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Abstract

We present a data-informed, highly personalized, probabilistic approach for the quantifica-

tion of abdominal aortic aneurysm (AAA) rupture risk. Our novel framework builds upon a

comprehensive database of tensile test results that were carried out on 305 AAA tissue

samples from 139 patients, as well as corresponding non-invasively and clinically accessi-

ble patient-specific data. Based on this, a multivariate regression model is created to obtain

a probabilistic description of personalized vessel wall properties associated with a prospec-

tive AAA patient. We formulate a probabilistic rupture risk index that consistently incorpo-

rates the available statistical information and generalizes existing approaches. For the

efficient evaluation of this index, a flexible Kriging-based surrogate model with an active

training process is proposed. In a case-control study, the methodology is applied on a total

of 36 retrospective, diameter matched asymptomatic (group 1, n = 18) and known symptom-

atic/ruptured (group 2, n = 18) cohort of AAA patients. Finally, we show its efficacy to dis-

criminate between the two groups and demonstrate competitive performance in comparison

to existing deterministic and probabilistic biomechanical indices.

1 Introduction

An abdominal aortic aneurysm (AAA) is a slowly progressing vascular disease, causing an

enlargement of the infrarenal aorta and is considered pathological if the aortic diameter

exceeds 30 mm [1]. AAA prevalence has been reported within a range of 1.2% to 3.3% in men

older than 60 years based on several studies in western societies [2]. In most cases, AAAs

develop asymptomatically over several years, but they can rapidly turn into a serious clinical

emergency in case of rupture. More than 50% of patients with a ruptured AAA die before

reaching the hospital [1] and perioperative mortality rates range from 40% to 60% [3].
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To prevent such a disastrous scenario, the clinical guidelines from the US-based Society for

Vascular Surgery recommend elective repair for AAA patients with an aortic diameter greater

or equal to 55 mm, regular screening intervals for patients with smaller-sized AAAs and one-

time screenings for AAAs in men and women above a certain age and based on established

risk factors [1]. This maximum diameter recommendation is based on a risk assessment,

where the risk of rupture is weighed against the mortality risk of an elective repair. While the

latter risks are relatively well-known, aneurysm rupture is a complex biomechanical failure

event. With the increasing use of endovascular repair (EVAR) over open surgical repair (OSR)

[4], however, which can be attributed to the significant short term mortality benefit of EVAR

(1.4% compared to 4.2%) [1], interventional risks have become a less important factor in the

risk assessment process.

Nonetheless, a biomechanical rupture risk assessment can provide an additional impor-

tant piece of information. It enables the possibility to provide patient-specific screening

guidelines, avoid unnecessary interventions [5] and support the clinical decision process for

cases that are not covered by the clinical guidelines. The Society for Vascular Surgery’s 55

mm recommendation, e.g., only holds for patients “at low or acceptable surgical risk with a

fusiform AAA” [1]. Furthermore, there are no clear or only weak recommendations for

women with AAAs of size 50-54 mm, aneurysms with non-fusiform geometries, smaller

AAAs [6], or patients at higher surgical risk. In addition to that, not all AAAs are suitable

for EVAR, with higher complication rates for AAA cases that are not covered by the instruc-

tions for use [7]. Lastly, recent meta-studies (e.g. [8, 9]) on the long term outcomes of EVAR

versus OSR could not detect any differences with regards to the all-cause mortality or even

concluded in favor of OSR.

In this paper, we present a highly personalized, probabilistic framework for the biomechan-

ical quantification of AAA rupture risk. The framework builds upon a comprehensive data-

base, consisting of tensile experiments that were carried out on 305 AAA tissue samples from

139 patients and corresponding non-invasively and clinically accessible patient data. The

approach consistently incorporates the available statistical information in terms of probability

distributions in order to account for patient-specific uncertainties about relevant vessel wall

properties. We emphasize the importance of accounting for these uncertainties and demon-

strate that this leads to a more accurate individualized rupture risk assessment as compared to

deterministic approaches.

Our work builds upon previous efforts by our group and collaborators regarding the bio-

mechanical modeling and characterization of AAA in-vivo behavior [10–16], as well as several

previous studies indicating that biomechanical indices are more accurate predictors for AAA

rupture risk than the clinically established maximum diameter criterion [17–24]. In contrast

to the approaches in [17–20, 22, 24], however, we advocate a probabilistic treatment to account

for uncertain vessel wall properties. Our work thus goes along the lines of [21], but with the

key difference that it includes the stiffness parameters of the AAA vessel wall as statistical

quantities, uses patient-specific vessel wall properties and accounts for statistical correlations

among these properties.

The paper is organized as follows. Motivated by a failure-based criterion, our rupture risk

index is formulated in Section 2.1 incorporating patient-specific statistical information. Sec-

tion 2.2 defines the biomechanical AAA model and specifies the probabilistic regression

model to obtain personalized vessel wall properties. In Section 2.3, a method for the efficient

evaluation of the rupture risk index is proposed and in Section 3, the framework is applied on

a total of 36 retrospective, diameter matched asymptomatic (group 1, n = 18) and known

symptomatic/ruptured (group 2, n = 18) cohort of AAA patients.
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2 Materials and methods

2.1 Failure-based probabilistic quantification of rupture risk

2.1.1 Rupture as an event of material failure. From a mechanical point of view, rupture

represents an event of local material failure at a point x in the aneurysm wall, which motivates

its definition via a failure function φ(x) and the failure criterion

φðxÞ > 0; at any x: ð1Þ

We limit ourselves to stress-based failure and define rupture as an event where the local

wall stress measure σ(x) exceeds the local wall strength σγ(x). This results in the failure function

φ(x) = σ(x) − σγ(x), or the criterion

sðxÞ > sgðxÞ; at any x: ð2Þ

Using the equivalent von Mises stress σvm(x) as the local stress measure σ(x) and an

assumed spatially constant wall strength σγ, this criterion can be evaluated as

smax
vm > sg; ð3Þ

where smax
vm

is the maximum von Mises stress smax
vm
¼ maxxsvmðxÞ.

It is important to note that the above definition does not incorporate any aspect about fail-

ure over time. In order to be able to include time in the analysis, i.e. to make a statement about

the risk of rupture in the next year, one would require knowledge about the future progression

of the AAA for this patient, such as a model for the aneurysm growth and change in vessel wall

properties. Since there is hardly any knowledge about these aspects, we limit the further discus-

sion to a rupture risk assessment at the point of time of the acquired data. While there are sud-

den events like calcification-induced formation of saccular aneurysms, we assume that in most

cases an AAA is a slowly progressing disease and thus our approach has, at least for the near

future, sufficient predictive capability.

2.1.2 Existing criteria and rupture risk indices. Rupture risk estimation for AAAs has

been an ongoing research topic over several decades, with many attempts to establish decision

criteria for clinical practice. The maximum diameter criterion [1] still represents the most

widely used criterion for decision making today. It is often justified by Laplace’s law, which

states that the vessel wall stress is proportional to its diameter in spherical geometries. Based

on this and with data obtained from several clinical studies, a very simple criterion,

d > dmax; ð4Þ

has been formulated, relating the patient’s AAA diameter d to a critical maximum diameter

dmax. While established in clinical practice and easy to apply using CT or ultrasound imaging,

this criterion has often been criticized [25] and is an ongoing subject for discussion [6].

With growing computational resources and advances in the modeling of biomechanical

material behavior, the simulation of patient-specific AAA models has been advanced by several

research groups. Experiments on harvested AAA samples were able to reveal material parame-

ters and failure properties. In addition with regression models [13, 26, 27] for the prediction of

the individual wall strength, this enabled the definition of biomechanics-based indices [19, 20,

22, 28], such as the rupture potential index (RPI)

RPI ¼
smax
vm

sg
or RPIðxÞ ¼

svmðxÞ
sgðxÞ

; ð5Þ
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relating the von Mises stress to the wall strength. Furthermore, it could be shown [19, 20, 24]

that these indices can be better rupture risk indicators than the maximum diameter criterion.

Experimental testing [13, 26, 27] also revealed significant inter- and intra-patient variabili-

ties in the mechanical properties of AAA tissue, motivating a probabilistic approach to rupture

risk estimation [14, 16, 21] and resulting in the probabilistic rupture risk index (PRRI) [21]

PRRI ¼
Z 1

0

Z 1

sg

pðsmax
vm Þ ds

max
vm pðsgÞ dsg; ð6Þ

where the authors used distributions for the wall thickness and wall strength that were fitted

on cohort data published by our group [13].

2.1.3 A novel probabilistic approach. In this work, we propose a novel failure-based,

probabilistic rupture risk indicator that consistently incorporates all available statistical infor-

mation and accounts for correlations among vessel wall properties. Fig 1 (left) illustrates the

rationale for our approach, showing how part of the available data is directly involved in the

estimation of the risk of rupture, while another part affects the evaluation of the computational

model. In general, this data will be correlated, resulting in correlated quantities for the evalua-

tion of rupture risk and necessitating a reformulation.

To that end and recalling the rupture criterion from Eq (3), we can calculate the probability

of rupture over the joint probability distribution pðsmax
vm
; sgÞ as

Prupt ¼ Epðsmax
vm ;sgÞ
½1smax

vm >sg
� ¼

Z 1

0

Z 1

0

1smax
vm >sg

pðsmax
vm ; sgÞ ds

max
vm dsg; ð7Þ

where 1smax
vm >sg

is the indicator function defined as

1smax
vm >sg

¼

(
1 smax

vm > sg;

0 otherwise:
ð8Þ

This formulation can be easily extended to, e.g., spatially varying vessel properties using Eqs

(1) or (2) as failure events. Furthermore, it includes the PRRI in Eq (6) as a special case, when

choosing pðsmax
vm
; sgÞ ¼ pðsmax

vm
ÞpðsgÞ.

Lastly, it allows for a straightforward visual interpretation as illustrated in Fig 1 (right). The

plot shows the joint probability distribution pðsmax
vm
; sgÞ and visualizes the rupture event area in

Fig 1. Rationale for our novel formulation (left) and exemplary visualization of its estimation (right). The probability of

rupture, Prupt, is calculated as the volume of the probability distribution pðsmax
vm
; sgÞ within the triangular-shaped area marked in red.

https://doi.org/10.1371/journal.pone.0242097.g001
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red. The blue area implies a high probability for the joint occurrence of the corresponding

stress and strength values. The probability of rupture Prupt is simply the volume of this density

within the triangular rupture event area. Thus, the larger the overlap between pðsmax
vm
; sgÞ and

the red area, the higher Prupt.

2.2 Data-informed patient-specific AAA models

2.1.1 Geometry creation from CT imaging and meshing. Patient-specific 3D AAA

geometries are reconstructed via a semi-automatic segmentation process from CT imaging

data using the software ScanIP (Synopsys, Mountain View, California) and based on a protocol

as described in [12]. The minimal requirement for the spatial resolution of CT scans was 1 mm

and for the slice thickness 3 mm. The upper boundary for the segmentation was the branching

of the renal arteries and the lower boundary below the bifurcation at the iliac arteries. Due to

the small thickness of the AAA wall, its low contrast and the limited resolution of the CT

images, it is only possible to extract the blood lumen and intraluminal thrombus (ILT) geome-

tries. After segmentation, the ILT geometry is exported as a surface model for meshing.

In a next step, we use the software Trelis (csimsoft, American Fork, Utah) and bi-linear

quadrilateral elements to mesh the abluminal ILT surface. From this surface mesh, the arterial

wall layer is extruded with a specified, spatially constant thickness t, resulting in a tri-linear,

single layer, hexahedral mesh for the AAA wall. Finally, linear tetrahedral elements are

employed for the meshing of the complex ILT geometry and a layer of linear pyramid elements

as a transition for mesh compatibility between AAA wall and thrombus. Element sizes were set

to 1.6 mm, corresponding to the median of measured thicknesses of AAA wall specimens in

our database and leading to hexahedral elements of shape 1.6 mm × 1.6 mm × t for the AAA

wall. A mesh convergence study has been performed to assess that the chosen spatial mesh res-

olution is sufficient in the context of our application. The meshing procedure is also described

in [29] in more detail.

2.2.2 Biomechanical modeling. Previous studies have shown that in order to accurately

describe the biomechanical behavior of AAAs, a sufficient model complexity is required [20,

30], while results by [31, 32] indicate that also simpler models might be appropriate. For our

purposes, we employ the finite deformation boundary value problem of nonlinear elasticity:

r � ðFSÞ ¼ 0 in O0; ð9Þ

s � n ¼ t̂ on gs;
ð10Þ

ðFSÞ � N ¼ � ksu on Gu; ð11Þ

where O0 is the reference configuration of the AAA, u denotes the displacement field, F = I+

ru the deformation gradient, S the second Piola-Kirchhoff stress tensor and σ the Cauchy

stress tensor.

On the Neumann boundary γσ, i.e. the luminal ILT surface, an orthonormal load t̂ ¼ � pn
is applied, with the pressure value p and the unit outward surface normal n in the current con-

figuration. Furthermore, at the proximal and distal end surfaces of the AAA model, Γu, we

employ a Robin-type boundary condition with spring supports following [29, 33]. The stiffness

parameter ks is per unit reference area and set to 100 kPa/mm in this study, while N is the unit

outward surface normal in the reference configuration.

PLOS ONE Biomechanical rupture risk assessment of abdominal aortic aneurysms using patient specific and cohort data

PLOS ONE | https://doi.org/10.1371/journal.pone.0242097 November 19, 2020 5 / 27

https://doi.org/10.1371/journal.pone.0242097


To model the constitutive behavior of the ILT, we use the strain energy function proposed

in [34]

CILTð
�I 1;

�I 2; JÞ ¼ cð�I 2
1
� 2�I 2 � 3Þ þCvolðJÞ ð12Þ

and a linearly decreasing stiffness c from the luminal to the abluminal ILT surface [12]. �I 1 and

�I2 are the first and second invariants of the modified right Cauchy-Green deformation tensor

Ĉ ¼ J � 2
3C, with C = FT F and J = det(F) [29]. The strain energy function employed for the

AAA wall material is [35, 36]

Cwallð
�I 1; JÞ ¼ að�I 1 � 3Þ þ bð�I 1 � 3Þ

2
þCvolðJÞ; ð13Þ

with stiffness parameters α and β. Both strain energy functions are equipped with an additive

volumetric component

CvolðJÞ ¼
k

4
J2 � 2 ln J � 1ð Þ; ð14Þ

including the bulk modulus

k ¼
�kð�Þ

1 � 2n
ð15Þ

with parameters �kILT ¼ 8c and �kwall ¼ 2a for the employed ILT and wall material models and

a Poisson’s ratio of ν = 0.48 [12].

To obtain a pressurized in vivo configuration of the AAA, the MULF prestressing method

[10, 11] is used, where the applied load corresponds to the mean arterial pressure (MAP = 1/3

systolic pressure + 2/3 diastolic pressure). From this prestressed configuration, the pressure is

raised by 50% to simulate elevated blood pressure conditions [21]. Following [19] and for com-

parability reasons, the values for the systolic and diastolic pressures were set to 121 mmHg and

87 mmHg for all cases, respectively, resulting in a MAP of 98.33 mmHg.

With the finite element discretization from Section 2.2.1, a nonlinear system of equations is

obtained, which is solved using an in-house finite element code. We note that in this study we

neglect the effect of calcifications in the AAA for simplicity and assume constant vessel wall thick-

ness t and stiffness parameters α and β throughout the aneurysm. Furthermore, we evaluate the

maximum von Mises stress as the 99th percentile of the von Mises stress field in the aneurysm.

For the remainder of this work, we will use the parameter to quantity of interest (QoI) map

smax
vm ¼ s

max
vm ðt; a;bÞ ¼ s

max
vm ðθÞ ð16Þ

with parameter vector θ ¼ ½t; a; b�T 2 R3

þ
and QoI smax

vm
2 Rþ to denote the forward problem.

Thus, calculating smax
vm
ðθÞ for one realization of t, α and β will involve one evaluation of the

nonlinear finite element model.

2.2.3 Patient database. The modeling of patient-specific vessel wall properties here is

based on data that has been collected during several research projects between 2008 and 2017

on the mechanobiological behavior of AAAs [13, 15]. The study was approved by the ethics

committee of the University Hospital rechts der Isar, Technical University of Munich. AAA

patients undergoing elective OSR (including emergency repair due to rupture) at the Univer-

sity Hospital rechts der Isar in Munich, Germany, were added to the database, whenever it was

possible to extract tissue samples for mechanical testing. Apart from anamnesis and CT imag-

ing data, hemograms were evaluated and one or more AAA tissue samples harvested during

OSR. These samples were mechanically and histologically investigated, resulting in an exhaus-

tive retrospective AAA database. Further information on data collection and experimental
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testing can be found in [13, 15]. To date, the database contains a total number of 305 entries

from an equal number of tissue samples that were collected from 139 patients.

The data can be split into two groups. Invasive properties (cf. Table 1), denoted as

Θ ¼ ½t; a; b; sg�
T
2 R4

þ
, are properties, which have been determined retrospectively from AAA

tissue samples and cannot be obtained for a prospective patient by using clinically established

methods. They are, however, essential for the biomechanical modeling and simulation of

AAAs and the calculation of the probability of rupture using Eq (7). Non-invasive properties

(cf. Table 2), denoted by ξ, on the other hand, can be determined with standard methods in

the clinic. The subrenal diameter in Table 2 is measured directly below the renal arteries. If the

aneurysm reached the renal arteries, the aortic diameter between the celiac artery and the

superior mesenteric artery minus 2.5 mm was used instead [12].

Based on correlations between the invasive and non-invasive properties [13], the goal is to

construct a statistical model for the patient-individualized prediction of vessel wall properties

Θ(ξ) for a prospective new patient with non-invasive properties ξ. While this process is

described in Section 2.2.4, a preprocessing step for the dataset is essential, since values are

missing both in the invasive and non-invasive properties for several cases in our database.

Moreover, the relatively small number of available data, but high number of non-invasive

properties, requires a feature selection process to identify the most important properties in ξ.

Similar to [15], we conduct the following preprocessing steps.

Non-invasive features in ξ, where more than 30% of the data points had missing values and

patients with more than 30% of missing features were excluded and all other missing non-inva-

sive properties imputed with the corresponding median value across the population. As a conse-

quence, the four parameters calcium, high-sensitivity C-reactive protein (hsCRP), creatine

kinase and fibrinogen were disregarded. Afterwards, all non-invasive features were normalized.

Based on a correlation analysis using Spearman’s rank correlation coefficient (cf. S1 Table),

the total number of features was reduced to a final selection of 8 variables: maximum AAA

diameter, maximum thrombus thickness, AAA length, subrenal diameter, thrombocytes,

hemoglobin, mean corpuscular hemoglobin (MCH), mean corpuscular volume (MCV). The

restriction was done using a sequential forward selection algorithm similar to [15]. In an

attempt to keep the number of non-invasive parameters small, we iteratively added the highest

correlating non-invasive parameters to the GP model (see Section 2.2.4) until no further

improvement in the leave-one-out cross-validation (LOOCV) scores could be observed. We

note, however, that this does not imply that other non-invasive features such as sex, medica-

tion or anamnesis parameters do not have an influence on the biomechanical properties of the

AAA wall. The resulting dataset D ¼ fξi;Θig
ndata

i¼1
, that was used for the analysis in Section 3,

consisted of ndata = 251 data points from 113 individual patients and is available as supplemen-

tary information to this study (cf. S2 and S3 Tables).

2.2.4 Prediction of invasive vessel wall properties. Previous approaches to create models

for the AAA wall thickness, stiffness parameters or strength were either deterministic [12, 26],

Table 1. Invasive properties represent key vessel wall characteristics for a biomechanical rupture risk assessment.

t Wall thickness [mm]

α Alpha stiffness [kPa]

β Beta stiffness [kPa]

σγ Wall strength [kPa]

They cannot be obtained prospectively by using clinically established methods and will be dealt with based on

statistics from experimental testing of AAA tissue samples.

https://doi.org/10.1371/journal.pone.0242097.t001
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based on cohort statistics [21], or did not account for correlations among the vessel wall quan-

tities [15]. In the following, we make use of a multivariate Gaussian process regression model

[37–39] to address these shortcomings and achieve the following desiderata:

1. Patient-specific modeling: obtain personalized estimates for the vessel wall quantities Θ
based on correlations with the non-invasive properties ξ of a specific, prospective patient.

2. Probabilistic treatment: take into account the uncertainties in the predictions for Θ (do not

ignore statistical information).

Table 2. Non-invasive properties overview.

General Sex m = 1, w = 0

Age y

Symptomatic yes = 1, no = 0

Ruptured yes = 1, no = 0

Geometry Maximum AAA diameter mm

Maximum thrombus thickness mm

AAA length mm

Subrenal diameter mm

Medication Acetylsalicylic acid (ASA) / clopidogrel yes = 1, no = 0

Angiotensin-converting enzyme (ACE) inhibitors yes = 1, no = 0

Statins yes = 1, no = 0

Beta blockers yes = 1, no = 0

Antihypertensives yes = 1, no = 0

Diuretics yes = 1, no = 0

Oral hypoglycemic agents / insulin yes = 1, no = 0

Anamnesis Hypertension yes = 1, no = 0

Diabetes mellitus yes = 1, no = 0

Hyperlipidemia yes = 1, no = 0

Smoking status yes = 1, no = 0

Chronic kidney disease (CKD) yes = 1, no = 0

Coronary heart disease (CHD) yes = 1, no = 0

Peripheral vascular disease (PVD) yes = 1, no = 0

Hemogram Sodium mmol/l

Potassium mmol/l

Calcium mmol/l

High-sensitivity C-reactive protein (hsCRP) mg/l

Fibrinogen mg/dl

Urea mg/dl

Creatinine mg/dl

Creatine kinase 1/l

Leukocytes 1,000/μl

Erythrocytes Mio/μl

Thrombocytes 1,000/μl

Hemoglobin g/dl

Mean corpuscular hemoglobin (MCH) pg/cell

Mean corpuscular volume (MCV) fl

Mean corpuscular hemoglobin concentration (MCHC) gHb/100ml

These can be determined with standard methods in the clinic and will be used as feature variables to predict the

invasive properties of a prospective AAA patient.

https://doi.org/10.1371/journal.pone.0242097.t002
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3. Dependencies: model the correlations among the invasive properties Θ in order to obtain a

more accurate probabilistic description and avoid physically implausible parameter

configurations.

As a result, given the non-invasive properties ξ of a prospective AAA patient, the logarithm

(acting as a positivity constraint) of the corresponding prediction Θ(ξ) will follow a multivari-

ate Gaussian distribution with predicted mean μlogΘ and covariance matrix Slog Θ, i.e.

logΘðξÞ � N ðmlogΘ;SlogΘÞ ¼ pðlogΘÞ: ð17Þ

As we will see in Section 3.2, our approach leads to more accurate estimates for Θ and also

a lower variance in the predictions. All relevant details regarding this model are provided in

Appendix A.1.

2.3 A Kriging surrogate model for the maximum stress

2.3.1 Estimating the probability of rupture. Since the calculation of the probability of

rupture Prupt from Eq (7) using the high-fidelity, nonlinear finite element model from Section

2.2.2 is infeasible for a clinical application, we propose a Kriging surrogate model to speed up

computations [40–42]. The surrogate model will effectively serve as a proxy for the maximum

von Mises stress smax
vm
ðθÞ in the AAA vessel wall (cf. Eq (16)) and allows to make computation-

ally cheap predictions at an arbitrary combination of θ = [t, α, β]T, i.e.

logsmax
vm ðθÞ � N ðmlogsmax

vm
; d

2

logsmax
vm
Þ; ð18Þ

with the predicted mean mlogsmax
vm

and standard deviation dlogsmax
vm

, respectively. For all relevant

details, we refer to Appendix A.2. The high-fidelity model can then be simply approximated as

logsmax
vm
ðθÞ � mlogsmax

vm
ðθÞ, allowing for a direct Monte Carlo estimation of the probability of

rupture

Prupt ¼ EpðlogΘÞ 1logsmax
vm ðθÞ>log sg

h i
�

1

neval

Xneval

i¼1

1logsmax
vm ðθiÞ>logsg;i

; ð19Þ

where

1logsmax
vm ðθiÞ>log sg;i

¼

(
1 logsmax

vm ðθiÞ > logsg;i;

0 otherwise
ð20Þ

and Θi� p(log Θ), i = 1. . .neval.

2.3.2 An active learning approach to training. The Kriging surrogate training process is

carried out under the following two demands:

1. As few as possible high-fidelity model evaluations.

2. Ensure that the Kriging model is accurate where necessary.

To that end, we adopt and extend the Active Learning-MacKay (ALM) strategy from [43]

and choose points for high-fidelity model evaluations such as to minimize a density- and

stress-weighted predictive standard deviation objective function

cðΘÞ ¼ dlogsmax
vm
ðθÞ pðlogΘÞ mlogsmax

vm
ðθÞ; ð21Þ

where p(log Θ) is the patient-specific probability distribution for the invasive model parame-

ters Θ = [t, α, β, σγ]T from the regression model in Section 2.2.4. The reasoning behind this
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choice follows from the ALM approach, where only the predictive standard deviations

dlogsmax
vm
ðθÞ are considered in the objective function. In our case, we are equipped with a proba-

bility distribution, p(log Θ), so we can attribute a higher weight to the more probable regions

in Θ. Additionally, we pay special attention to points in the input space, where the predicted

maximum von Mises stresses mlogsmax
vm

are high to ensure the surrogate model accurately repli-

cates the full model in these regions. The problem of choosing an appropriate point θnext for

evaluation results in the optimization problem

Θnext ¼ argmax
Θ

cðΘÞ; ð22Þ

which is approximated by creating a grid fΘig
ngrid

i¼1 over the input space, calculating fcðΘiÞg
ngrid

i¼1

using the Kriging surrogate and determining

Θnext � argmax
Θ
fcðΘiÞg

ngrid
i¼1 : ð23Þ

The next evaluation point θnext = [tnext, αnext, βnext]
T can then simply be extracted from

Θnext. During the active learning, we monitor the average

ĉ ¼
1

ngrid

Xngrid

i¼1

cðΘiÞ ð24Þ

and stop the training process, when there are no more significant changes in ĉ with an

increasing number of high-fidelity model evaluations.

3 Results

3.1 Framework summary

Based on our retrospective AAA database of non-invasive and invasive data pairs and a multi-

output Gaussian process model fitted to this dataset (cf. Section 2.2.4), the necessary steps to

estimate the probability of rupture for a prospective patient are:

• Step 1: Data generation in the clinic: CT imaging, determination of the non-invasive param-

eters ξ from Table 2

• Step 2: Geometry creation: segmentation and meshing of the AAA geometry

• Step 3: Model specification: modeling of the invasive properties Θ(ξ) using the multi-output

Gaussian process model from Sections 2.2.4 and A.1.

• Step 4: Surrogate training: fitting of the Kriging model using active learning

• Step 5: Post-processing: estimating the probability of rupture

While CT imaging is essential for geometry creation, the rupture risk analysis can also be

carried out if no non-invasive properties ξ are available for a prospective patient by using

cohort statistics (cf. Model 1, Section 3.2) without personalization. The computational proce-

dure is summarized in Algorithm 1. In practice, it has proven feasible to choose ninit = 8

(where it makes sense to include the predicted mean μlog Θ in the set of initial samples), ngrid =

neval = 10, 000 and tol = 1.0 × 10−4.

Algorithm 1 Calculating the probability of rupture Prupt

1: Input: Input uncertainties p(logΘ(ξ)), simulation model smax
vm
ðθÞ, tol,

ninit, ngrid, neval
2: Set iter ¼ 1; ĉ0 ¼ 0
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3: Generate ninit samples flog θig
ninit

i¼1
and calculate flog smax

vm
ðθiÞg

ninit

i¼1

4: Train a Kriging surrogate using the training data fθi; log smax
vm
ðθiÞg

ninit

i¼1

5: Create a grid flogΘig
ngrid

i¼1 over the input space and calculate ĉ1 (cf. Eq
(24))

6: while jĉ iter � ĉ iter� 1j > tol do
7: Determine θnext using Eq (23) and calculate smax

vm
ðθnextÞ

8: Update the Kriging model with the new data point fθnext; log smax
vm
ðθnextÞg

and calculate ĉ iter

9: Set iter = iter + 1
10: end while
11: Generate neval samples flogΘig

neval

i¼1
and calculate Prupt according to Eq

(19) using the Kriging surrogate
12: Output: Prupt

3.2 Regression model benchmark

Before demonstrating the framework in full detail, a brief comparison between the multi-out-

put Gaussian process regression model (cf. Section 2.2.4) with existing probabilistic modeling

approaches used in the context of AAA rupture risk is provided. To that end, we employ leave-

one-out-cross-validation (LOOCV) on our dataset D (cf. Section 2.2.3) to test the predictive

capabilities of three different models for p(logΘ):

• Model 1: assuming all variables are log-normally distributed and independent, the joint dis-

tribution

pðlogΘÞ ¼ N ðmlog t; s
2
log tÞN ðmloga; s

2
logaÞN ðmlogb; s

2
logbÞN ðmlogsg

; s2
logsg
Þ ð25Þ

is obtained, where the means and variances are calculated across the whole population using

the dataset D, that is

mlogk ¼
1

ndata

Xndata

i¼1

logki and s2

logk ¼
1

ndata

Xndata

i¼1

ðlogki � mlogkÞ
2
; ð26Þ

with κ 2 {t, α, β, σγ}. This corresponds to the approach chosen in [21].

• Model 2: by training single-output Gaussian processes for each output variable separately

following [15], the same decomposition of Gaussian distributions as in Eq (25) is obtained,

however, with means and variances predicted individually for each patient.

• Model 3: our proposed multi-output Gaussian process (cf. Eq (17)).

In addition to the mean of the patient standardized mean square error (PSMSE) [15], we

also report the mean of the patient predictive entropy (PPE),

E½PPE� ¼
1

npat

Xnpat

i¼1

H½piðlogΘÞ�; ð27Þ

whereH½pðlogΘÞ� is the entropy of the distribution p(logΘ) and a measure of uncertainty or

variance for multivariate distributions. With regards to the different measures, it is desirable

for both PSMSE and PPE to be small, corresponding to a model which is accurate and pro-

duces low-variance estimates. For conciseness, values for the mean of the PSMSE are averaged

over the four predictive variables Θ. We refer to [15] for an exhaustive discussion of the

LOOCV and calculation of the PSMSE. The obtained results for the three models are shown in
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Table 3. We note that our proposed model (Model 3) was able to consistently achieve the low-

est scores, although the differences are rather small.

3.3 Framework demonstration for AAA Pat17

To illustrate the application of our proposed framework we demonstrate all steps in detail

below, following the outline as presented in Section 3.1. We assume we are provided with CT

imaging data and non-invasive properties ξ for one specific prospective AAA (Step 1), referred

to as Pat17 in the following.

Fig 2 shows the AAA as seen via CT imaging (I), a 3D rendering of the segmentation result

(II) as well as the generated finite element mesh (III) (Step 2). The mesh consists of 117, 218 finite

elements and 93, 840 nodal degrees of freedom, with an approximate element size of 1.6 mm.

Table 4 shows the relevant 8 non-invasive properties ξ that are used by the regression

model (cf. Section 2.2.4) to obtain the predictive distribution p(logΘ(ξ)), which is specific to

Table 3. Leave-one-out-cross-validation (LOOCV) results for the three probabilistic models.

Model 1 Model 2 Model 3

E½PSMSE� 0.9480 0.9315 0.9226

E½PPE� 3.5778 3.4300 3.3353

The table compares the calculated mean (E½PSMSE�) of the patient standardized mean square error (PSMSE)

averaged over the four predictive variables Θ as well as the mean of the patient predictive entropy (E½PPE�).

https://doi.org/10.1371/journal.pone.0242097.t003

Fig 2. AAA Pat17 as seen via CT imaging (I), a 3D rendering of the segmentation result (II), the generated finite element mesh

(III) and a visualization of the von Mises stress field corresponding to the mean μlogΘ of the predictive distribution p(logΘ) for

that AAA (IV).

https://doi.org/10.1371/journal.pone.0242097.g002

Table 4. Non-invasive properties ξ for AAA Pat17 as well as cohort means and standard deviations (based on all

113 patients in D) for comparison.

Pat17 Cohort (mean±std)

Maximum AAA diameter [mm] 53.75 62.91±17.57

Subrenal diameter [mm] 21.88 24.58±6.55

AAA length [mm] 85.0 111.84±28.30

Maximum thrombus thickness [mm] 19.11 24.10±11.19

Thrombocytes [1,000/μl] 182.0 221.33±82.10

Hemoglobin [g/dl] 15.1 13.27±2.20

Mean corpuscular hemoglobin (MCH) [pg/cell] 29.0 30.39±2.46

Mean corpuscular volume (MCV) [fl] 85.0 89.95±6.61

https://doi.org/10.1371/journal.pone.0242097.t004
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Pat17. Along with that, means and standard deviations based on all 113 patients in D are pro-

vided. Based on this data, we can predict the mean μlogΘ and covariance SlogΘ for this patient

(Step 3). The obtained distribution is visualized in Fig 3 and the predictive means and stan-

dard deviations are provided in Table 5 along with reference values from the cohort. The

entropy of p(logΘ) is 3.3050 and thus slightly lower than the LOOCV mean (cf. Table 3).

Highest correlations among the invasive properties for Pat17 can be found between t and σγ
(rt;sg ¼ � 0:3214), β and σγ (rb;sg ¼ 0:2274), t and β (ρt,β = −0.1966) as well as α and β (ρα,β =

0.1413).

Fig 3. Visualization of the predictive distribution p(logΘ) transformed to the physical parameter range for AAA Pat17. Plots (I)-(VI) show 2D

marginal distributions over all possible parameter combinations between t, α, β and σγ. Highest correlations are observed between t and σγ
(rt;sg ¼ � 0:3214), β and σγ (rb;sg ¼ 0:2274), t and β (ρt,β = −0.1966) as well as α and β (ρα,β = 0.1413).

https://doi.org/10.1371/journal.pone.0242097.g003

Table 5. Predicted means and standard deviations for the invasive properties of AAA Pat17 along with cohort values over all ndata = 251 samples for comparison.

Pat17 (mean±std) Cohort (mean ± std)

logt 0.415 ± 0.088 0.484 ± 0.105

t [mm] 1.583 ± 0.481 1.710 ± 0.568

logα 4.504 ± 0.967 4.543 ± 1.036

α [kPa] 146.529 ± 187.106 157.676 ± 212.579

logβ 7.723 ± 0.817 7.685 ± 0.758

β [kPa] 3399.204 ± 3811.469 3178.355 ± 3383.842

logσγ 6.729 ± 0.174 6.704 ± 0.183

σγ [kPa] 912.004 ± 397.176 894.182 ± 400.798

https://doi.org/10.1371/journal.pone.0242097.t005
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Given p(logΘ), the forward model (cf. Eq (16)) for Pat17 is defined. The probability of rup-

ture for this AAA is approximated using a Kriging surrogate model (Step 4). Fig 2 (IV) pro-

vides a visualization of the von Mises stresses corresponding to μlogΘ, the mean parameter

combination of p(logΘ). Fig 4 shows the decrease of the objective function over the number of

iterations on the left as well as a comparison of the Kriging-based approximate distribution

pðsmax
vm
Þ together with a Monte Carlo reference calculated using 10, 000 samples on the right.

Lastly, the probability of rupture can be estimated using the Kriging surrogate (Step 5),

which amounts to 0.47% for Pat17 (cf. Fig 5 for a visualization). We stress that this value must

not be compared to the operative risks associated with OSR or EVAR in order to make deci-

sions. Rather, it needs to be put into context with results for other AAA patients that have been

computed using the same methodology, which is discussed below in Section 3.4.

3.4 Comparative case-control study using diameter matched groups

To test the efficacy of the framework as a rupture risk indicator and to compare it with existing

biomechanical indices, we consider diameter matched groups of asymptomatic (group 1,

n = 18) and known symptomatic/ruptured (group 2, n = 18) AAA patients from our database.

The groups were chosen such that their maximum diameter mean and standard deviation

approximately match (group 1: 62.17±7.18 mm, group 2: 63.06±7.56 mm), rendering a differ-

entiation between the groups based on the maximum diameter criterion ineffective.

For a detailed overview regarding the selection of the two groups, we refer to Table 6.

After preprocessing of our original dataset (cf. Section 2.2.3), we restricted the cohort to

AAAs with a maximum diameter between 50 and 80 mm in order to obtain an intermediate-

sized group of patients. As a result, 64 patients remained, of which 47 had asymptomatic and

17 had symptomatic or ruptured AAAs. The latter were put into one group, since symptom-

atic AAAs are known to be at an elevated risk of rupture [44]. The reason for the much lower

number of symptomatic/ruptured AAAs is that these AAAs often have very large diameters

(>80mm). We included AAA patients from a previous case-control study by our group [19],

which examined 13 asymptomatic and 12 symptomatic AAA patients. Finally, we manually

selected 18 asymptomatic and 18 symptomatic/ruptured patients based on the following

criteria:

Fig 4. Left: Decrease of the objective function over the number of training iterations, where the first training iteration

corresponds to the Kriging surrogate after ninit = 8 model evaluations. 11 model evaluations were used for the

surrogate creation. Right: Estimated Kriging-based distribution pðsvm
max
Þ along with a Monte Carlo reference. All

densities were calculated using kernel density estimation with Gaussian kernels based on 10, 000 samples of the

maximum von Mises stress svm
max

.

https://doi.org/10.1371/journal.pone.0242097.g004
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Fig 5. Visualization of Prupt for all AAAs in group 1.

https://doi.org/10.1371/journal.pone.0242097.g005
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• Find two groups with the best match in diameter.

• Preferably include cases where non-invasive data is available and thus patient-specific inva-

sive properties can be predicted.

• Disregard cases, where CT images are not available or lack a sufficient image quality to create

simulation models.

Detailed information for all AAAs of both groups is provided in Tables 7 and 8 and a visual-

ization of their rupture risk indices, Prupt, in Figs 5 and 6 (cf. Appendix A.3). No patient had

Table 6. Overview: Selection process for the diameter matched groups.

total no. ♂ ♀ asympt sympt/rupt

original database 139 122 17 100 39

after preprocessing 113 99 14 83 30

diameter filter 64 58 6 47 17

manual selection 19 19 0 10 9

added from [19] 17 12 5 8 9

final cohort 36 31 5 18 18

https://doi.org/10.1371/journal.pone.0242097.t006

Table 7. Group 1 (asymptomatic, 18♂, 0♀) overview and obtained results for svm
max

, RPI, PRRI and Prupt.

Nr. dmax [mm] svm
max

[kPa] RPI [−] PRRI [%] Prupt [%]

Pat1 63.09 373.14 0.398 6.48 2.01

Pat2 69.23 180.21 0.202 0.20 0.13

Pat3 61.76 368.65 0.362 4.20 1.04

Pat4 50.37 257.04 0.288 1.55 1.22

Pat5 62.94 349.00 0.371 4.15 1.34

Pat6 61.10 324.35 0.363 3.81 4.30

Pat7 54.94 301.55 0.339 3.06 0.76

Pat8 60.14 348.62 0.390 5.36 5.52

Pat9 57.12 380.97 0.382 5.68 1.63

Pat10 57.94 263.15 0.295 1.65 1.46

Pat11 57.63 324.06 0.359 3.93 1.14

Pat12 55.35 343.26 0.356 3.84 1.22

Pat13 66.25 281.44 0.315 2.14 2.32

Pat14 71.25 255.60 0.286 1.49 1.21

Pat15 70.52 394.89 0.442 8.32 8.77

Pat16 79.94 300.20 0.342 4.06 0.76

Pat17 53.75 291.70 0.320 1.93 0.47

Pat18 65.81 344.30 0.393 5.37 1.98

mean 62.17 315.67 0.345 3.73 2.07

std 7.18 53.18 0.053 1.99 2.07

25th percentile 57.25 284.00 0.316 1.98 1.07

50th percentile 61.43 324.21 0.357 3.89 1.28

75th percentile 66.14 348.90 0.379 5.07 2.00

https://doi.org/10.1371/journal.pone.0242097.t007
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known connective tissue disorders. For 10 out of 18 AAAs in group 1 and for 9 out of 18

AAAs in group 2 we had non-invasive data and were thus able to use the multi-output regres-

sion model to determine a personalized input density p(logΘ). For the remaining 8 (group 1)

and 9 (group 2) AAAs, we used cohort statistics, i.e. Model 1 from Section 3.2.

We apply our framework to all 36 AAAs using an individual prospective scenario, i.e.

before starting the analysis for one AAA, this patient is removed from the database, while the

other 35 AAAs are included. In order to provide a comparison of Prupt with other biomechani-

cal indices, we calculate the following additional quantities:

• Maximum von Mises stress at the input parameter mean (neglects any statistical informa-

tion):

svm
maxðμlog θÞ: ð28Þ

• Rupture potential index [28] at the input parameter mean (neglects any statistical informa-

tion, but takes into account the wall strength):

RPI ¼
svm
maxðmlog θÞ

μsγ
: ð29Þ

Table 8. Group 2 (symptomatic/ruptured, 13♂, 5♀) overview and obtained results for svm
max

, RPI, PRRI and Prupt.

Nr. dmax [mm] svm
max

[kPa] RPI [−] PRRI [%] Prupt [%]

Pat19 57.55 230.60 0.282 1.08 0.18

Pat20 70.40 473.52 0.551 16.38 9.77

Pat21 70.76 538.30 0.507 15.16 7.37

Pat22 73.32 380.57 0.452 9.47 4.12

Pat23 77.09 738.58 0.860 30.03 24.87

Pat24 72.80 377.91 0.404 6.51 2.38

Pat25 52.26 197.94 0.220 0.25 0.02

Pat26 60.95 335.47 0.376 4.92 5.02

Pat27 60.30 359.65 0.403 6.21 5.98

Pat28 53.75 309.83 0.347 3.23 3.12

Pat29 55.69 340.56 0.381 4.90 5.16

Pat30 53.53 281.85 0.316 2.47 2.09

Pat31 60.93 412.86 0.462 10.33 10.38

Pat32 70.52 495.17 0.555 17.27 17.66

Pat33 67.10 393.87 0.441 8.40 8.70

Pat34 56.59 328.43 0.368 4.21 4.35

Pat35 60.58 329.85 0.369 4.41 1.44

Pat36 60.93 341.59 0.346 4.11 0.89

mean 63.06 381.47 0.424 8.30 6.31

std 7.56 119.61 0.135 7.18 6.21

25th percentile 56.83 328.78 0.352 4.14 2.16

50th percentile 60.93 350.62 0.392 5.57 4.69

75th percentile 70.49 408.12 0.460 10.12 8.37

https://doi.org/10.1371/journal.pone.0242097.t008
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Fig 6. Visualization of Prupt for all AAAs in group 2.

https://doi.org/10.1371/journal.pone.0242097.g006
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• Probabilistic rupture risk index [21] (takes into account cohort-based uncertainties in the

wall thickness and wall strength according to Model 1, Section 3.2):

PRRI ¼ EN ðmlog t ;s2
log tÞN ðmlogsg ;s

2
logsg

Þ½1logsmax
vm ðmlog tÞ>mlogsg

�: ð30Þ

Comprehensive results for all patients are listed in Tables 7 and 8 (cf. Appendix A.3). The

average number of high-fidelity model evaluations to train the Kriging surrogate was 11. Based

on these results and to evaluate the performance of the individual quantities, we provide:

1. Relative mean and median differences between group 1 and group 2 (cf. Table 9).

2. Boxplots for both groups (cf. Fig 7).

3. Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC)

(cf. Fig 8) [45]. Computed true positive rates (TPR), false positive rates (FPR) and corre-

sponding threshold values are provided for Prupt as supplementary information (cf. S4

Table).

Table 9. Relative mean and median differences (in %) of dmax, svm
max

, RPI, PRRI and Prupt between the asymptomatic and the symptomatic/ruptured group.

dmax svm
max

RPI PRRI Prupt

Δ mean [%] 1.42 20.84 23.15 122.17 204.45

Δ median [%] 0.81 8.15 9.75 43.24 266.02

Relative differences for a quantity q between the asymptomatic group result qa and the symptomatic/ruptured group result qs/r are calculated as Δq = |qs/r − qa|/qa.

https://doi.org/10.1371/journal.pone.0242097.t009

Fig 7. Boxplots comparing dmax, svm
max

, RPI, PRRI and Prupt for the asymptomatic and symptomatic/ruptured group. The plots

illustrate the interquartile range (green and red color) including the sample median as well as the first and third quartiles. Whiskers

indicate minimum and maximum values and black dots represent all values from the respective group.

https://doi.org/10.1371/journal.pone.0242097.g007
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4 Discussion

The obtained values for the relative mean and median differences in Table 9 confirm that

group 1 and group 2 are indistinguishable based on the maximum diameter criterion. While

the relative differences are higher for svm
max

and RPI, PRRI and in particular our proposed index

Prupt feature a significantly larger mean and median difference. Recalling that the maximum

diameter, dmax, is one important non-invasive parameter in our framework (cf. Section 2.2.3),

we emphasize that its influence has been rendered ineffective through the study design. A simi-

lar trend as in Table 9 can be observed in Fig 7, with RPI and PRRI providing a slightly better

separation between the two groups than svm
max

, while for Prupt the interquartile ranges of the

two groups are non-overlapping. Finally, in Fig 8 we can observe that Prupt outperforms the

remaining classifiers and achieves the best performance among all quantities in terms of the

AUC score, followed by PRRI, RPI and svm
max

. We further note that from the 18 patients in the

symptomatic/ruptured group, 11 had ruptured AAAs (Pat19, Pat23, Pat24, Pat26, Pat27,

Pat28, Pat29, Pat30, Pat32, Pat34, Pat35). The mean Prupt scores for the 11 ruptured AAAs is

6.57 and thus slightly higher than the mean 5.89 for the 7 symptomatic AAAs. To summarize

our key observations:

• The maximum diameter criterion, by design, clearly fails to separate the two groups in all

our comparisons.

• The proposed index Prupt consistently achieves the best separation.

• The results indicate that the more statistical information taken into account, the better the

capability to distinguish between group 1 and group 2.

Before translating these findings into any clinical application, however, there are several

limitations that have to be kept in mind. First, this is a non-randomized, retrospective case-

control study with a relatively small cohort size (group 1: n = 18, group 2: n = 18) and the data-

base described in Section 2.2.3. Second, there was no matching based on other risk factors

such as sex, age or family history, which could be a confounder. Third, since we only have

access to electively repaired or symptomatic/ruptured AAAs for mechanical testing, the mean

Fig 8. Receiver operating characteristic (ROC) curves showing true positive rates (TPR) over false positive rates

(FPR) and area under the ROC curve (AUC) scores for dmax, svm
max

, RPI, PRRI and Prupt.

https://doi.org/10.1371/journal.pone.0242097.g008
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diameters of the two groups (group 1: 62.17 mm, group 2: 63.03 mm) are larger than the Soci-

ety for Vascular Surgery’s decision criterion for elective repair (55 mm) [1]. In the future, due

to the increasing use of EVAR, it will be even harder to obtain representative tissue samples

from AAAs of relevant size for a database. As a result, caution is advised when interpreting the

results presented here for smaller AAAs, e.g. of size 45 − 55 mm. Furthermore, all discussed

approaches are unable to make any prediction about the future development of the AAA, such

that the rupture risk assessment only holds for the point in time of data generation. In addition

to that, the biomechanical model does not take into account factors like growth, calcifications

and surrounding organs, which might be important for the analysis.

5 Conclusion

We presented a novel data-informed, highly personalized, probabilistic framework for the

quantification of abdominal aortic aneurysm (AAA) rupture risk and demonstrated competi-

tive performance in comparison to existing approaches. Our framework results in the calcula-

tion of a rupture risk index, Prupt, which can be introduced as a relevant additional piece of

information in the clinical decision process for AAA cases that are not or not unambiguously

covered by existing guidelines and recommendations. In view of our results it is suggested to

incorporate personalized, or at least cohort-based, statistical information and choose a proba-

bilistic approach for the biomechanical rupture risk assessment. Deterministic indices were

shown to be less accurate and do not account for possible sensitivities due to uncertain vessel

wall quantities.

In order to advance this framework to a clinical application, several further aspects need to

be examined. Challenges lie especially in the fully automatic segmentation of the CT imaging

data, which at the moment requires manual steps by a trained expert and can be time consum-

ing. In view of the limitations discussed in Section 4, a larger, randomized study with risk fac-

tor matched groups is desirable to confirm this study’s findings regarding its clinical use.

Future work will also address how further model parameters such as the blood pressure influ-

ence the rupture risk index and whether this quantity should be treated probabilistically as

well. Lastly, to be able to make predictions over time, it is required to incorporate AAA

growth [46, 47] into the framework and analyze its effect on the biomechanical rupture risk

assessment.

A Appendix

A.1 Multi-output Gaussian process regression

The data generation process for logΘ is assumed to underly a function log ~Θ ξð Þ that is con-

taminated by additive Gaussian noise, such that

logΘðξÞ ¼ log ~ΘðξÞ þ �: ð31Þ

It is further postulated that the vector log ~Θ ¼ ½log~t; log ~a; log ~b; log ~sg�
T
� N 0;Oð Þ fol-

lows a multivariate Gaussian distribution with the positive semi-definite covariance matrix

O 2 R4�4
and it is assumed that 2 � N ð0; SÞ, with the diagonal matrix S and noise levels

Sdd 2 Rþðd ¼ 1 . . . 4Þ. Demanding that every entry of the vector log ~ΘðξÞ corresponds to the

same zero mean Gaussian process with covariance function k(ξ, ξ0), i.e.

log~tðξÞ; log ~aðξÞ; log ~bðξÞ; log ~sgðξÞ � GPð0; kðξ; ξ0ÞÞ; ð32Þ
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log ~ΘðξÞ can be expressed as a multivariate Gaussian process [39]

log ~ΘðξÞ �MGPð0; kðξ; ξ0Þ;OÞ: ð33Þ

As a result, the collection flog ~Θ ig
ndata

i¼1
follows a matrix-variate Gaussian distribution

½log ~Θ1; . . . ; log ~Θndata
�
T
�MN ð0;K;OÞ; ð34Þ

with the covariance matrix K and entries Kij = k(ξi, ξj), modeling the covariance between two

inputs ξi and ξj. Expressing the matrix Gaussian distribution as a multivariate Gaussian distri-

bution and incorporating the additive noise �, one obtains

vecðlog Θ̂Þ ¼ ½logΘT
1
; . . . ; logΘT

ndata
�
T
� N ð0;O� K þ S� IndataÞ; ð35Þ

where� denotes the Kronecker product and Indata
the ndata × ndata identity matrix. For our pur-

poses, we choose the covariance function

kðξ; ξ0Þ ¼ z1 þ z2ξ
Tξ0 þ z3 exp ½� z4ðξ � ξ0ÞTðξ � ξ0Þ�; ð36Þ

with hyperparameters z1, z2, z3 and z4. Following [37–39], the matrix O is parameterized via

the entries Lij of a Cholesky decomposition O = LLT. Together with the noise parameters from

the matrix S, this results in the hyperparameter vector

z ¼ ½z1; z2; z3; z4; S11; S22; S33; S44; L11; L22; L33; L44; L21; L31; L41; L32; L42; L43�
T
; ð37Þ

where z1; z2; z3; z4; S11; S22; S33; S44; L11; L22; L33; L44 2 Rþ and L21; L31; L41; L32; L42; L43 2 R. The

predicted mean for an arbitrary point ξ? becomes

μlogΘðξ
?
Þ ¼ ðO� k?ÞTðO� K þ S� IndataÞ

� 1vecðlog Θ̂Þ ð38Þ

and the predicted covariance

SlogΘðξ
?
Þ ¼ O kðξ?; ξ?Þ þ S � ðO� k?ÞTðO� K þ S� IndataÞ

� 1
ðO� k?Þ; ð39Þ

where k? denotes the vector of covariance function evaluations between ξ? and the data

fξig
ndata

i¼1
, i.e.

k? ¼ ½kðξ?; ξ1Þ; . . . ; kðξ?; ξndataÞ�
T
: ð40Þ

Finally, the log marginal likelihood is

LðzÞ ¼ log pðlog Θ̂ j fξig
ndata
i¼1
Þ ¼ �

1

2
log jO� K þ S� Indata j

�
1

2
vecðlog Θ̂ÞTðO� K þ S� IndataÞ

� 1vecðlog Θ̂Þ

� 2ndatalog 2p

ð41Þ

and can be optimized with respect to its hyperparameters z.

A.2 Kriging surrogate incorporating explicit basis functions

Kriging can be regarded as a special case of a Gaussian process, where data points are assumed

noise-free to interpolate the high-fidelity model at the provided high-fidelity evaluations. To

find an adequate function for this purpose, we use a Kriging interpolation model that
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incorporates explicit basis functions as described in [42]. Using such a model, it is possible to

exactly represent functions that can be described by the provided basis. Ensuring positive pre-

dictions via a log transformation, we approximate the high-fidelity model as

logsmax
vm ðθÞ � log ~smax

vm ðθÞ þ hðθÞTZ; ð42Þ

where log ~smax
vm
ðθÞ � GP 0; kðθ; θ0Þð Þ is a zero mean Gaussian process with covariance function

k(θ, θ0) and h(θ) denotes the chosen basis functions with coefficients η. A simple squared expo-

nential kernel

kðθ; θ0Þ ¼ z1 exp �
1

2
ðθ � θ0ÞTL� 1 θ � θ0ð Þ

� �

ð43Þ

is chosen, where the matrix L ¼ diagðz2; z3; z4Þ 2 R
3�3 is diagonal, leading to the vector of

hyperparameters z = [z1, z2, z3, z4]T, with z 2 R4

þ
. Furthermore, trilinear basis functions, i.e.

hðθÞ ¼ ½1; t; a;b; ta; tb; ab; tab�T ð44Þ

are employed. Assuming a Gaussian prior for the coefficients, η � N ðb;BÞ, this results in the

Gaussian process

log ~smax
vm ðθÞ þ hðθÞTη � GPðhðθÞTb; kðθ; θ0Þ þ hðθÞTBhðθ0ÞÞ: ð45Þ

The dependence on the prior parameters b and B can be resolved, if a vague prior for η is

chosen, i.e. if the limiting case is considered, where B−1 approaches the zero matrix 0. In that

case, the predicted mean for a new point θ? becomes

mlogσmax
vm
ðθ?Þ ¼ k?

T
K � 1σ̂ þ rT�η ¼

¼ mlog ~smax
vm
ðθ?Þ þ rT�η

ð46Þ

and the predicted variance

d
2

logsmax
vm
ðθ?Þ ¼ kðθ?; θ?Þ � k?

T
K � 1k? þ rTðHK � 1HTÞ

� 1r ¼

¼ d
2

log ~smax
vm
ðθ?Þ þ rTðHK � 1HTÞ

� 1r;
ð47Þ

where �η ¼ HK � 1HTð Þ
� 1HK � 1σ̂ , r = h? −HK−1 k? and σ̂ ¼

logsmax
vm
ðθ1Þ; . . . ; logsmax

vm
ðθneval

Þ
h iT

is the vector of neval model evaluations. K is the data

covariance matrix between all θ̂ ¼ θ1; . . . ; θneval

h iT

training data points such that

Kij ¼ kðθi; θjÞ: ð48Þ

Moreover, k? is a vector with the covariances between training and test points, i.e.

k? ¼ ½kðθ?; θ1Þ; . . . ; kðθ?; θnevalÞ�
T
; ð49Þ

H a matrix containing vectors h(θ) at all training data points and h? = h(θ?). It is interesting to

note, how the terms in Eqs (46) and (47) consist of a contribution from the zero mean Gauss-

ian process predicted mean and variance, mlog ~smax
vm
ðθ?Þ and d

2

log ~smax
vm
ðθ?Þ, and additional terms
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involving the provided basis functions, respectively. Finally, the marginal log likelihood is

L zð Þ ¼ log pðσ̂ jθ̂Þ ¼ �
1

2
σ̂TK � 1σ̂ þ

1

2
σ̂TCσ̂ �

1

2
log jKj �

1

2
log jAj �

neval � m
2

log 2p; ð50Þ

where A =HK−1HT C = K−1HT A−1HK−1 andm is the rank ofHT. Maximizing the marginal

log likelihood, optimal values for the hyperparameters z of the Kriging covariance model (cf.

Eq (43)) and for the provided σ̂ and θ̂ can be determined.
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S1 Table. Correlation analysis. Computed correlations between all non-invasive and invasive

AAA vessel wall properties using Spearman’s rank correlation coefficient.

(CSV)

S2 Table. Non-invasive data. Dataset containing the eight non-invasive AAA vessel wall prop-

erties: maximum AAA diameter, maximum thrombus thickness, AAA length, subrenal diame-
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volume (MCV). All values are provided in their respective unit as specified in Table 2. The first

column is a consecutive number for the individual patients and allows for the identification of

data that was collected from the same patient.

(CSV)

S3 Table. Invasive data. Dataset containing the four invasive AAA vessel wall properties: wall

thickness, alpha stiffness, beta stiffness, wall strength. All values are provided in their respective

unit as specified in Table 1. The first column is a consecutive number for the individual

patients and allows for the identification of data that was collected from the same patient.

(CSV)

S4 Table. ROC values. Computed true positive rates (TPR), false positive rates (FPR) and cor-

responding threshold values for Prupt.

(CSV)
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7. Oliveira-Pinto J, Oliveira N, Bastos-Gonçalves F, Hoeks S, VAN Rijn MJ, Ten Raa S, et al. Long-Term

Results of Outside “Instructions for Use” EVAR. The Journal of Cardiovascular Surgery. 2017; 58

(2):252–260. PMID: 27998049

8. Antoniou GA, Antoniou SA, Torella F. Editor’s Choice—Endovascular vs. Open Repair for Abdominal

Aortic Aneurysm: Systematic Review and Meta-Analysis of Updated Peri-Operative and Long Term

Data of Randomised Controlled Trials. European Journal of Vascular and Endovascular Surgery. 2020;

59(3):385–397. https://doi.org/10.1016/j.ejvs.2019.11.030

9. Giannopoulos S, Kokkinidis DG, Armstrong EJ. Long Term Outcomes of Endovascular vs Open Surgi-

cal Repair for Abdominal Aortic Aneurysms: A Meta-Analysis of Randomized Trials. Cardiovascular

Revascularization Medicine. 2020. https://doi.org/10.1016/j.carrev.2020.02.015

10. Gee MW, Reeps C, Eckstein HH, Wall WA. Prestressing in Finite Deformation Abdominal Aortic Aneu-

rysm Simulation. Journal of Biomechanics. 2009; 42(11):1732–1739. https://doi.org/10.1016/j.

jbiomech.2009.04.016

11. Gee MW, Förster C, Wall WA. A Computational Strategy for Prestressing Patient-Specific Biomechani-

cal Problems under Finite Deformation. International Journal for Numerical Methods in Biomedical Engi-

neering. 2010; 26(1):52–72. https://doi.org/10.1002/cnm.1236

12. Maier A. Computational Modeling of Rupture Risk in Abdominal Aortic Aneurysms. München: Dr. Hut;

2013.
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