abundant source to obtain hydrogen fuel and is one of the most
promising and environmentally friendly routes.4−6 However,
during water electrolysis to produce hydrogen, oxygen evolution
reaction (OER) at the anode is a limiting step involving a four-
electron-transfer process. Due to the sluggish kinetics of the
OER, a much higher potential than the thermodynamic
potential is required for water oxidation that decreases the
efficiency of water electrolysis.7,8 In order to make the process
more effective, efforts are being made to establish efficient
electrocatalysts that minimize the required overpotential for
water oxidation. State-of-the-art electrocatalysts for OER are
precious-metal-based oxides of Ir, Ru, and their combinations.
However, their high cost and instability during prolonged OER
in basic mediums hinder their commercialization in electro-
chemical water splitting.9−12 Therefore, there is a need for highly
efficient, cost-effective, and stable electrocatalysts to facilitate
OER reaction kinetics.

A wide range of different nanomaterials with multiple
advantages over conventional materials has been used to explore
their potential toward electrochemical water splitting. Nano-
materials such as carbon nanotubes, graphene, metal−organic
framework, polyoxometalates, and polymers and their compo-
sites are under intensive investigation for their use in energy-
related processes.13−19 Several transition-metal-based nanoma-
terial electrocatalysts have been explored including metal
oxides,20−23 double-layered hydroxides,24,25 sulfides,12,26 sele-
nides,27,28 and phosphides29−32 as favorable candidates for
OER. Due to the low-cost and facile synthesis, transition-metal-
based oxides are an attractive substitute for RuO2 and IrO2 for
water oxidation. In this regard, mixed-metal oxides and doped-
metal oxides have also been employed as advantageous strategies
for the tuning of the electrocatalytic properties of the
material.21,33,34 In general, crystalline materials have remained
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the focus of research for water splitting, whereas electrocatalytic
properties of amorphous materials have rarely been explored
due to their characterization difficulty. It has recently been
reported that amorphous materials may outperform their
crystalline counterpart with improved electrochemical activity
and lower overpotential values. Better electrocatalytic properties
may be ascribed to the surface defects and abundant dangling
bonds that may furnish additional active sites to attain enhanced
electrochemical properties.35−38 Electrodeposition is a facile,
cost-effective, and environmentally friendly method for the
preparation of amorphous materials imparting high surface
roughness and surface area for better electrocatalytic activity. An
added advantage of electrodeposition over the various routes
adopted for the synthesis of these materials is its binder-free
approach with greater stickiness to the substrate and higher
activity.39,40

In this work, we report the development of efficient and cost-
effective electrocatalytic electrodes with amorphous nature and
homogeneity of the catalyst deposited through a binder-free
approach. We have synthesized amorphous copper oxide
(CuO@FTO), cobalt-doped copper oxide (CoxCuyO@FTO),
nickel-doped copper oxide (NixCuyO@FTO), and cobalt−
nickel-doped copper oxide (CoxNiyCuzO@FTO) through
electrochemical deposition followed by the annealing method.
The polarization curves, Tafel slopes, and electrochemical
impedance studies of CoxNiyCuzO@FTO showed superior
electrocatalytic properties as compared to the other synthesized
oxides. This was further supported by the higher double-layer
capacitance (Cdl) of CoxNiyCuzO@FTO and its larger electro-
chemical surface area (ECSA) providingmore active sites for the
electron-transfer process. Moreover, the smaller diameter of the
semicircle in the Nyquist plot corresponds to the lesser charge-
transfer resistance for CoxNiyCuzO@FTO. Chronoamperomet-
ric studies reflected the stability of all fabricated electrodes when
tested for the continuous production of oxygen for 50 h.

2. RESULTS AND DISCUSSION
Powder X-ray diffraction (PXRD) patterns were recorded for all
prepared samples. None of the fabricated electrodes showed any
obvious peaks for the deposited films, reflecting that the
synthesized catalysts are predominately X-ray amorphous.41

Figure 1 shows the XRD patterns for CuO@FTO and doped
binary- and ternary-metal oxides at the fluorine-doped tin oxide
(FTO) surface compared to the reference SnO2 [JCPDS 00-
002-1337]. It is obvious from the overlay that sharp peaks in the
range of 20 to 75° 2θ values obtained for all fabricated electrodes
belong to the FTO substrate.
The morphological and textural information of all fabricated

electrodes was assessed by scanning electronmicroscopy (SEM)
analysis. The images for CoxNiyCuzO@FTO are shown in
Figure 2, whereas that of binary-metal oxide-based electrodes
are shown in Figures S1−S3. Figure 2a,b illustrates the uniform
distribution of the nearly spherical particles of CoxNiyCuzO@
FTO. The grain size was observed to be in the range of 40−120
nm, while the estimated average grain size was 75 nm (as given in
the inset of Figure 2a). When the surface of the electrode
material was examined at lower magnification, corn-like
segments of the agglomerated particles were observed (see
Figure 2c,d). Energy dispersive X-ray (EDX) spectra showed the
presence of Co, Cu, Ni, and oxygen in the synthesized metal
oxide films (S4). Elemental mapping of Cu, Ni, Co, and O, as
shown in Figures 3 and S5−S7, clearly elaborated the growth of
their respective oxide with a uniform distribution over the

surface of the FTO substrate. The elemental X-ray maps for
CoxNiyCuzO@FTO (Figure 3) show the spatial distribution of
Ni, Cu, Co, and O in the deposited film. However, mapping of
Cu and O shows accumulated concentrations in some regions
that indicate the agglomeration of CuO.
Further exploration of surface electronic properties and

oxidation states of fabricated electrodes was carried out by XPS
analysis. In Figure 4, the photoelectron spectra and the fits for
Cu 2p1/2 and 2p3/2, Co 2p1/2 and 2p3/2, Ni 2p1/2, and 2p3/2
doublets and O 1s peaks are shown. It was found that all metals
were present in a +2 oxidation state. Three peaks were observed
at the binding energies of 779.6, 932.9, and 855.8 eV that were
assigned to Co 2p3/2, Cu 2p3/2, and Ni 2p3/2, respectively, and
correspond to their respective oxides, that is, CoO, CuO, and
NiO. Theminor shifts in the binding energies may be ascribed to
the different chemical environments.42,43 The spectrum of the
Co 2p (Figure 4a) exhibits mainly a doublet with a binding
energy of 779.6 and 794.9 eV for Co 2p3/2 and 2p1/2,
respectively, which is in the range of CoO (Co2+).44 A minor
difference of 0.1 eV is attributed to the different chemical
environments. Similarly, the spectrum of Ni 2p (Figure 4b) also
consists of a doublet with a binding energy of 855.8 eV for 2p3/2
which is attributed to the +2 oxidation state of Ni.45 The
spectrum of the Cu 2p consists of a doublet with a binding
energy of 932.9 and 952.6 eV for the Cu 2p3/2 and 2p1/2,
respectively, which are attributed to the +2 oxidation state of
copper. In the spectrum of Cu 2p, shake-up satellite peaks are
visible at higher binding energies as compared to the main
photoelectron peaks with a singlet or irregular doublets which is
the characteristic of copper in the +2 oxidation state.46 The
spectrum of O 1s peak exhibits four components at 529.6, 531,
531.9, and 533 eV where the peak at 529.6 eV is attributed to
CoO and CuO.44,47 The peak at 531 eV is attributed to NiO.44

The minor peaks at 531.9 and 533 eV are attributed to the
surface contaminations which could be due to the transport of
the sample from the electrodeposition setup to the XPS
chamber.
Electrocatalytic OER performance of binary- and ternary-

metal oxide-based electrodes was examined in alkaline solution
(1 M KOH) with a standard three-electrode system. The
fabricated electrodes were electrochemically tested using linear

Figure 1. XRD patterns of CuO@FTO, CoxCuyO@FTO, NixCuyO@
FTO, and CoxNiyCuzO@FTO compared with SnO2 reference.
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sweep voltammetry in the range of 0 to 1.8 V versus RHE at a 5
mV/s scan rate. Figure 5a represents overlaid polarization curves
of the bare FTO and modified ones with mono-, binary-, and
ternary-metal oxides. Overpotential at 10 mA cm−2 for CuO@
FTO, NixCuyO@FTO, and CoxCuyO@FTO were observed at
436, 433, and 422 mV, respectively, that increases to 530 mV for
CuO@FTO and 513 mV for CoxCuyO@FTO at 100 mA cm−2.
Compared to these, overpotential for CoxNiyCuzO@FTO was
significantly reduced to 388 mV at 10 mA cm−2 and 475 mV at
100 mA cm−2 which depicted its superior electrocatalytic OER
performance. Electrochemical performance in terms of kinetics
for OER was further investigated by the Tafel slope (Figure 5b)
derived from polarization curves.
Tafel slopes calculated from the Tafel plots were found to be

∼89.7, ∼110, and ∼86 mV/dec for CuO@FTO, NixCuyO@
FTO, and CoxCuyO@FTO, respectively. The lower value of the
Tafel slope for CoxCuyO@FTO (86.3 mV/dec) among binary-
metal oxides depicts its better performance in terms of faster
kinetics, while NixCuyO@FTO has the lower performance with
110 mV/dec value of the Tafel slope. This reveals that the
binary-metal combination of Cu along with Co enhanced the
material performance with favorable kinetics due to more active
sites in electrochemical OER. Comparative to mono- and
binary-metal oxides, CoxNiyCuzO@FTO has a much lower
value of the Tafel slope, that is, ∼71 mV/dec indicating a much
higher reaction rate for the electrochemical water splitting
process in the ternary-metal oxide. This may be ascribed tomore
active sites and high surface area possessed by CoxNiyCuzO@
FTO than mono- and binary-metal oxide-based electrodes.

Cyclic voltammetry (CV) was performed in the non-faradaic
region at various scan rates to assess the double-layer
capacitance and ECSA of the fabricated electrodes (Figure
S8). When the scan rate was plotted versus the current density, a
linear relationship was observed that was then fitted using a
linear function to obtain the Cdl for each electrode (inset of
Figure S8). Electrochemical parameters such as overpotential at
10 and 100 mA cm−2 current densities, Tafel slope values, Cdl,
ECSA, and roughness factor (RF) for each sample electrode are
given in Table 1.
Cdl at the electrode−electrolyte interface is an important

parameter that is correlated with the ECSA of electrode
material; the higher the double-layer capacitance, the greater
the ECSA.48 In the case of binary-metal oxides, Cdl values for
CoxCuyO@FTO and NixCuyO@FTO are 25.55 and 52.42 μF,
respectively (see in Figure S8). In comparison with binary-metal
oxides, CoxNiyCuzO@FTO exhibited a much higher Cdl value,
that is, 71.80 μF, which is due to the higher surface area along
with more defects and consequently more active-site availability,
resulting in its higher efficiency. The highest ECSA, that is, 1.772
cm2 and RF, that is, 5.90 cm2 was observed for CoxNiyCuzO@
FTO, supporting its enhanced electrochemical OER activity
compared to that of binary-metal oxides. The organized array
design along with its amorphous nature may also provide
minimal bubble adhesion and high RF that produce extensive
channels to facilitate the release of gas apart from the surface of
the electrode, thus avoiding aggregation of bubbles and
preventing catalysts peeling off from the substrate.40,49

Figure 2. SEM images (a−d) of CoxNiyCuzO@FTO at different magnifications. The inset (a) gives the average grain size of CoxNiyCuzO@FTO.
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Electrochemical impedance spectroscopy was employed to
investigate themechanistic insights into the highOER activity of
the metal oxide-based electrodes as shown in Figure 5c. The real
part of impedance was plotted against its imaginary part in the
Nyquist plot where the diameter of the semicircle in the high-
frequency region shows the charge-transfer resistance for
electrocatalysts, revealing electron-transfer kinetics at the
interface of the electrode.50 CoxNiyCuzO@FTO exhibited a
small semicircle, indicating lower charge-transfer resistance and
hence a faster electron-transfer process for OER without using
any binder or conductive additive. The smallest semicircle for
ternary-metal oxide endorses its highest electrochemical activity
compared to that of mono- and binary-metal oxides. In
summary, the highest OER activity of electrodeposited
CoxNiyCuzO@FTO can be attributed to the following different
factors; first, the high RF provided a larger surface area which
improved the interaction of the electrolyte and the active site of
the electrode, resulting in the accelerated mass transport
(electrolyte diffusion) phenomenon. Second, the synergistic
effect of the ternary-metal system facilitated the fast kinetics for
improved OER activity.
The stability of the electrode is also a crucial criterion to

evaluate the performance and durability of electrocatalysts in

electrochemical water-splitting reactions.51,52 The stability of
the synthesized electrodes was tested using the chronoampero-
metric technique while steadily generating oxygen in 1 M KOH
aqueous solution at a constant potential corresponding to 10mA
cm−2 for CuO@FTO, CoxCuyO@FTO, and NixCuyO@FTO
for 50 h, while in the case of CoxNiyCuzO@FTO, a potential
corresponding to 100 mA cm−2 was applied. Figure 5d indicates
the stability outcome for CuO@FTO and its binary-metal
oxides, and the inset shows the response of CoxNiyCuzO@FTO.
All metal oxide electrocatalysts showed good stability in the
amperometric measurements. Admirable electrocatalytic stabil-
ity was observed for CoxNiyCuzO@FTO that displayed the
robust behavior of ternary-metal catalyst toward OER at a
current density of 100 mA cm−2 representing a good candidate
for the electrocatalytic water oxidation reaction. The stability of
CoxNiyCuzO@FTO was also explored by cycling the electrode
continuously for 5000 cycles at a scan rate of 5 mV/s and
comparing the polarization curves before and after cycling as
shown in Figure 6. The polarization curve obtained after running
5000 cyclic voltammetric scans was similar to that obtained
before the cycles, validating the high stability of the electrode in
an alkaline medium.

3. CONCLUSIONS

In summary, we have adopted a binder-free approach to
synthesize CuO@FTO and its doped binary- and ternary-metal
oxide electrodes of Cu, Co, and Ni via the electrodeposition
method followed by thermal treatment. Electrochemical studies
for CuO@FTO and doped metals oxides have been carried out
for the electrode performance in the electrochemical water
oxidation reaction. Amorphous structures of these fabricated
electrodes expose the greater area of the catalysts that lead to
enhanced ECSA and RF. The amorphous structures of electrode
materials also have a crucial impact on avoiding bubbling over
the surface of the electrode, which is another advantage over the
electrodes developed by drop-casting. It is evident that the
ternary-metal oxide exhibits admirable OER activity with an
overpotential of 388 mV to attain 10 mA cm−2. Greater ECSA
and higher RF of the fabricated amorphous CoxNiyCuzO@FTO
electrode substantially boosted its electrocatalytic activity
toward OER in water splitting. Other electrochemical
parameters such as Tafel slope, double-layer capacitance, and
charge-transfer resistance also showed improved results, which
may be ascribed to the synergic effect and greater number of
active sites resulting from roughness. Facile synthesis, binder-
free electrode fabrication, higher electrochemical activity, and
better long-term stability, that is, for 50 h at 100mA cm−2 render
CoxNiyCuzO@FTO as a potential candidate for scale-up
application in electrochemical water oxidation. By considering
the remarkable performance and low-cost materials required for
the fabrication of the electrode, the synthesized electrocatalysts
show broad prospects for future energy demands.

4. EXPERIMENTAL SECTION

The water used in all experiments was purified through a
deionizer system. Nickel(II) sulfate hexahydrate, copper(II)
sulfate hexahydrate, and cobalt(II) chloride hexahydrate were
acquired from Sigma-Aldrich; boric acid, potassium hydroxide,
and sulfuric acid were purchased from Alfa Aesar; while acetone,
isopropyl alcohol, and FTO-coated glass (TEC 15, Hartford
Glass Co., 15 Ω/sq, 50 × 13 × 2.3 mm3) were purchased
commercially. All chemicals were used as received.

Figure 3. (a) SEM image and its (b) energy-dispersive spectra for the
elemental X-ray mapping of CoxNiyCuzO@FTO.
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Doped binary- and ternary-metal oxide-based electrodes were
prepared by electrochemical deposition using a Gamry Interface

1010e galvanostat/potentiostat followed by the annealing
procedure. From a larger FTO-coated sheet, 1 cm long and 1

Figure 4. XPS core-level spectra of (a) Co 2p, (b) Ni 2p, (c) Cu 2p, and (d) O 1s for CoxCuyNizO@FTO.

Figure 5. (a) iR corrected polarization curves at a scan rate of 5mV/s, (b) Tafel plot, (c) electrochemical impedance spectroscopic measurements, and
(d) chronoamperometric analysis for the stability of CuO@FTO, NixCuyO@FTO, and CoxCuyO@FTO at a potential corresponding to 10 mA cm−2.
The inset shows the stability of CoxNiyCuzO@FTO at a potential corresponding to 100 mA cm−2.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c01251
ACS Omega 2021, 6, 19419−19426

19423

https://pubs.acs.org/doi/10.1021/acsomega.1c01251?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01251?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01251?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01251?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01251?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01251?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01251?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01251?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c01251?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


cm wide section was cut, and an area of 0.3 cm2 was exposed to
the deposition bath masking the rest area by a Teflon tape. The
substrate was rinsed thoroughly with deionized water and then
sonicated in detergent, deionized water, acetone, and isopropyl
alcohol for 15 min each followed by drying in air flux.
Electrochemical deposition of metals on FTO-coated glass
was performed using the galvanostatic method. The electro-
deposition was carried out in a three-electrode cell containing an
equimolar electrolytic solution of respective metal salts in the
presence of 8 mM boric acid. The pH of the prepared solution
was adjusted to 3 using H2SO4. Galvanostatic electrodeposition
was performed at −10 mA cm−2 for 300 s using FTO-coated
glass as a working electrode, Ag/AgCl as a reference electrode,
and Pt wire as a counter electrode. The deposited samples were
then washed with an excess of deionized water to remove any
unreacted species and dried overnight. Oxidation of the samples
to their respective oxides was carried out by annealing in air at
350 °C for 2 h.
Scanning electron micrographs were obtained by using FEI

Nova SEM 230 coupled with a Bruker EDX system at an
accelerating voltage of 3 kV. PXRD analyses were carried out on
a PANalytical X’Pert multipurpose X-ray diffraction system
having a Cu anode with a Kα radiation source, using a scan range
of 2θ = 10−80°. For XPS, the sample wasmounted onto a holder
with a conducting carbon-tape to avoid surface charging during
themeasurements. The sample was introduced to the ultra-high-
vacuum vessel which contains a photoelectron spectrometer
having a hemispherical analyzer (Specs Phoibos 100) and Mg/
Al X-ray gun (Specs XR-50) with a 45° angle. In this experiment,
Mg Kα radiation with an energy of 1253.6 eV was used as an
excitation source. The pass energy was kept at 50 eV. The
pressure in the chamber was approx. 1 × 10−9 mbar. The
measured data were fitted using CasaXPS software, and the
background was subtracted using Shirley’s method. A simplified
Voigt function was used for fitting with the sample full width at
half maximum (FWHM) for doublet, and the ratio between
2p3/2 and 2p1/2 was 0.5.

Electrochemical experiments were performed in a conven-
tional three-electrode cell in 1 M KOH using the Gamry
Interface 1010e galvanostat/potentiostat. The fabricated work-
ing electrodes were of 1× 1 cm2 dimension, while platinum wire
and saturated Ag/AgCl were used as the counter electrode and
the reference electrode, respectively. All measured potential
values were converted to RHE using the formula ERHE = EAg/AgCl
+ 0.197 + 0.059 × pH, where pH of the solution used was 14.
Tafel plots were obtained by plotting overpotential (η) versus
log(j) and the linear fragments of the Tafel plots were fitted to
the Tafel equation [η = b log(j) + a, where b is Tafel slope, j is
current density, and a is exchange current density].19 Electro-
chemical impedance wasmeasured in the frequency range of 100
kHz to 0.1 Hz with a small AC signal of 10 mV. All potential
values were iR compensated and current densities reported were
obtained by dividing the current by the geometric surface area of
the respective electrodes.
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