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The  rotavirus  (RV)  inner  capsid  protein  VP6  is  widely  used  to  evaluate  immune  response  during  natural
infection  and  in  vaccine  studies.  Recombinant  VP6  from  the most  prevalent  circulating  rotavirus  strains
in each  subgroup  (SG)  identified  in  a birth  cohort  of  children  in  southern  India  [SGII  (G1P[8])  and  SGI
(G10P[11])]  were  produced.  The  purified  proteins  were  used  to measure  VP6-specific  antibodies  in  a
Dissociation-Enhanced  Lanthanide  Fluorometric  Immunoassay  (DELFIA).  The  ability  of  the  assay  to  detect
a ≥2  fold  rise  in  IgG  level  in  a panel  of  serum  samples  from  a longitudinal  study  was  compared  to a
gold  standard  virus-capture  ELISA.  A  strong  association  was  observed  between  the  assays  (p  <  0.001;
ecombinant VP6
ELFIA
LISA

chi-squared  test)  with  assay  performances  remaining  similar  when  the  samples  were  subdivided  as
having  a  fold  change  increase  in  VP6  antibody  levels  (a)  within  90 days  of  RV  RNA  detection  in  stool
or  (b)  if  no  RV  RNA  was  detected  within  that  time  period.  This  study  demonstrates  the  suitability  of
using  recombinant  proteins  to  measure  anti-RV  immune  responses  and  serves  as  a  “proof  of  principle”
to  examine  the  antibody  responses  generated  to  other  recombinant  RV  proteins  and  thereby  possibly
identify  a correlate  of  protection.
Group A rotaviruses (RV) are the major cause of severe gas-
roenteritis in infants and young children worldwide resulting in
n estimated 453,000 deaths per annum in 2008 before the intro-
uction of the universal rotavirus vaccination programs (Tate et al.,
012). India alone accounted for 22% of worldwide deaths with an
stimated 98,621 children dying from RV diarrhea in that year (Tate
t al., 2009) and in a recent study of all causative agents, RV was
dentified as the most common cause of disease in children hospi-
alized with diarrhea in southern India (Ajjampur et al., 2008). The

echanisms and effectors of protection against RV infection are not
ompletely understood. To date, efforts to elucidate any protective
arker have focused mainly on studying the immune responses to
he intact virus capsid. Attempts have been made to examine anti-
odies generated to the individual viral proteins but these studies
ave not used formats that can be employed in large scale studies
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(Ishida et al., 1996; Johansen et al., 1994; Richardson and Bishop,
1990; Svensson et al., 1987).

Classification of RV into groups and subgroups is based on the
major capsid protein VP6 (Greenberg et al., 1983; Estes and Cohen,
1989). Group A RVs are characterized into 4 subgroups (SG) denoted
SGI, II, I/II and non-I/II with the majority of mammalian strains
classified as SGI or II. VP6 is an immundominant antigen with
high sequence homology and common antigenic epitopes amongst
group A RV (Estes and Cohen, 1989). This makes VP6 a widely used
antigenic target in clinical and seroepidemiological studies and
serum immunoglobulin responses against VP6 detected by ELISA
is regarded as an indicator of RV immunity, including vaccine take
(Ward et al., 1989).

The purpose of this study was  to compare the efficiency
of a recombinant VP6-based Dissociation-Enhanced Lanthanide
Fluorometric Immunoassay (DELFIA) with a gold standard virus-
capture ELISA to detect serum IgG to VP6. The production of SGI and
SGII recombinant VP6 (rVP6) antigen from circulating RV strains
identified in a birth cohort of children from an urban slum in
southern India is described. A panel of serum samples from this

Open access under CC BY license.
longitudinal study was used to compare the recombinant antigen-
based DELFIA to the virus-capture ELISA.

A birth cohort of 373 children from urban slums in Vellore,
India, was  followed-up as part of a study on natural course of
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Table 1
Primer sequences used for amplifying RV VP6 genes.

VP6 SGII forward 5′-ATG GAG GTT CTG TAC TCA C-3′

VP6 SGI forward 5′-ATG GAT GTC CTG TAC TCC TTG TCA AAA ACT-3′

VP6 SGII and SGI reverse 5′-CTA GGT CAC ATC CTC TCA CTA C-3′
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Fig. 1. Analysis of recombinant VP6 proteins purified from Sf9 insect cells.
Coomassie-blue stained gel analysis of purified rVP6 (Mwt ∼ 44 kDa) derived from an
animal–human (SGI), human (SGII) or laboratory reference simian (SA11) VP6. RV
VP6 fused to a N-terminal hexa-histidine tag was expressed in Sf9 cells infected with
baculovirus encoding RV gene 6 and purified using Ni-NTA beads. Purified protein

were then analyzed by immunoblotting with a rabbit anti-rotavirus
polyclonal sera. Western blotting showed that the polyclonal sera
tart (underlined) and stop (bold) codons precede the VP6-specific sequences.

otavirus disease and infections. The methods for recruitment and
ollow-up of the cohort have been published previously (Gladstone
t al., 2008, 2010, 2011). Stool samples collected every fortnight
or surveillance and during all diarrheal episodes were screened
or rotavirus using a commercial enzyme immunoassay (Rotavirus
DEIA, Dako). Serum samples were collected at least every six

onths and within 4 weeks of a rotavirus diarrhea whenever pos-
ible. However, for more sensitive detection of rotavirus in stool,
very stool sample from a subset of 20 children nested within the
ohort was tested by PCR. These 20 children experienced a total
f 108 diarrheal episodes (median = 4.5 episodes) and 40 rotavirus
nfections (median = 2 rotavirus infections) including 29 symp-
omatic and 11 asymptomatic infections based on the definition
f a sample considered positive for rotavirus either based on two
LISA tests or an RT-PCR assay as described previously (Gladstone
t al., 2011). A total of 236 serum samples from these 20 chil-
ren were tested in this study. Apart from 6 monthly samples, the
edian time of sample collection post rotavirus infection was 40

ays (interquartile range 32–52 days).
Viral RNA extraction, cDNA synthesis and RV genotyping was

arried out as described previously (Banerjee et al., 2006). The
ub-grouping of the rotavirus using VP6 was performed for sam-
les from both genotypes as described previously (Iturriza Gomara
t al., 2002). Briefly, amplification of the gene encoding the
P6 protein was carried out using the oligonucleotide primers
P6-F (5′-GACGGVGCRACTACATGGT-3′; nt 747–766) and VP6-R

5′-GTCCAATTCATNCCGGTGG-3′; nt 1126–1106) which amplifies
 379 bp region encoding the SG epitope sequences and the tri-
erization region. This amplicon was sequenced using the same

rimers and then assigned to a SG based on phylogenetic analysis.
Overall, the most common genotype identified in this popula-

ion was G1P[8] while G10P[11] was the most common cause of
nfections in the neonatal period (Gladstone et al., 2011; Banerjee
t al., 2007). Nucleotide sequence analysis of the cloned gene 6
DNA of these two strains revealed that the VP6 gene segments
ncoded a single open reading frame (ORF) that was  1191 bp long
ut only displayed 80% nt and 91% amino acid sequence homology
data not shown), between the VP6 of the G1P[8] strain belonging to
GII and that of G10P[11] to SGI. Both ORFs encoded predicted pro-
eins consisting of 397 amino acid (AA) with a molecular weight of
4.9 kDa. The VP6 antigen derived from rotavirus strain WC3  used

n the ELISA belongs to SGI (Ward et al., 1989) and shares a predicted
A homology of 98% and 91% for VP6 SGI and SGII, respectively.

Genes amplified from representative human G1P[8] strain (SGII)
nd a human-bovine reassortant G10P[11] (SGI) VP6 from the birth
ohort were chosen to produce recombinant protein antigens. Taq
olymerase-amplified rVP6 cDNA from gene 6 segment was cloned

nto TOPO TA® pCRII vector as per manufacturer’s instructions
Invitrogen, Carlsbad, CA). The inserted sequences were verified
n an ABI automated DNA sequencer using dye-labeled termina-
or chemistry. The rVP6 DNAs were cloned into a shuttle vector
pDONR221) using the primers outlined in Table 1 and trans-
erred into the baculovirus expression vector (pDEST17), using the
ateway® PCR cloning system (Invitrogen). After each gene trans-

er, the sequences were verified. This expression cassette encoded

n N-terminal hexa-histidine (His) tag to facilitate protein purifi-
ation.
was  treated ±100 ◦C for 5 min  in denaturing buffer and analyzed by SDS-PAGE. The
upper solid arrow indicates the VP6 trimers and the lower (broken) arrow indicates
the  monomeric form.

Recombinant baculovirus (rBV) encoding these VP6 genes were
produced using the Bac-to-Bac® baculovirus expression system
(Invitrogen). The VP6 cDNA expression cassette was transferred
from pDEST17 into the baculovirus shuttle DNA (bacmid) by
transposition within chemically competent E. coli DH10BacTM

cells. Cells containing the bacmid with inserted VP6 cDNA were
selected by blue-white screening of cells on triple antibiotic
(50 �g/ml kanamycin, 7 �g/ml gentamycin and 10 �g/ml tetracy-
cline) agar plates and bacmid DNA was  isolated and transfected into
Spodoptera frugiperda (Sf9) insect cells to make new rBV encoding
the VP6 gene (rBV-rVP6) fused to an N-terminal His tag. P1 stocks
were isolated and the viral titers were determined by plaque assay
and amplified by subsequent infections of insect cells at an MOI  of
0.1.

His-tagged rVP6 proteins were expressed in insect cells using
the baculovirus expression system. Spinner flasks containing
3.5 × 106 Sf9 insect cells per 200 ml  of Grace’s insect cell medium
containing 0.5% fetal bovine sera (FBS, HyClone, Logan, UT) were
infected with either rBV-rVP6 virus at a multiplicity of infection
of 5. At 3 days post infection, the cell suspensions were cen-
trifuged at 2000 × g for 10 min  and cell pellets were washed with
PBS. Cell contents were extracted using 10 mM sodium phos-
phate buffer containing 300 mM NaCl, 20 mM imidazole, 25 mM
triethanolamine and 1% Sarcosyl (lysis buffer) containing protease
inhibitors (aprotinin, leupeptin, and pepstatin (Sigma, St. Louis,
MO.) at 1 �g/ml each). His-tagged rVP6 protein was then purified
on nickel-nitrilotriacetic acid (Ni-NTA-agarose) (Qiagen, Valen-
cia, CA.) according to the manufacturer’s instructions. The protein
concentration of rVP6 was determined by the Bradford protein
assay (Bio-Rad, Hercules, CA) microtiter plate method. Purity was
assessed by staining sodium dodecyl sulfate–polyacrylamide gels
(SDS–PAGE) of denatured protein with Coomassie stain (Fig. 1).

The native VP6 protein forms a trimer on the viral capsid (Prasad
et al., 1988) and the rVP6 products resemble the native conforma-
tion when run on a denaturing gel as has been previously described
(Estes et al., 1987; Gorziglia et al., 1988; Petitpas et al., 1998). Fol-
lowing boiling, the monomeric form predominates. The molecular
weight of the SGI and SGII monomers corresponds to the pre-
dicted molecular weight of VP6 (44 kDa). The expressed proteins
reacted specifically against the monomeric and trimeric rVP6 indi-
cating that SGI and SGII were the antigenic protein.
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Table 2
Comparison of DELFIA and ELISA performance.

Stool RV detection Fold change DELFIA (%) ELISA (%) p-Value

Inf < 90 days 2-fold 29 23 <0.001
3-fold 21 22 <0.001
4-fold 19 20 <0.001

No  Inf < 90 days 2-fold 16 19 <0.001
3-fold 10 14 0.02
4-fold 8 11 0.01

The ability of DELFIA or ELISA to detect RV infection as defined as a minimum ≥2-
fold rise in serum VP6 IgG levels between consecutive serum samples was analyzed.
A  panel of serum from children enrolled in a birth cohort study was used to perform
the  analysis. Specimens were categorized into groups where an RV infection was
detected within a 90 days period (“Inf < 90 days”) or if no RV infection was detected
within the same timeframe (“No Inf < 90 days”). For the “Inf < 90 days” group 112
sera were screened and for the “No Inf < 90 days” 124 were analyzed.
Comparative analysis of DELFIA and ELISA was carried out using the Chi-squared
30 O. Kavanagh et al. / Journal of Vir

DELFIA employs the lanthanide chelate europium (Eu3+)-
abeled secondary antibodies which possess a high fluorescence
ntensity and virtually no background resulting in a highly sensi-
ive detection method (Siitari et al., 1983). The resultant wider assay
ynamics enabled us to analyze a large panel of serum samples at

 single serum dilution (1/100) using less specimen volume than
LISA thus making it more suitable for high throughput surveys
here small volumes of sample (e.g. neonatal serum) are avail-

ble. The DELFIA reagents and Victor plate reader were purchased
rom Perkin Elmer (Waltham, MA). Unless otherwise stated, the
ssay volumes used were 75 �l and the assay diluent and wash
uffer consisted of 10 mM Tris–HCl, pH 7.0, containing 0.05% Tween
0 (TBS-T). Black 96-well Fluotrac 200 medium binding microtiter
lates (Greiner Bio One, Monroe, NC) were coated with either SGII-
uman or SGI-animal rVP6 (10 �g/ml) in 0.1 M sodium carbonate
uffer pH 9.6 overnight at 4 ◦C. Plates were blocked with 400 �l
f 5% w/v non-fat dried milk in TBS (Blotto) for 2 h at 37 ◦C in a
umidified chamber. Following washing, human sera samples at a
ilution of 1/100 in 10% blotto were added to antigen-coated and
lank wells for 2 h at 37 ◦C. Following washing, plates were incu-
ated with monoclonal mouse anti-human anti-IgG-labeled Eu3+

1/500) in DELFIA buffer overnight at 4 ◦C followed by the addition
f 100 �l of DELFIA enhancement buffer to each well. The plate
as shaken gently for 30 min  at room temperature to allow dis-

ociation of the fluorescent lanthanide chelates. The fluorescence
as read using the Eu3+ time-resolved fluorescence program set in

he VICTOR2 multi-label plate reader.
The assay used to measure serum anti-RV IgG antibodies is a

odification of an ELISA described previously (Ward et al., 1989).
riefly, 96-well microtiter plates (Corning Costar, Lowell, MA)  were
oated overnight with purified rabbit anti-rotavirus IgG at 4–8 ◦C.
he plates were washed with phosphate buffered saline containing
.05% Tween-20. Fifty microliters of WC3  virus lysate or mock-

nfected MA104 cell lysate were added to duplicate wells. A series
f 2-fold dilutions of a standard serum pool was tested in each
un to generate a standard curve. The standard serum pool was
ssigned arbitrary concentrations of 5000 U of IgG/ml. Serum sam-
les were diluted 1 in 200 in 1% bovine serum albumin (BSA) as
iluent (Invitrogen) or tested in higher dilutions if derived IgG val-
es were outside the range of the standard curve. Anti-rotavirus IgG

n the samples was detected using a biotin-conjugated anti-human
gG secondary antibody (Jackson ImmunoResearch Laboratories,
nc., West Grove, PA), peroxidase-conjugated avidin–biotin (Vec-
or Laboratories Inc., Burlingame, CA) and o-phenylene diamine
OPD) substrate (Sigma). The plates were read at 492 nm.  The
D value for each sample was generated by subtraction of the
verage optical density (OD) of the duplicate MA104 cell lysate
ells from the average OD of sample in wells coated with virus

ysate.
IgG response to rVP6 as measured by DELFIA was compared to

he ELISA response. Although VP6 IgA is more widely used in clinical
tudies, IgG antibody responses were chosen to compare DELFIA
nd ELISA. This was based mainly on the fact that a large number of
erum samples were collected at 6 monthly intervals wherein IgG
s a more suitable marker for analysis. It has been identified as the

ost reliable and consistent marker for seroconversion in patients
–30 months of age (Xu et al., 2005).

Serum samples from the birth cohort were divided into two
roups–(i) RV infection detected in stool and serum samples
howed a ≥2-fold increase in IgG levels within a 90 day period of an
V positive stool (“Inf < 90 days”) or (ii) RV infections identified only
y serology; serum samples showed a ≥2-fold increase in IgG levels
ut no RV was detected in stool within a 90 day period (“No Inf < 90

ays”). The choice of ≥two-fold as a measure of seroconversion was
ased on the fact that children in this cohort had a high frequency of
V infections resulting in maintenance of high levels of antibodies
test where p < 0.05 indicates a strong association between the two assays.

in circulation and therefore, the boost in immune response after an
infection may  not be very striking. The ability of DELFIA to detect
≥2-fold increase in IgG levels in the “Inf < 90 days” group (29%) was
comparable to the ELISA (23%). The ELISA (19%) and DELFIA (16%)
showed similar performance when analyzing the samples collected
in the “No Inf < 90 days” group. When the criteria for serological
detection of RV infection was increased to ≥3-fold or 4-fold increase
in serum VP6 IgG levels, the DELFIA (3-fold = 21%; 4-fold = 19%)
and ELISA (3-fold = 22%; 4-fold = 20%) performances were compa-
rable in the “Inf < 90 days” group. Similar results were seen for
samples collected in the “No Inf < 90 days” group between ELISA
(3-fold = 14%; 4-fold = 11%) and DELFIA (3-fold = 10%; 4-fold = 8%).
The concordance between DELFIA and ELISA, irrespective of what
serum fold-rise was analyzed, was  highly significant (p < 0.05) in
both groups (Table 2).

In conclusion this study demonstrates that an immunoassay
using recombinant VP6 can give equivalent results as the virus-
capture ELISA. The rVP6 DELFIA is less-labor intensive, uses lower
volume of clinical sample, requires only a single test dilution and is
thus more suitable for highthrougput screening in clinical studies.
Another advantage of DELFIA is its demonstrated ability to simul-
taneously measure virus-specific serum IgG and IgA (Kavanagh
et al., 2011) which would improve the usefulness of the rVP6 assay
further. Additionally, recombinant protein is safer and easier to pro-
duce in high quantities than virus lysate. Based on the success of
the recombinant VP6 studies, the antibody responses generated to
the recombinant viral capsid proteins VP7 and VP4 as well as the
enterotoxin NSP4 are currently under evaluation in order to identify
a possible correlate of protection to RV-induced disease.
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