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Abstract

Spontaneous activity is commonly observed in a variety of cortical states. Experimental

evidence suggested that neural assemblies undergo slow oscillations with Up ad Down

states even when the network is isolated from the rest of the brain. Here we show that

these spontaneous events can be generated by the recurrent connections within the net-

work and understood as signatures of neural circuits that are correcting their internal

representation. A noiseless spiking neural network can represent its input signals most

accurately when excitatory and inhibitory currents are as strong and as tightly balanced as

possible. However, in the presence of realistic neural noise and synaptic delays, this may

result in prohibitively large spike counts. An optimal working regime can be found by con-

sidering terms that control firing rates in the objective function from which the network is

derived and then minimizing simultaneously the coding error and the cost of neural activity.

In biological terms, this is equivalent to tuning neural thresholds and after-spike hyperpo-

larization. In suboptimal working regimes, we observe spontaneous activity even in the

absence of feed-forward inputs. In an all-to-all randomly connected network, the entire

population is involved in Up states. In spatially organized networks with local connectivity,

Up states spread through local connections between neurons of similar selectivity and

take the form of a traveling wave. Up states are observed for a wide range of parameters

and have similar statistical properties in both active and quiescent state. In the optimal

working regime, Up states are vanishing, leaving place to asynchronous activity, suggest-

ing that this working regime is a signature of maximally efficient coding. Although they

result in a massive increase in the firing activity, the read-out of spontaneous Up states is

in fact orthogonal to the stimulus representation, therefore interfering minimally with the

network function.
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Author Summary

Spontaneous bursts of activity, commonly observed in the brain, can be understood in

terms of error-correcting computation within a neural network. Bursts arise automatically

in a network that is inefficiently correcting its internal representation.

Introduction

A growing amount of experimental evidence suggests a complex interaction between stimu-

lus-driven and spontaneous activity [1–3]. In sensory cortices of awake behaving animals, neu-

ral activity is present both during periods when the neural population is driven by sensory

stimuli, as well as in absence of those. We refer to working regimes in the presence of stimuli

as active states and to the working regimes in the absence of external drive as quiescent states

(Table 1). In the absence of external drive, the population activity can take the form of charac-

teristic synchronized bursts of spiking activity, or Up states, interspersed by periods of silence

or Down states [1]. Stimulus-driven and spontaneous activity are difficult to distinguish from

one another [1]. Spontaneous Up states in a variety of cortical states share many of the statisti-

cal properties of stimulus-driven spiking responses [4].

Why does spontaneous activity occur and what could be its role in terms of computation?

This phenomenon could be understood mechanistically as arising in a recurrently connected

network. For example, it could be triggered by bottom-up pathways recruiting a dynamic

interplay of local excitation, adaptation and inhibition [5, 6]. Alternatively, up-states could be

caused by modulations from distal areas, either top-down or sub-cortical, like a “gate” closing

or opening to let sensory information in [7]. Finally, Up states could also arise within the corti-

cal network. In fact, electrophysiology in slices has shown that cortical microcircuits, separated

from the rest of the brain, spontaneously oscillate between Up and Down states [8]. Intrinsi-

cally generated slow oscillations have also been replicated with a biophysical model network

[9]. To this day, however, few studies have investigated what could be the computational role

of such striking phenomena. Here we propose a simple functional account of spontaneous

activity as a signature of predictive coding. More precisely, spontaneous bursts of population

activity could be caused by the network that is automatically correcting itself after inadver-

tently responding to noise.

Cortical circuits maintain a tight balance between excitation and inhibition, which can

account for the large variability of neural spike trains [10–12]. The balance of excitation and

inhibition persists even during spontaneous Up states [13]. It was shown previously that E/I

balance implements a form of predictive coding: by maintaining a tight balance between its

feed-forward and recurrent inputs, a population of neurons monitors and automatically cor-

rects its own coding errors. Any coding error induces additional spikes, recruits more inhibi-

tion and automatically restores the balance [14] (see also methods, section 1.1). In a low-noise

scenario and with instantaneous synapses, this self-correction results in a population code that

Table 1. Terminology.

Phenomenon Description

Active state working regime in the presence of external drive

Quiescent state working regime in the absence of external drive

Up state burst of population activity in either active or quiescent state

Down state absence of activity in quiescent state

doi:10.1371/journal.pcbi.1005355.t001
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is very precise and parsimonious with spikes. The read-out of such code is almost determin-

istic, contrasting with the large variability it creates in single neuron’s responses. However, in

the presence of realistic noise and synaptic delays, such network could constantly spike to cor-

rect its own mistakes, resulting in very large firing rates. A similar issue arises when there are

synaptic delays. Several neurons can be recruited simultaneously before they had time to

inhibit each-other, resulting in synchronization that can severely degrade the coding effi-

ciency. In such scenario, some amount of noise is actually required to limit the detrimental

effects of oscillations on coding precision [16–18].

In order to limit inefficient spiking in noisy and delayed networks, one can rely on homeo-

static cost, penalizing strong firing rates. This penalty term has simple biophysical interpreta-

tion as it consists in increasing neural threshold potentials and in strengthening the hyper-

polarization of the neural membrane after a spike. Note that all of those are not simply added

to the network but follow from the derivation of an objective function (see methods, section

1.2). All terms derived from the cost terms have the effect of controlling the “readiness for

spiking” or, in more biological terms, the excitability of the network. For a given level of noise

and synaptic delays, we find that there is a clearly defined “sweet spot” for cost parameters.

With an optimal cost, the network is maximally efficient—it is both accurate in representing

its input signals and parsimonious with spikes. For costs lower than optimal, the network regu-

larly enters into epochs of highly synchronized firing. The activity alternates between rare and

transient Up states, i.e. periods of synchronized activity with high firing rates, and longer

Down states, periods with low firing rates and asynchronous firing. For costs stronger than

optimal, coding error progressively increases. In the optimal regime, coding error is minimal.

Interestingly, this regime is also the one where Up states vanish. The range over which coding

is highly efficient therefore strongly depends on the dynamical regime in which the network

operates. The coincidence of the optimal coding regime and the transition to asynchronous

dynamical state is robust to the particular choice of network parameters as well as the level of

noise, suggesting that this phenomenon is a general property of a spiking network with predic-

tive coding.

Our approach is novel in that it suggests a direct functional relationship between stimulus-

driven and spontaneous activity. The model can account for the continuum of working

regimes (or states) observed in biological networks, with two parameters representing the

weighting of the accuracy of signal representation over cost on spiking. In particular, we pro-

pose that quiescent state activity can be understood as a special case of evoked activity, since

same computational rules govern the behavior of the network in both cases. Spontaneous Up

states occur when the network maintains itself in a suboptimal state for encoding stimuli and

can be understood as a lack of homeostatic balance in a biological network. We first describe

simple toy examples that capture these basic phenomena before switching to small microcir-

cuits with all-to-all connections and transmission delays. Finally, we present networks with

spatial organization and local connectivity. We show that same computational principles gen-

erate Up states in all cases.

Methods

1 Efficient coding

1.1 Efficient coding without transmission delays. The model with predictive coding is

derived from minimization of an objective function with spikes [14]. Consider a population of

neurons receiving a set of inputs sj(t), j = 1, 2, . . .J, identical for all neurons. The current result-

ing from feed-forward connections in the neuron’s membrane potential is a weighted sum of

inputs, ∑j wijsj(t), where wij is the weight of neuron i for the input sj. The output spikes of the

Computational Account of Spontaneous Activity
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network are decoded as a weighted sum of neural firing rates,

x̂jðtÞ ¼
XN

i¼1

wijriðtÞ ð1Þ

with N the number of neurons. ri(t) is the instantaneous firing rate of neuron i. The instan-

taneous firing rate is defined as the convolution of the spike train with an exponential filter,

u(t) = exp(−λt)

riðtÞ ¼
Z 1

0

uðtÞoiðt � tÞdt ð2Þ

where oi(t) is the spike train of neuron i, oiðtÞ ¼
P

kdðt � t
k
i Þ, δ(t) is the Dirac delta function

and tki is the k-th spike of the neuron i. Exponential filter captures short-lasting causal effects

of biological variables. Note that the feed-forward input and the neuron’s contribution to

the decoded signal are weighted by the same amount, wij. This is a reasonable assumption,

considering that neurons with stronger synapses will also send bigger PSPs to other neurons

and at the same time contribute more to the read-out of the estimated signal. In addition to

biophysically well defined variables cited above, we define an abstract variable, the signal,

which is the convolution of the input with the same temporal filter as the decoder.

xjðtÞ ¼
Z 1

0

uðt0Þsjðt � t
0Þdt 0 ð3Þ

It is important to remark the difference between the input, which is the current that

strikes the neural membrane, weighted by neuron’s weight according to the strength of its

synapses, and the signal, which is what the network is trying to represent and approximate

with its activity. The neural membrane has capacitive properties which results in temporal

filtering of its inputs. If we assume that neuron’s membrane potential is a leaky integrator of

an input s(t), we can write its sub-threshold dynamics as VðtÞ ¼
R1

0
uðt0Þsðt � t0Þdt 0, which is

equivalent to the expression for xj(t). The input s(t) and the signal x(t) therefore cannot be

the same variable.

When appropriate, we will use vector notation and refer to the variable x(t) = [x1(t),
x2(t), . . ., xJ(t)] as the signal and to the variable x̂ðtÞ ¼ ½x̂1ðtÞ; x̂2ðtÞ; :::; x̂ JðtÞ� as the decoded

signal or the estimate of the signal. Vector notation will also be used when referring to the

complete set of weights, w = [w11, w12, . . .w1N; . . .;wJ1, wJ2, . . .wJN], where N is the number of

neurons in the network and J is the number of inputs. In the reference paper [14], neurons

have slow and fast currents and the emergence of slow currents is due to assuming different

temporal filters for the signal and for the decoder. With that assumption, there is no leak cur-

rent that follows from derivation, the later being added to the model for biological plausibility.

In the present work we pose those filters as identical, which results in a network with fast cur-

rents only and where the leak current follows from the derivation of the model. This procedure

is similar to the one used in [15], but with cost parameters that are added to the objective

function.

The functional goal of an efficient network is to track an arbitrary signal with maximal effi-

ciency (i.e. with best accuracy and with minimal number of spikes). In [14], the model is

named “network with predictive coding”, where the term “predictive coding” refers to the fact

that spikes arise when there is a prediction error. The term “prediction” should not be under-

stood as “looking into the future” but rather as having a signal, which is partially predicted by

the current read-out. This is achieved by posing as objective the minimization of the following

Computational Account of Spontaneous Activity
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cost function:

EðtÞ ¼k xðtÞ � x̂ðtÞ k2 ð4Þ

and assuming there will be a spike only when this minimizes this function, i.e.

Eðtjneuron i spikesÞ < Eðt; no spikeÞ: ð5Þ

The objective function evaluates the distance between the signal and its estimate in real

time and is therefore a time-dependent variable. This is motivated by the fact that biological

neurons receive inputs and generate output spikes in real time. We assume that the minimi-

zation of the objective function with spikes in real time is a computational problem that is

biologically plausible. The objective function is minimized for the next time step only

(greedy minimization), by assuming stationarity of the stimulus between the present and the

next time step. From the minimization of the objective function, the condition for spiking is

derived (see [14]):

wT
i ðxðtÞ � x̂ðtÞÞ >

XJ

j¼1

w2
ij

2
: ð6Þ

Assuming the left-hand side is equivalent to the membrane potential of a single neuron,

ViðtÞ ¼ wT
i ðxðtÞ � x̂ðtÞÞ ð7Þ

and the right-hand side to the firing threshold, we get neurons that track the stimulus with

great precision, as any error bigger than the half of the weight of a single neuron will trigger

error-correcting activity. The assumption that eq 7 is the membrane potential is reasonable if

one remembers that the condition in eq 5 was a condition for having a spike and that a spike is

fired when the membrane potential reaches the firing threshold.

When the condition for spiking is derived with respect to time, we get the following expres-

sion:

_ViðtÞ ¼ � lViðtÞ þ
X

j

wijsjðtÞ �
X

k

�ikokðtÞ ð8Þ

where ϕ = wT w is the matrix of lateral and recurrent connections. Note that eq 8 is a Leaky

Integrate-and-fire neuron with leak term, feed-forward current and a current that results from

lateral (between neurons) and recurrent (autapse) connections.

To understand better how the model works, we present the simplest case, a single neuron

tracking one input (“auto-encoder”). We assign to the neuron a weight, w = 1. Here, predictive

coding corresponds to a simple reset mechanism, computationally equivalent to self connec-

tion with weight -1. The membrane potential is equivalent to the prediction error,

VðtÞ ¼ xðtÞ � x̂ðtÞ. Whenever it crosses the threshold (Thres ¼ w2

2
¼ 1

2
), the neuron fires a

spike. At this time, the autapse of the neuron activates and resets the membrane potential of

the neuron for −w = −1. Notice that there is no need to implement the reset artificially. Mini-

mization of the objective function in the one neuron example is equivalent to the firing rule

VðtÞ > 1

2
, where the membrane potential is integrated according to the simple rule,

_V ¼ � lVðtÞ þ sðtÞ � oðtÞ. Same model can be extended to an all-to-all connected network,

receiving multiple inputs. The “auto-encoding” is now performed via lateral connections that

are canceling the feed-forward input. Currents resulting from feed-forward as well as from lat-

eral connections can be either inhibitory or excitatory. Interestingly, the error signal is now

common to all the neurons in the network, since the error correcting spikes are communicated

Computational Account of Spontaneous Activity
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to other neurons via lateral connections. This results in a population code where all neurons in

the network jointly encode the incoming signals.

1.2 Efficient coding with transmission delays. Without transmission delays, the network

described by eq 8 is optimal in tracking an arbitrary multidimensional signal. However, bio-

logical neurons have transmission delays. It turns out that having transmission delays has a

great impact on network dynamics as well as on the accuracy with which signals are encoded.

From the dynamics point of view, we observe massive synchronization of neurons with similar

selectivity, which naturally deteriorates coding efficiency. Transmission delays cause the delay

in the error signal, since the latter depends on the read-out of network activity. All neurons

receive a delayed error signal and since they do not have the information about the present

state in other neurons, all neurons whose spike will contribute to the minimization of the error

will spike synchronously. This results in alternative spiking of neurons with + and - selectivity,

where + and − neurons tend to synchronize.

The overall amount of synchronization can be controlled by imposing a “cost” on spiking.

As in the reference work [14], we include a linear and a quadratic cost term, penalizing large

spike counts. The objective function with cost terms is defined as follows:

EðtÞ ¼k xðtÞ � x̂ðtÞ k2 þ n
X

i

riðtÞ þ m
X

i

riðtÞ
2

ð9Þ

Deriving the objective function with cost terms introduces an additional term in the mem-

brane potential (see the last term on the right side):

ViðtÞ ¼ wT
i ðxðtÞ � x̂ðtÞÞ � mriðtÞ: ð10Þ

In [14], different time constants for the signal and the estimate are used. Here, we pose those

time constants are the same and derive the membrane potential equation that we use for simu-

lations. For easier reading, we will use vector notation. We define the vector of membrane

potentials as follows: V(t) = V1(t), V2(t), . . ., VN(t), where N is the number of neurons. Simi-

larly, we define a vector of firing rates and a vector of spike trains, r(t) = r1(t), r2(t), . . ., rN(t),
o(t) = o1(t), o2(t), . . ., oN(t). Rewriting the eq 10 in vector notation gives the following:

VðtÞ ¼ wTðxðtÞ � x̂ðtÞÞ � mrðtÞ ð11Þ

The derivative of the signal is defined as a leaky integration of inputs.

_xðtÞ ¼ � lxðtÞ þ sðtÞ ð12Þ

The derivative of the instantaneous firing rate is defined as a leaky integration of spikes.

_rðtÞ ¼ � lrðtÞ þ oðtÞ ð13Þ

Similarly, the derivative of the estimate is defined as a leaky integration of spikes, weighted

by the weight matrix.

_̂xðtÞ ¼ � lx̂ðtÞ þ woðtÞ ð14Þ

The derivative of the membrane potential is therefore the following:

_VðtÞ ¼ wTð _xðtÞ � _̂x ðtÞÞ � m _rðtÞ

¼ wTð� lxðtÞ þ sðtÞ þ lx̂ðtÞ � woðtÞÞ � mðoðtÞ � lrðtÞÞ

¼ � lðwTðxðtÞ � x̂ðtÞÞ � mrðtÞÞ þ wTsðtÞ � wTw oðtÞ � moðtÞ

Computational Account of Spontaneous Activity
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Noticing that the expression in parenthesis is equivalent to the definition of the membrane

potential (eq 11), we gain the leak term and get the expression for the membrane potential:

_VðtÞ ¼ � lVðtÞ þ wTsðtÞ � wTw oðtÞ � moðtÞ ð15Þ

For the single neuron, this gives the following:

_ViðtÞ ¼ � lViðtÞ þ
X

j

wijsjðtÞ �
X

k

�ikokðtÞ � moiðtÞ þ sZiðtÞ ð16Þ

where ϕ = wT w is the matrix of lateral and recurrent connections. Derivation of the objective

function with cost terms gives the following rule for firing:

ViðtÞ >
XJ

j¼1

w2
ij

2
þ

m

2
þ

n

2
ð17Þ

The effect of the linear cost ν is to raise thresholds of all neurons for the same amount and

therefore to penalize high firing rates of the population (eq 17). The quadratic cost μ has the

same network-wide effect on thresholds (eq 17) and in addition adds a hyperpolarizing current

to the membrane potential (eq 16), only to the neuron that recently spiked. We interpret the

latter as the spike-triggered adaptation. Finally, a noise term is added, which is a white noise

with zero mean and standard deviation σ. Noise processes across neurons are uncorrelated, i.e.

< ηi(t)ηj(t0)> = δijδ(t − t0).

2 Spiking in active and quiescent state: A minimal model

In general, costs on spiking are required to achieve efficient coding in networks with delays in

synaptic transmission. In case costs on spiking are not properly controlling the activity, we

observe a peculiar phenomenon which consists in fast oscillation of the read-out of neural activ-

ity. The fast oscillation is caused by alternative spiking of neurons with positive and negative

selectivity, which we call “the ping-pong effect”. In case of the network with delays, the ping-

pong appears even without any noise and is therefore due to transmission delays. In the network

without transmission delays and without noise, there is no such effect, but it appears if the net-

work gets perturbed by the noise. The network that is not regulated by costs on spiking is highly

unstable and quickly enters inefficient coding regimes with excessively high firing rates. How-

ever, in the presence of noise, not all spikes are inefficient. If there is a spike that is only due to

the noise, another spike of a neuron with opposite selectivity is in fact best suited to quickly cor-

rect the coding error. In the present section we illustrate efficient and inefficient spikes with a

minimal model with 2 neurons and the linear cost, where spikes can be followed step-by-step.

In the case of a single neuron, Up states are not observed. However, encoding a signal that

can be both positive and negative with only one neuron results in poor estimation of the signal.

A single neuron is only able to correct the estimate in the direction of its weight. Consider the

case where the single neuron has a positive weight. When the estimate is too small with respect

to the signal, this neuron fires spikes, which brings the estimate closer to the signal. However,

when the estimate is too large with respect to the signal, this neuron cannot correct for it and

the error accumulates. Minimal models with one input and with 2 neurons, one with positive

and one with negative weight, will be considered. This case is not biologically realistic but is a

toy example, useful to grasp the full model. With the toy model in mind, one can extend it to

more complex cases of multiple neurons and a high-dimensional signal.

2.1 Minimal model for tracking the signal. In the minimal model, we have two neurons

with arbitrary + and - weights, w = (w1, w2) = (a, −b), a, b> 0. Firing thresholds for the two

Computational Account of Spontaneous Activity
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neurons are proportional to their respective weights, Thres1 ¼
a2

2
þ n

2
, Thres2 ¼

b2

2
þ n

2
. The con-

nectivity matrix is the following: wTw ¼
a2 � ab

� ab b2

( )

, and since the interaction term is

−wT w, the two neurons are connected to each other with symmetric excitatory connection

(off-diagonal elements) and have an inhibitory autapse proportional to their respective weights

(diagonal elements). Such a pair of neurons with opposite selectivity constitutes the minimal

network that is successful in tracking even a fast signal, albeit with high firing rates. The two

neurons are receiving the same input, but since they are weighting this input with + (neuron

1) and − (neuron 2) weights, their feed-forward currents are of opposite sign (the feed-forward

current is wis(t)). Note that neuron’s weight is in fact neuron’s selectivity; not for the input

itself, but for the internal signal that the network as a whole needs to estimate.

2.2 Error-correcting spiking in the quiescent state. In the quiescent state, there is no

feed-forward input to the network (s(t) = 0 8t) and the signal remains silent at all times

(�sðtÞ ¼ 0 8t). Since we are most interested in activity that arises from the network alone, we

will assume that neuron 1 is perturbed by the noise, sufficiently strong to provoke one single

spike, and that after the first spike there is no more noise in the system. At the moment of per-

turbation, we assume that V2 is at the resting potential, V2 = 0. Before the first spike, firing

rates are at zero and the estimated signal is silent, ŝðtÞ ¼ 0. Firing rule reduces to the

following:� wT
i ŝðtÞÞ þ s

R

t0ZiðtÞdt >
w2
i

2
þ n

2
: To initiate spiking, integration of the noise alone

has to lead to crossing of the threshold:

s

Z t0 � dt

0

Z1ðtÞdt >
w2

1

2
:

Let’s assume that neuron 1 satisfied this condition at time t = t0 − dt and fired a spike. The

firing rate of neuron 1 jumps to 1 and decays thereafter,
r1

r2

 !

!
exp ð� lðt � t0 � dtÞÞ

0

 !

.

At time t = t0, the predicted signal jumps in the direction of w1, ŝðtÞ ! w1 exp ð� lðt � t0ÞÞ.
Since the signal is at zero, this creates prediction error, E(t0) = a2. Weight of neuron 2 points in

the opposite direction than the weight of neuron 1 and neuron 2 should now spike in order to

correct for the prediction error. In fact, this is likely to happen, since neuron 2 receives an

excitatory PSP while neuron 1 is inhibited through the negative self-connection:

V2ðtÞ ¼ ab exp ð� lðt � t0ÞÞ

V1ðtÞ ¼
a2

2
� a2 exp ð� lðt � t0ÞÞ

At time t = t0, we have that V2(t0) = ab and V1ðt0Þ ¼ � a2

2
. Following the firing rule, there will

be a spike of the neuron 2 if ab > b2

2
; which reduces to a > b

2
. If for example a = b, neuron 2

will spike. In the meantime, condition for spiking in neuron 1 is � a2

2
> a2

2
. Neuron 1 will there-

fore remain silent. Spike of neuron 2 sends the predicted signal in the direction of w2.

ŝðtÞ ¼ a exp ð� lðt � t0ÞÞ � b exp ð� lðt � t00ÞÞ

At time t = t0 + dt = t00, predicted signal is the following: ŝðt00Þ ¼ a exp ð� lðt � t0ÞÞ � b. If

weights have the same strength, a = b, predicted signal is now close to zero and therefore close

to the desired signal. Prediction error is now E(t0 0) = a2(exp(−λ(t − t0)) − 1)2. The exponential

decay from one time step to the other is small and with dt! 0, prediction error is vanishing.
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Noisy spike in neuron 1 has therefore created a prediction error which was then corrected by a

spike of neuron 2.

In case weights of neurons 1 and 2 are not proportional to each other, other scenarios may

happen. With |w1|>> |w2|, the first noisy spike created a substantial error in the space of

representation and several spikes of neuron 2 will occur in order to bring the predicted signal

back to the origin. If, for example,|w1| = 10|w2|, the first noisy spike has sent the estimate far

away from the origin, as far as 10 times the absolute value of the weight of the second neuron.

Neglecting exponential decay due to the leak current, 10 spikes of neuron 2 are needed to

bring the predicted signal back to the origin. If, on the contrary, jw1j ¼
1

10
jw2j, noisy spike of

neuron 1 only created a small error. Now spike of neuron 2 would largely undershoot the sig-

nal and would only create a bigger prediction error. In this case, neuron 2 will not fire.

To sum up, spiking in quiescent condition can be error-correcting. A noisy spike in one

neuron creates a prediction error which is then corrected by one or several error-correcting

spikes of the neuron with opposite selectivity. The number of such spikes depends on the rela-

tion between the strength of neural weights and the membrane time constant, the latter con-

trolling the strength of the leak current. Error-correcting spikes allow to maintain correct

representation of the signal in spite of the noise.

2.3 Inefficient spiking in the quiescent state. In an inefficient working regime, however,

besides error-correcting spikes, additional spikes will be fired. What happens is that after the

spurious spike of neuron 1 and the error correcting spike of neuron 2, a depolarizing PSP is sent

back to neuron 1. If this PSP alone is strong enough to make the neuron 1 fire again, neuron 1

will do so, even though there is no prediction error to correct for. In such a regime, the two neu-

rons continue to spike, correcting and again re-creating the prediction error. The time it takes

to the network to “integrate” the information about a spike and react accordingly, there is

already a new spurious spike that has been generated. Spiking is mechanically driven by lateral

connectivity and is due to the delay in synaptic transmission, which in our case is also a delay in

sharing the information about the prediction error. The requirement of a single PSP being

strong enough to drive the membrane potential across threshold might seem unrealistic. How-

ever, in bigger network where neurons are allowed to synchronize, it is enough that the sum of

PSPs of all neurons with opposite selectivity makes the neuron fire, which is highly plausible.

The occurrence of inefficient spiking is illustrated with a toy example. We will consider the

special case where the two neurons have antisymmetric weights, w = (w1, w2) = (a, −a), which

results in the same thresholds for the two neurons, V1;2ðtÞ > a2

2
þ n

2
. The membrane potentials

of the two neurons are the following:

V1ðtÞ ¼ V1ð0Þ þ

Z t0

0

½� lV1ðtÞ þ a
2ðo2ðtÞ � o1ðtÞÞ�dt þ s

Z t0

0

Z1ðtÞdt

V2ðtÞ ¼ V2ð0Þ þ

Z t0

0

½� lV2ðtÞ þ a
2ðo1ðtÞ � o2ðtÞ�dt

If we follow the same scenario as before, a noisy spike in neuron 1 at time t0 − dt, we get at

time t = t0 an excitatory current in neuron 2 and hyperpolarization in neuron 1:

V2ðtÞ ¼
Z t0

0

½� lV2ðtÞ þ a
2dðt � t0Þ�dt ¼ a2 exp ð� lðt � t0ÞÞ:

V1ðtÞ ¼
a2

2
þ

Z t0

0

½� lV2ðtÞ � a
2dðt � t0Þ�dt ¼

a2

2
� a2 exp ð� lðt � t0ÞÞ
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At time t = t0, the firing rule in neuron 2 is a2 > ν and in neuron 1 is � a2 > n

2
. Since the cost

can only be non-negative, neuron 1 will certainly not fire, regardless of any other parameter.

Regarding the neuron 2, assume the linear cost is smaller than the square of the weight, which

makes this neuron fire. At t0 0 = t0 + dt this sends an excitatory PSP back to neuron 1 and hyper-

polarizes neuron 2:

V1ðtÞ ¼
a2

2
� a2 exp ð� lðt � t0ÞÞ þ a2 exp ð� lðt � t00ÞÞ

V2ðtÞ ¼ a2 exp ð� lðt � t0ÞÞ � a2 exp ð� lðt � t00ÞÞ

At time t = t00, the firing rule for neuron 1 is a2ð1 � exp ð� lðt � t0ÞÞÞ > n

2
. With the cost at

zero, the condition for spiking in neuron 1 is again satisfied and neuron 1 will fire another

spike. In an efficient working regime, however, spike at t = t00 should not occur, since the pre-

diction error has already been corrected with the spike of neuron 2. In order to keep spiking

efficient, it is necessary to increase the linear cost. The following has to be satisfied: ν> 2a2 �

with � = 1 − exp(−λ(t − t0)). Efficient working regime allows for the error-correcting spike,

but prevents spikes that are not error-correcting, which implies the following: 2� < n

a2 < 1.

With such relation between linear cost, weights and the strength of the leak current, there is

one noisy spike followed by the error-correcting spike, after which there are no further

spikes.

If linear cost is too small, i.e. ν< 2a2 �, the two neurons continue to mutually excite each

other. The scenario with antisymmetric weights (w1 = −w2) is particularly prone to drive long-

lasting Up states. With antisymmetric weights, each spike produces the same amount of excita-

tion (to the pair neuron) and inhibition (to itself). The amount of self-inhibition and lateral

excitation to a given neuron therefore perfectly compensates, but this compensation being

delayed-it occurs on subsequent time steps. With such precise but delayed balance, long Up

states arise. Interestingly, noise will now be helpful to perturb this delayed balance and end an

Up state. It has to be emphasized that having perfectly antisymmetric weights might not be

biologically plausible, since this would require extremely precise tuning of synapses. For simu-

lations, we used networks with multiple neurons and assumed the generic case where neural

weights are randomly distributed.

3 Methods for statistics

All simulations are done with Matlab, Mathworks.

3.1 Spike-triggered multi-unit activity. Spike-triggered multi-unit activity (S-MUA) is a

measure of synchronization of single neurons with population activity. First, we compute the

multi-unit activity by convolving the spike train of every neuron with an exponential kernel

and sum across neurons,

MUAðtÞ ¼
XN

i¼1

ZT

0

uMðt
0Þoiðt � t

0Þdt0 ð18Þ

with uM(t) = exp(−λDt), λD = 50 Hz, T is the length of the trial. The filter for convolution has

short time constant, which allows to capture quick fluctuations in population firing rate.

Multi-unit activity is then observed in a time window of 100 milliseconds before and after

each spike, to get the non-corrected spike-triggered multi-unit activity for the neuron i,
SMUARaw

i ðt
0Þ, with τ0 the time lag between the spike and the multi-unit activity. Note that

τ0 = 0 corresponds to the multi-unit activity at the time of the spike. To be able to combine
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results for neurons with different firing rates, we subtract from SMUARaw
i ðt

0Þ the

SMUAShuffle
i ðt0Þ, where for the latter, spike train of the observed neuron and the multi-unit

activity are taken from incongruent trials. SMUA(τ) is the mean across neurons of corrected

spike-triggered multi-unit activity, normalized with the total number of spikes.

SMUAðt0Þ ¼ ð
XN

i¼1

ZT

0

oiðtÞdtÞ
� 1 1

N

XN

i¼1

ðSMUARaw
i ðt

0Þ � SMUAShuffle
i ðt0ÞÞ ð19Þ

The peak amplitude of S-MUA is the maximal amplitude of the average S-MUA, which

turned out to be at zero time lag. For estimating the S-MUA, we used 50 trials, each 200 sec-

onds long.

3.2 Duration of Inter-burst intervals and duration of Up states. Inter-burst intervals,

similarly to Inter-spike intervals, measure how much time elapses between subsequent

bursts/Up states. Mean Inter-burst interval is the mean across all Inter-burst intervals that

occurred during a simulation trial. Distribution of Inter-burst intervals was fitted with the

Gamma distribution (function “gamfit” by Matlab). The criterion for an Up state is at least 20

percent of neuron being simultaneously active. This criterion is set by hand, however, its pre-

cise value does not qualitatively change the results.

Duration of Up states measures the length of Up states. Mean duration is the mean of dura-

tions, collected during the simulation trial. Distribution of duration was not easily fitted with

any unimodal distribution. For this reason, we fitted the distribution of durations with a non-

parametric kernel-smoothing distribution (function “fitdist”, specification ‘Kernel’,‘epanech-

nikov’, Matlab). For Inter-burst intervals as well as for the duration of Up states, a simulation

trial corresponding to 1000 seconds was used.

3.3 Coefficient of variation 2. Coefficient of variation 2 (CV2) is the average coefficient

of variation, computed from sequences of Inter-spike Intervals [14]. CV2 of neuron i is com-

puted as follows:

CV2i ¼ 2
jISIjþ1 � ISIjj
ISIjþ1 þ ISIj

ð20Þ

Mean CV2 is the average across neurons, CV2 ¼
1

N

P
iCV2i.

Results

It is widely recognized that neural circuits are not driven in purely feed-forward fashion. In

the cortex, lateral and recurrent connectivity represent a larger portion of the synaptic inputs

[4], and we can assume that they have an important role in shaping the neural code. One of the

fundamental concepts on how neurons in the brain might encode behaviorally relevant vari-

ables is brought by predictive coding. Predictive coding assumes that sensory percepts are not

exclusively the result of feed-forward computations, but are instead inferred from both sensory

cues and predictions that are internally generated by the brain [19–21]. There is an ongoing

debate in scientific community about which brain structure could implement predictive cod-

ing principles [22, 23]. Applied at a very small scale, predictive coding can take the form of a

reset in single spiking neuron [24] or divisive or subtractive inhibition in neural micro-circuits

[25–28]. At the level of larger populations of spiking neurons, this is equivalent to balancing

excitation and inhibition as tightly as possible [29]. The principles behind predictive coding

with spikes are described below. Equations and their argumentation are provided in methods.

Mathematical derivations can be found elsewhere [14, 15].
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Greedy error minimization in spiking networks

Let us first consider the simplest case, a single integrate and fire neuron with weight w
responding to time varying input s(t). This neuron receives an input current ws(t), integrates

it with a membrane time constant tv ¼
1

lv
, and fires whenever the membrane potential

reaches a threshold w2

2
. After a spike, the membrane potential is reset to � w2

2
. The desired sig-

nal is given by the input current, convolved with an exponential filter, the latter representing

a post-synaptic potential, xðtÞ ¼
R1

0
sðt � t0Þ � uðt0Þdt 0 with uðtÞ ¼ exp � t

tv

� �
. The desired

signal is estimated by a linear read-out of the network’s output, x̂ðtÞ ¼ wrðtÞ. The variable

r(t) is the instantaneous firing rate of the neuron, computed as a convolution of the spike

train with same exponential filter as before, rðtÞ ¼
R1

0
oðt � t0Þ � uðt0Þdt 0. The spike train is

defined with a Dirac δ function o(t) = ∑k δ(t − tk) with tk the k-th spike of the neuron. The

objective of the model is to minimize the cost function, EðtÞ ¼ ðxðtÞ � x̂ðtÞÞ2. The neuron

fires a spike whenever this minimizes the cost function, i.e. when the following condition is

satisfied: E(t|spike) < E(t, no spike). Developing this simple rule, the membrane potential of

the neuron is proportional to the coding error, VðtÞ ¼ wðxðtÞ � x̂ðtÞÞ. The neuron performs

a greedy minimization of the error: whenever the coding error exceeds a value proportional

to its weight w2

2
(i.e. the threshold), a new spike is fired, which decreases the coding error. As

a result of the greedy minimization, the read-out of output spikes tracks the inputs as pre-

cisely as possible given λv and w (Fig 1a).

Exactly the same coding strategy can be performed by a population of integrate and fire

neurons, working together to represent their shared signal. We assume that each time one of

the neuron fires, it contributes to the estimate x̂ according to its weight wi. The estimate is a

leaky integration of spikes, weighted by neural weights, x̂ ¼
P

iwiri, where ri is the convolution

of the spike train of neuron i, as before. The update of the estimate after each spike is commu-

nicated to other neurons through lateral connections by −wT w, the weight between neuron i

and j being −wi wj. As a result, the membrane potential of each neuron can be interpreted as a

projection of the global coding error on its weight, e.g. ViðtÞ ¼ wixðtÞ �
P

jwiwjrjðtÞ ¼

wiðxðtÞ � x̂ðtÞÞ. When the neuron i reaches a fixed threshold
w2
i

2
, a new spike is fired, contribut-

ing wi to the estimate which decreases the coding error xðtÞ � x̂ðtÞ by −wi in the next time

step. This neuron is then reset to �
w2
i

2
. Since the error remains strictly bounded by the firing

thresholds, the estimate is forced to track the signal with single spike precision, as this was the

case for the single neuron in Fig 1. A simple example with 4 neurons, 2 with positive weights

(w1,2 = 10) and two with negative weights (w3,4 = −10), is shown on Fig 1b. When the estimate

is below the signal, one of the neurons with positive weight spikes (pink dots) in order to bring

the estimate up. When the estimate is above the signal, one of the neurons with negative weight

spikes to pull the estimate down (blue dots). Note that any of the two neurons with the same

weight is equally good for correcting the error. When the representation of the same signal is

shared between more neurons, this gives rise to asynchronous spike trains (Fig 1c). A spike

from any of the 25 neurons with weight +1 (pink dots) gives the same contribution to the esti-

mate, the same being true for neurons with weight -1 (blue dots). With respect to the 4 neuron

example, estimating the same signal with 50 neurons with smaller weights gives much more

precise estimate of the signal (dashed black line is on the top of the gray line).

Finally, real-world stimuli may contain several variables to which neurons respond simulta-

neously. Neurons in the primary visual cortex, for example, are tuned to specific orientation as

well as to the spatial frequency of stimuli. For the sake of generality, we therefore assume that

several variables can be represented by the network simultaneously, making part of a multi-
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dimensional signal. Each neuron now has multiple weights, each weight corresponding to a

particular input variable sj(t). Note that the signal and the estimate “live” in the same space and

that the number of estimated variables is the same as the number of input variables. As before,

inputs are decoded linearly from the output spike trains i.e. x̂ jðtÞ ¼
P

iwijriðtÞ, with wij the

decoding weight of neuron i for the variable sj(t). x̂ jðtÞ is the estimate of xj(t), with xj(t) the

convolution of the input variable sj(t), i.e. xjðtÞ ¼
R1

0
sjðt � t0Þ � uðt0Þdt0. The membrane

potential is now the projection of the multi-dimensional coding error on neuron’s weight, i.e.

ViðtÞ ¼ wT
i ðxðtÞ � x̂ðtÞÞ with x(t) = [x1(t), x2(t), . . ., xJ(t)], x̂ðtÞ ¼ ½x̂1ðtÞ; x̂2ðtÞ; :::; x̂ JðtÞ�, with

J the number of input variables. The threshold is now proportional to the sum of neuron’s

weights across input variables: Thresi ¼
PJ

j¼1
w2
ij

2
.

Fig 1. Coding signals with the model with predictive coding. A: Auto-encoder (schema). Single neuron with weight w = 1 represents the

prediction error ðxðtÞ � x̂ðtÞÞ within its membrane potential. Whenever the distance between the signal (blue) and its estimate (red) is bigger

than the half of neuron’s weight, neuron spikes, which pulls the estimate towards the signal. B: Four neurons, two with weight +10 and two with

weight -10, track a slow oscillating signal (gray on the upper plot). When the estimate (black on the upper plot) is too far from the signal from

below, one of + neurons fires a spike (pink dots) to pull the estimate up. When the estimate is too far from the signal from above, one of—

neurons fires (blue dots) to pull it down. The membrane potentials of + and - neurons are in anti-phase (lower plot). The order of firing within the

+ and - group is irrelevant for the read-out of spiking activity. Parameters: ν = 1, μ = 0, σ = 1, λ = 4 C: Tracking the same signal as in b) with 50

neurons, 25 with weight +0.1 and 25 with weight -0.1, gives rise to asynchronous spike trains (raster plot). Since neurons now have smaller

weights and, as a network, fire more spikes, the estimation of the signal (upper plot) is much more precise. Parameters: ν = 1, μ = 0, σthres = 0.1,

λ = 4 Hz. D: The “ping-pong” effect. 4 neurons, 2 with weight +1 and 2 with weight -1, do not receive any feed-forward drive but receive

uncorrelated white noise in their membrane potentials. When one neuron fires a spike because of the noise, this activates lateral connections,

provoking other spikes (middle plot). A spike of a + neuron is followed by a spike of a—neuron, which creates fast oscillation in the estimate

(upper plot) as well as in the membrane potentials (lower plot). Parameters: ν = 1, μ = 0, σ = 0.1, λ = 4 Hz.

doi:10.1371/journal.pcbi.1005355.g001
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Importantly, greedy minimization of the error with spikes does not insure that the network

is efficient. It can fire many more spikes than necessary, as illustrated in Fig 1d. Consider 4

neurons with weights, pointing in opposite direction in the signal space, 2 neurons with

weights +w and 2 neurons with weights −w. Neurons fire in a specific pattern: whenever neu-

ron with positive weight fires, it excites neurons with negative weight by an amount w2, which,

depending on the current state of the membrane potential, can be sufficient to bring one of

those neurons to its firing threshold, Thres ¼ w2

2
. If one of the neurons with negative weight

fires, it in turn excites the first neuron, and so on and so forth. While the coding error still

remains bounded within [−w, w], the spike count becomes absurdly large. Since neurons with

opposite weights are recruited in subsequent time steps, this makes the estimate jump in +w
and −w direction. We call such back and forth spiking between neurons with + and - weights

the “ping-pong” effect.

Such pathological solutions can be avoided by a network minimizing not only the coding

error, but the error plus cost terms penalizing high firing rates:

EðtÞ ¼k xðtÞ � x̂ðtÞ k2 þ m
X

i

r2

i þ n
X

i

ri ð21Þ

Linear cost, ν∑i ri, and quadratic cost, m
P

ir
2
i , control the relative importance of costs on

spiking with respect to the accuracy of the signal estimation.

The membrane potential of the neuron i, derived from eq 21, is now the following:

ViðtÞ ¼ wT
i ðxðtÞ � x̂ðtÞÞ � mrðtÞ ð22Þ

To understand how such computation could be performed by currents within the neural

membrane, eq 22 is derived with respect to time. This gives the membrane equation for the

neuron i that we use for simulations:

_ViðtÞ ¼ � lViðtÞ þ
X

j

wijsjðtÞ �
X

k

�ikokðtÞ � moiðtÞ þ sZiðtÞ ð23Þ

where ϕ = wT w is the matrix of lateral and recurrent connections. For derivation, see methods,

section 1. The noise term σηi(t) is added for biological plausibility. The noise term is a white

noise with zero mean and standard deviation σ, uncorrelated across neurons. The standard

deviation of the noise is in units of ms−1. Neuron i fires if the following condition is satisfied:

ViðtÞ >
XJ

j¼1

wij

2
þ

m

2
þ

n

2
ð24Þ

The linear cost forces the network to perform the task with as few spikes as possible. The

quadratic cost encourages the network to distribute spikes equally among neurons and there-

fore determines the distribution of firing rates. Implementing these costs corresponds to rais-

ing the firing thresholds by mþn

2
and decreasing the reset potential by −μ. All changes due to cost

terms control the excitability of the network and it is interesting to observe that they are easily

interpretable in a biological setting. Note that costs make the model more tolerant to small

errors, and in particular to errors generated by network’s own dynamics. The magnitude of

costs directly depends on the strength of neural weights and are therefore measured in unit of

the average weight.

A noiseless network with instantaneous synapses encodes best its signals with costs at zero.

If we relax these two constraints, i.e. in the presence of synaptic delays and significant neural

noise, the cost terms have to be raised sufficiently high to prevent the network from constantly
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responding to its own internally generated errors, as explained in the next section. For analyti-

cal examples of simple networks with 2 neurons, see methods, section 2.

In the following we investigate qualitative aspects of a network with 3 input variables and

400 neurons, following eqs 23 and 24. Neural weights are drawn randomly from a standard

normal distribution. The network is all-to-all connected. Set of weights is fixed and the model

is not optimized for representing any particular input. Synaptic transmission has a constant

delay of 1 ms, identical for all synaptic connections. The input to the network is white noise,

uncorrelated across input variables, and smoothed with an exponential filter. Network param-

eters are listed in the Table 2 in S1 Table. This set of parameters is kept fixed, unless a particu-

lar parameter is tested for its effects.

Consequence of synaptic delays

The predictive coding network without delays in synaptic transmission, defined by eqs 23 and

24, is optimal for tracking an arbitrary multidimensional signal. With large number of neu-

rons, the resulting activity is typically asynchronous irregular spiking. When transmission

delays are added to synapses, however, this has a dramatic effect on network activity. The net-

work loses its asynchronous irregular working regime, since neurons massively synchronize,

reflecting a population wide form of the “ping-pong”. A spike from a given neuron indeed

brings not one, but several neurons with opposite coding weights to their firing thresholds.

Since recurrent inhibitory weights are delayed, they cannot prevent these neurons from firing

synchronously, in turn bringing several neurons with the opposite selectivity to their firing

thresholds. In the most inefficient working regime with both linear and quadratic cost at zero,

network quickly converges to a state where all neurons with similar selectivity fire together, in

turn recruiting all neurons with opposite selectivity. However, those effects can be controlled

with the cost on spiking.

Keeping the quadratic error term at zero (μ = 0) and increasing the linear cost term ν (i.e.

raising firing thresholds for all neurons for the same amount), we observe a sudden transition

from a state with strong synchrony and large firing rates, to synchronous irregular spiking

with much lower firing rates (Fig 2a). However, even with sufficiently high thresholds this net-

work remains highly unstable. A large enough perturbation can indeed bring it back to the

regime with high firing rates.

The effect of raising the quadratic cost μ is markedly different. If we keep the linear cost at

zero and now test the effect of quadratic cost on synchronization, the latter is decreasing pro-

gressively (Fig 2b). In addition to raising thresholds, raising the quadratic cost increases the

amplitude of neural resets. As a consequence, neurons involved in an Up state become quickly

hyperpolarized and stop firing, ending the “ping- pong” event. The presence of the quadratic

cost prevents long Up states and stabilizes the network. However, moderate quadratic costs

cannot prevent short, population wide Up states, as in Fig 3a. Note that in the working regime

with moderate quadratic cost and no linear cost, Up states occur in regular intervals. There is

no noise in membrane potentials, meaning that such Up states are intrinsic to the network.

Naturally, the network remains silent when there is no noise and no external drive (Fig 3a, sec-

ond half of the trial).

Consequence of noise

Biological neurons operate in a noisy environment [4, 30, 31]. Realistic levels of noise have

drastic consequences on the dynamics of recurrently connected networks [5, 32]. In the brain,

neurons are subjected to multiple sources of noise simultaneously [30]. The synaptic noise is

thought as one of the major extrinsic noise sources [4]. We first test the response of the
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network to the synaptic noise, simulated as a white noise, uncorrelated across units, injected in

the membrane potentials of single neurons. Next, we add an intrinsic noise source, a failure in

generating a spike. The failure of spike generation is simulated by imposing a probability on

spiking to the neuron that has reached the threshold. If the probability of spiking is, e.g. pspike =

0.3, the neuron that reaches the threshold fires a spike in 30 percent of cases. When the spike is

not fired, the membrane potential remains close to the threshold and the neuron will likely fire

in subsequent time steps.

When introducing the noise to the membrane potential, spontaneous activity emerges dur-

ing quiescent state (Fig 3b). The activity of the network now consists of asynchronous irregular

spiking as well as periods of synchronized activation of the entire network—the Up states.

Raising the linear cost, Up states are getting less frequent and more irregular (Fig 3c), until

they totally disappear (Fig 3d). Increasing the cost even further is not necessarily desirable

Fig 2. Cost on spiking controls excessive synchronization. A: Percentage of synchronously active neurons in the active state as a function

of the linear cost, with no noise and with quadratic cost μ = 0.50 percent synchrony indicates that half of the neurons are spiking in every time

step. When the linear cost is strong enough (ν� 12), the level of synchronization suddenly drops, indicating a transition to desynchronized

working regime. B: Same as in a), but now keeping the linear cost at zero and increasing the quadratic cost, the level of synchrony is now

dropping progressively. Highly synchronous activity results in strong oscillations of the read-out (left inset) while for strong cost, the estimation of

the signal is sluggish and imprecise (right inset). C: Network with 400 neurons in 2 simulation trials. With fixed neural weights and identical feed-

forward inputs but different realizations of the noise process, there is a great variability in the realization of spike trains (middle plot, black and red

dots correspond to spikes in trial 1 and 2) and in the membrane potentials of single neurons (lower plot, Vm of an example neuron in trials 1 and

2). Nevertheless, the two realizations give almost identical read-outs (upper plot, the red trace was shifted by hand). D: The frequency of Up

states has non-monotonous relation to the standard deviation of the noise. For low noise levels, frequency of Up states is decreasing, it has a

minimum and then starts increasing. This is true for both active (full lines) and quiescent state activity (dashed lines). Increasing the linear cost

shifts the function towards lower frequency values. All other parameters are in the Table 2 in S1 Table.

doi:10.1371/journal.pcbi.1005355.g002
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since such high costs degrade coding precision. Intuitively, very high thresholds prevent all the

spiking, making the network non-responsive to the noise but also to the stimuli. Fig 2d shows

the frequency of Up states as a function of the noise and the linear cost, while quadratic cost is

kept constant. The effect of noise on the frequency of Up states is non-monotonous. With no

noise, the network easily synchronizes, resulting in regular Up states. Weak to moderate noise

limits the tendency of the network to synchronize and may improve coding accuracy, a form

of stochastic resonance. However, if the noise is increased further, the frequency of Up states

again increases, since Up states are now also triggered by the noise. Higher costs result in less

Up states at all levels of noise. Interestingly, for high costs and moderate levels of noise, the Up

states disappear entirely.

Within an Up state, a large fraction of neurons is recruited (in Fig 3a, around 60 percent).

However, the order in which the neurons are recruited is random (Fig 3a, inset). Many neu-

rons fire within the same synaptic delay, but most neurons fire no more than two or three

times within an Up state. The Up states as shown on the Fig 3 are transient epochs of very

strong synchronization, which is a consequence of dense connectivity. The strength of syn-

chronization can be modulated by introducing the secondary source of noise, the failure of

Fig 3. Frequency of Up states depends on the strength of the noise and the cost on spiking. A: In a network with no noise and with linear

cost at zero, but with quadratic cost at μ = 5, short but strong Up states regularly appear in the active state. Those can be seen in the read-out

(upper plot), in the spike rasters (middle plot), and in the multi-unit activity (MUA, lower plot). Without the external drive and with no noise, the

network is silent in the quiescent state. INSET: A close-up into an Up state. Even though many neurons fire within an Up state, spike trains of

single neurons remain irregular. B: When the noise is added to the network in A (σ = 0.25), Up states emerge in the quiescent state. C: When

the linear cost (ν = 4) is added to the network in c, it has the effect of decreasing the frequency and the regularity of Up states. D: When the

linear cost is increased even further to ν = 6, Up states completely disappear, only the asynchronous spiking persists. All other parameters are

in the Table 2 in S1 Table.

doi:10.1371/journal.pcbi.1005355.g003
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spike generation. By keeping the noise in the membrane potentials and including the failure in

spike generation in the model, we obtain activity that more closely resembles a class of working

regimes in the brain (Fig 4b). A close-up into an Up state shows the transient period of syn-

chronous spiking (Fig 4a). Separating spikes from neurons with positive and negative weights

(red and cyan dots respectively), the Up state consists of alternative spiking of the two sub-

populations on consecutive time steps (Fig 4a and 4c). Percentage of neurons that activate at

the peak of an Up state depends on the probability of spiking (Fig 4d). Neurons with similar or

opposite selectivity, i.e. with their weight vectors pointing in the same or opposite directions in

signal space, tend to be recruited within the same Up state while neurons with independent

selectivity, i.e. with orthogonal weight vectors wiwj = 0, tend to be recruited in different Up

states. The reason can be intuitively understood as an extension of the “ping-pong” dynamics

to the 3 dimensional signal space. Note that the secondary source of noise has the effect of

decreasing synchronization within an Up state, but it does not trigger Up states on its own.

Also, it does not have an effect on coding properties within an Up state. For this reason we do

not include it in the further analysis of the all-to-all connected network.

Fig 4. An Up state arises because of synchronous spiking of neurons with same selectivity. A: Close-up in an Up state. Red dots are spikes

of neurons with positive weights and cyan dots are spikes of neurons with negative weights. During an Up state, neurons with same selectivity fire

synchronously. The sub-populations of neurons with positive and negative weights fire in alternation. B: Same as plots in Fig 3, but with a secondary

noise source, the synaptic failure. By including synaptic failure, we obtain more realistic Up states. C: Percentage of active neurons during the Up

state in A. Red trace is for neurons with positive weights and cyan trace is for neurons with negative weights. Only spikes corresponding to a single

dimension of the stimulus are decoded. D: Percentage of neurons that activate simultaneously at the peak of an Up state as a function of probability

of spiking. Percentage of active neurons increases with probability of spiking. Parameters: ν = 3, μ = 3, pspike = 0.3. All other parameters are in the

Table 2 in S1 Table.

doi:10.1371/journal.pcbi.1005355.g004
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To evaluate the amount of synchronization of single neurons with the population activity,

we measure the mean spike-triggered multi-unit activity (S-MUA, Fig 5a and 5b). S-MUA was

measured for entire simulated trials, including both synchronous Up states and asynchronous

activity. Synchrony is stronger in quiescent state compared to the active state (Fig 5a). The

peak amplitude of S-MUA, if it exists, happens to be at the zero time lag, meaning that neurons

are most likely to spike when the rest of the network is also active. The synchronization of sin-

gle neurons with the rest of the network is strongly modulated by the linear cost (Fig 5b). With

increasing linear cost, synchronization is getting weaker and for sufficiently high cost, neurons

completely desynchronize. This is true for both active and quiescent states. The setting of costs

also determines the temporal regularity of Up states. Up states are frequent and regular, with

narrowly distributed inter-burst-intervals, for low levels of linear cost, but they become

increasingly rare and irregular at higher linear costs (Fig 5c). Up states are more regular and

more frequent in the quiescent than in the active state (Fig 5c, compare dashed versus full

Fig 5. Statistics of Up states in active and quiescent state. A: Mean spike-triggered multi-unit activity (S-MUA) in active (full line) and quiescent

state (dashed line) for the network with noise (σ = 0.25) and moderate costs (μ = 5, ν = 5.75). Temporal locking of single neuron activity to the

population activity is stronger in the quiescent (dashed line) compared to the active state (full line). B: Peak amplitude of S-MUA decreases with

increasing linear cost in both active state (full line) and quiescent state (dashed line). With stronger noise, time-locking of single neurons with the

population activity persists for a wider range of linear costs (compare blue and black lines). For strong enough costs, there is no more time-locking. C:

The Inter-burst Intervals (time intervals between succesive Up states, shorter IBI) are modulated by the linear cost in their mean and their distribution.

Mean IBI increases with the linear cost (inset). For small linear costs, distribution of Up states is narrow, indicating that Up states occur frequently and

in regular intervals (black line, full for active and dashed for quiescent state). For stronger costs, distribution of Inter-burst Intervals is getting wider and

is moving to the right, indicating less frequent Up states with irregular timing (blue and red lines). D: The mean and the distribution of Duration of Up

states is controlled by the quadratic cost. With increasing quadratic cost, mean Duration of Up states is decreasing (inset) and the distribution is getting

wider. All other parameters are in the Table 2 in S1 Table.

doi:10.1371/journal.pcbi.1005355.g005
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lines). Quadratic cost determines the duration of Up states, the latter getting shorter with

increasing quadratic cost (Fig 5d).

Up-states and efficient coding

As seen in Fig 2a and 2b, the network with synaptic delays has to be controlled by costs on

spiking in order to prevent excessive synchronization. In fact, excessive synchronization also

deteriorates coding precision of the network. We call “efficient” a network that is both accurate

in representing the input signals as well as parsimonious with spikes. In this section we quan-

tify the effect of cost parameters on network efficiency. We define an efficiency measure,

which takes into account the coding precision and the average number of spikes that are

“spent” for achieving such precision. We define the mean coding error as the average predic-

tion error over the simulation trial:

herrori ¼
1

hk w kii

1

TJ

Z T

0

XJ

j¼1

k xjðtÞ � x̂ jðtÞ k dt ð25Þ

where T is the length of the trial and J is the number of input variables. The mean error is

rescaled with the mean norm of weights, where the mean is taken across neurons. The effect of

a spike on the prediction error depends on the weight of the active neuron. To make the mean

error independent on a particular choice of the scale of w, the mean error is normalized with

an average norm of w. With the average across neurons we implicitly assume that all neurons

fire with same firing rates.

To measure the mean cost, we count the mean number of spikes in a simulation trial:

hcosti ¼
1

T

Z T

0

XN

i¼1

oiðtÞdt ð26Þ

The herrori is the temporal average of the distance between the signal and its estimate and

the hcosti is the average population firing rate. The weighted sum of the two is the Total error

Total error ¼ aherrori þ bhcosti ð27Þ

The encoding of signals is maximally efficient when the Total error is minimized. The Total
error can be evaluated as a function of any network parameter. Here we test it with respect to

linear and quadratic cost parameters. The Total error is measured during the active state, with

smoothed white noise as the input and with a single noise source, the white noise in membrane

potentials. Minimizing jointly the linear and the quadratic cost parameter, the Total error is

more sensitive to the quadratic than to the linear cost (Fig 6a), hence the scale with natural log-

arithm. There is a region where the Total error is best minimized (Fig 6a, red dots). This region

is approximately perpendicular to the identity line ν = μ (black dots). Overall, this implies that

there are multiple “good solutions” for the fine tuning of neural thresholds and spike-triggered

adaptation.

Fixing the quadratic cost and testing the efficiency of the network as a function of the linear

cost, the Total error has a minimum, indicating the most efficient working regime for this par-

ticular setting of the quadratic cost (Fig 6b). We observe that the herrori function alone has a

minimum, which approximately coincides with the minimum of the Total error. The mini-

mum of the Totalerror also coincides with a point where the hcosti changes behavior from

steeply dropping to slowly decreasing. This is consistent with the transition from working

regimes with frequent Up states to regimes with rare or no Up states (Fig 7b). Increasing costs

beyond the minimum, however, results in an increase of the coding error (Fig 6b, red trace
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after the minimum). Even if these higher costs completely eliminate spontaneous Up states

(Fig 7c and 7d), the benefit in term of further decreasing spike counts is moderate and does

not compensate for the growing coding errors. In particular, a network with high costs, corre-

sponding to high firing thresholds and large resets, will fail to respond to weak stimuli, to track

fast varying stimuli, or correct errors induced by noise. Similar functions result from fixing the

linear cost and measuring the herrori, and the hcosti as a function of the quadratic cost parame-

ter (Fig 6c).

In general, the Total error is defined as a weighted sum of the hcosti and the herrori. The

minimum of the Total error stays constant for equal weighting of the hcosti and the herrori
(α = β, black dots on the Fig 6b) and when α> β, but increases exponentially along the α + β =

1 line (red dots), namely after the point where the β parameter is dominant (β> α). In such a

regime, the network would be less responsive to stimuli and would remain silent in the quies-

cent condition. We argue that weighting equally the herrori and the hcosti is the most relevant

case to consider, since in this case a single spike contributes a unit to the error and a unit to

the cost. While the contribution to the cost can only be positive, a spike can either decrease the

error (efficient spike) or increase it (inefficient spike, see Methods, section 2). For costs bigger

then the optimal, a vast majority of spikes is efficient while for costs smaller than the optimum,

Fig 6. Efficiency of the model. A: Total error with α = β = 1, evaluated jointly for a range of linear and quadratic cost parameters. Black dots are the ν =

μ identity line. Red dots are 20 points where the Total error is the smallest. The z-axis uses the scale of the natural logarithm. B: Total error as a function

of the linear cost, for quadratic cost fixed at μ = 5. The y-axis uses the scale of the natural logarithm. C: Total error as a function of the quadratic cost, for

linear cost fixed at μ = 5. D: Optimal linear cost as a function of weighs α and β from Total error = αherrori + βhcosti. Red points indicate the ν = μ line and

red points indicate the subspace along which α + β = 1. All parameters are in the Table 2 in S1 Table.

doi:10.1371/journal.pcbi.1005355.g006
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many spikes are not. The optimal working regime is where a maximal number of efficient

spikes occur.

As it follows from its definition, the efficiency has effects on both the coding capacity of the

network as well as on its dynamics (Fig 7). The maximal efficiency (Fig 7a, point B at the mini-

mum of the Total error) corresponds to the best coding capacity in the active state (Fig 7c) and

to the regime where the Up states are at the point of vanishing in the quiescent state (Fig 8a).

This result is robust to changes in network size, noise level (Fig 8b and 8c), and signal strength

(Fig 8d). In all parameters investigated, optimal efficiency occurs near the point when Up

states disappear, but not beyond (Fig 8c). Thus, the most efficient network is in a as high-gain

regime as possible, with spontaneous Up states still present albeit rare and irregular.

Important to consider is that the optimal cost depends on the strength of the noise, this

dependence being nonlinear and non-monotonic (Fig 8b). Interestingly, for the low level of

Fig 7. Effects of efficiency on the network dynamics and the read-out. A: Moving along the Total error function, point B indicates the maximal

efficiency and points A and C indicate two qualitatively different suboptimal working regimes. B: Raster plot of activity in the quiescent state (no

stimulus), corresponding to network parameters in A, B and C. In the optimal working regime (middle plot), network shows desynchronized spiking due

to the noise and occasional, albeit very rare, moments of synchronous bursts of activity. In suboptimal working regime corresponding to A, the network

is easily excitable (upper plot) and the frequency of spontaneous bursts increases. In the working regime corresponding to C, network is less responsive

(lower plot), hence little or no spikes will be fired in the absence of the stimulus. C: Population read-out in the active state. In the optimal working regime

(middle plot), population read-out (red trace) gives the best estimate of the desired signal (black trace). In the suboptimal regime with easily excitable

network, the estimate of the signal is occasionally perturbed by strong oscillations, the network synchronizing and “over-representing” the signal with too

many spikes (upper plot). When the network is less responsive, the estimation of the signal is sloppy and imprecise (lower plot). D: Population read-out

in the quiescent state. In the optimal regime (middle plot), read-out of population activity oscillates around zero, its desired/true value. In the regime with

easily excitable network (upper plot), occasional bursts provoke strong oscillations of the read-out. When the excitability is suboptimal but low (lower

plot), the population read-out is constantly at zero. All other parameters are in the Table 2 in S1 Table.

doi:10.1371/journal.pcbi.1005355.g007
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noise the optimal cost is decreasing with the strength of the noise, indicating that some

amount of noise in fact helps the network to be more efficient. This is the regime where the

noise is too weak to trigger spiking. For stronger noise levels, when the noise is strong enough

to provoke spiking, optimal cost is increased to prevent triggering of Up states. Since the

strength of the noise and the linear cost have a nonlinear relation, it is not possible to simply

rescale one with the other. For a given level of noise, it is always possible to find an optimal

cost for spiking. Testing the network for any such ν|σ pair, the Up states are at the point of van-

ishing (Fig 8c).

Since spontaneous activity and Up states have an important effect on the population activ-

ity, why do they not degrade sensory coding more severely (e.g., see Fig 6b, the herrorii before

the optimum is decreasing, but not as steeply as the hcosti)? Intuitively, this is because the

error-correcting mechanism is still functional and the network constantly corrects its own

“mistakes”. Consider a toy example of two neurons, one with weight +w and one with weight

−w, that do not receive any feed-forward input but receive the noise in their membrane

Fig 8. Characteristics of the optimal network. A: Frequency of the Up states as a function of the linear cost. Frequency of Up states decreases

with increasing linear cost. At the optimal cost, indicated by an arrow, the frequency of Up states is close to zero, indicating that in the optimally

efficient network, Up states are at the point of vanishing. b) Optimal linear cost in function of the strength of the noise. Optimal linear cost is modulated

by the strength of the noise (i.e. the σ of the noise process) in a non-monotonous fashion. For small noise levels, the optimal cost is decreasing,

reaches a minimum and increases thereafter. This is true for the optimal cost estimated from the Total error (black trace), as well as for the optimal

cost estimated from the coding error only (red trace). c) Frequency of Up states for the networks with optimal costs in function of the strength of the

noise. At the optimum, frequency of Up states is always close to zero, irrespective of the level of the noise. This is true for both active (full line) and

quiescent state activity (dashed line). d) Optimal linear cost does not depend on the strength of the input. For a reasonable range of input strengths,

optimal cost stays constant. All other parameters are in the Table 2 in S1 Table.

doi:10.1371/journal.pcbi.1005355.g008
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potentials. Neurons + and − are interconnected with an excitatory connection, −(w1 w2) = −(w
(−w)) = w2. The desired signal is at zero at all times. If, by chance, the noise builds up in the

membrane potential of one neuron, this neuron fires. With a noisy spike, the estimated signal

is sent away from zero, in the direction of the weight of the spiking neuron. This creates a pre-

diction error. When the first neuron spikes, it also sends an excitatory PSP to the neuron with

opposite selectivity, making it more likely to spike in the next time step. The spike of the sec-

ond neuron is in fact efficient, since it brings the prediction error back to the origin. In the effi-

cient working regime, there is no more spiking thereafter. However, the second spike in turn

depolarizes the first neuron. In the inefficient regime, where neural thresholds are not

adjusted, the first neuron fires again, which re-creates the prediction error. Such “back and

forth” spiking between the two neurons with opposite selectivity alternates efficient and ineffi-

cient spikes. For mathematical illustration, see Methods, section 2.

In a more realistic setting, consider the response of two sub-populations of neurons to one

dimensional signal: + neurons (with positive weights) respond to an increase in signal above

the baseline, while − neurons (with negative weights) respond to a decrease in signal below the

baseline (Fig 9c). Something completely different happens during an Up state. In that case,

both + and − neurons are recruited equally within the same Up state (Fig 9d). They largely can-

cel each other’s effect such that, on average, no stimulus is encoded, despite the sharp increase

in population rate. Superficially, we observe a sudden increase in firing in both cases, but the

two activities have different “meaning” when spiking is decoded. While stimulus-locked tran-

sient response recruits only neurons of similar selectivity, in order to respond to a sudden

change in the signal, + and − neurons are recruited in alternation during an Up state, resulting

in an estimate that is oscillating around zero. This particular decoding pattern of Up states is a

prediction of the model that could be tested experimentally, by estimating the decoding

weights of neurons during the active state and decoding spikes during quiescent state. A less

salient, although interesting characteristics of the optimal network is to have the CV2 (see

methods, section 3.3) slightly below 1. For a Poisson process, CV2 is 1. Slightly more regular

spiking than the Poisson process is due to the presence of occasional Up states, but otherwise

indicates the proximity of an asynchronous spiking regime.

While useful to illustrate the mechanism and the impact of Up states in a noisy balanced

network performing efficient coding, many aspects of this model are not generally applicable.

In particular, the model we studied so far has all-to-all connections and the model might apply

to densely connected microcircuits. In the next section, we build a spatially organized layer of

neurons with local connectivity, and test whether conclusions about network efficiency gener-

alize to such cases.

Traveling waves in spatially organized networks with local connectivity

We now construct a topographic network with input signals corresponding to one dimen-

sional “image”, composed of a number of spatially arranged pixels. We assume the input is a

circular variable with Gaussian statistics:

sjðtÞ ¼ A exp ðBð cos ðyj � cðtÞÞ � 1ÞÞ ð28Þ

with θi 2 [0, 2π] and elements equally spaced, θi+1 − θi = const. The variable c(t) is smoothed

white noise, cðtÞ ¼
R1

0
Zðt � sÞu2ðsÞds, u2(t) = exp(−λinput t). Parameters A, B and λinput as well

as other parameters of the spatially organized network can be find in the Table 3 in S1 Table.

Neurons encode input variables with local weights or receptive fields, representing a blob-

shaped increase (ON neurons) or decrease (OFF neurons) in e.g. the luminance of the
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stimulus. There are 200 ON neurons:

wij ¼ C exp D cos
2pðyj � yiÞ

N

� �

� 1

� �

; ð29Þ

and 200 OFF neurons:

wij ¼ � C exp D cos
2pðyj � yiÞ

N

� �

� 1

� �

ð30Þ

Note that ON and OFF neurons with the same peak position (either positive of negative)

are considered to be at the same physical position on the layer. Neurons therefore share the

same spatial organization as the input and respond to the input only if the latter is inside their

receptive field. Because only nearby neurons have non-orthogonal decoding weights, connec-

tions in the network are local. Similarly to what we had before, connections between neurons

Fig 9. Signatures of efficient coding in active and quiescent states. A: Average Coefficient of variation for a sequence of Inter-spike Intervals (CV

2) in active state is modulated by the linear and the quadratic cost. Black dots indicate the line along which the costs constants are equal, i.e. μ = ν and

the red dot indicates optimal costs. For optimal costs, CV 2 is slightly below 1, meaning that spiking is close to Poisson, albeit more regular. B: Same in

the quiescent state. CV 2 for optimal costs is close to 1, indicating a Poisson process. C: Decoding stimulus-driven activity of + and − subpopulations.

In the active state, activation of + and − neurons depends on the behavior of the signal. When the signal (black line on the upper plot) increases in the

+ direction, the subpopulation of + neurons (blue trace on the lower plot) increases their firing rates. When, on the contrary, signal decreases in the

− direction, subpopulation of − neurons (red trace) strongly activates. D: Decoding an Up state. In the absence of the stimulus, neurons either fire

isolated, noise-induced spikes or engage in highly synchronized spiking during an Up state. Synchronized spiking has a particular and salient

decoding pattern. Since + and − neurons fire in quick alternation, they create a fast oscillation of the read-out around zero (upper plot). Firing rates of

both + and − populations rise and decay together (lower plot). All other parameters are in the Table 2 in S1 Table.

doi:10.1371/journal.pcbi.1005355.g009
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of the same polarity are inhibitory, while connections between neurons of opposite polarity

are excitatory. There is a 2 ms synaptic delay.

In order to find an efficient working regime, we test the network with the efficiency mea-

sure. Similarly to the all-to-all connected model, the Total error function in the spatially orga-

nized network allows to estimate optimal cost parameters. The dependency of the Total error
on the linear and quadratic cost constants behaves similarly to the one with the all-to-all con-

nected model. As before, the Total error is more sensitive to the quadratic than to the linear

cost, hence the plot of the natural logarithm of the error, log(Total error) (Fig 10a and 10c).

Notice that in general the logarithmic operation does not change the minimum of the func-

tion. There is a region where the Total error is jointly minimized for the linear and the qua-

dratic cost parameters (red dots), roughly perpendicular to the μ = nu identity line (black

dots). The activity corresponding to one of the best settings of costs, (Fig 10a, red square),

results in an accurate representation of the stimulus (Fig 10b, upper and middle plots). There

are no Up states in this working regime (Fig 10b, lower plot). In suboptimal regime with costs

Fig 10. Spatially organized network. A: The natural logarithm of the Total error as a function of linear and quadratic cost parameters. Black dots are the

ν = μ identity line and red dots are 20 points that best minimize the Total error with respect to the linear and quadratic cost parameters. Yellow square

marks a suboptimal regime with costs smaller than optimal. B: Activity of the network, with cost parameters corresponding to one of the optimal settings

for cost parameters (red square in A. The signal (upper plot) is accurately represented by the estimate (middle plot). At the beginning of the trial, the

network tracks a signal with positive sign. Next, it tracks a signal with negative sign. The trial ends with quiescent period. On the raster plot, ON and OFF

neurons are interleaved. C: Same as in A, for the network with an additional noise source, the failure in spike generation. D: Activity of the network, with

cost parameters corresponding to the red square in C where costs are suboptimal. The representation of the signal is still accurate, with occasional short

Up states in the active state. No Up states are observed in the quiescent condition. Parameter for A and B: pspike = 1, parameter for C and D: pspike = 0.3.

All other parameters are in the Table 3 in S1 Table.

doi:10.1371/journal.pcbi.1005355.g010
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at (ν, μ) = (12, 12), marked by yellow square on Fig 10a), Up states appear in both active and

quiescent state (Fig 11a).

Finally, we also test the efficiency of the network with an additional noise source, the failure

of spike generation. Compared to the model with a single noise source, cost parameters that

minimize best the Total error are now confined to lower quadratic costs and higher linear

costs (Fig 10c, red dots). Activity corresponding to a set of optimal costs (μ, ν) = (9, 21) (Fig

10c, red square) is again characterized by accurate representation of the signal and the absence

of Up states (Fig 10d). In the suboptimal working regime with (μ, ν) = (10, 12), corresponding

to the yellow square on Fig 10c, Up states appear in both active and quiescent condition (Fig

11b). Since Up states recruit equally ON and OFF cells, they have a minimal impact on the

representation of the signal (Fig 11). In particular, a silent signal is represented during quies-

cence, despite the abundance of spiking. Localized spontaneous bursts appear for a range of

costs smaller than the optima (Fig 12a). This is true for the model with single noise source as

well as for the model with two noise sources. The only qualitative effect of the secondary noise

source is less strong synchronization during an Up state, which results in Up states that more

closely resemble spontaneous bursts of activity that are observed in biological networks. Notice

that the effect of the failure in spike generation is therefore the same as in the all-to-all con-

nected network.

In contrast to the all-to-all connected model, Up states in the model with local connectivity

are traveling through the network. Synchronization can now recruit only cells in a local por-

tion of the layer, i.e. cells with similar receptive fields. Despite this fact, Up states often engage

a big portion of the neural layer (Fig 12c). We can investigate further the mechanism behind

these waves of activity by looking intra-cellularly at the membrane potentials. Bursts of activity

are caused by local perturbation of membrane potentials (Fig 12d) and progressively propagate

to cells of nearby selectivity (Fig 12c). During a burst, spikes ride on the top of brief periods of

fast oscillations, clearly visible in the membrane potentials. During an Up state, the temporal

envelope of these oscillation travels locally, reflecting the propagation of the initial perturba-

tion through lateral connections of nearby neurons. Oscillations in membrane potentials of

ON and OFF cells are in anti phase (Fig 12b). Even if these oscillations propagate to all local

Fig 11. The activity of the spatially organized network in suboptimal working regimes. A: The signal (upper plot), the estimate of the signal (midle

plot) and the spike raster (lower plot) for the network with local connectivity and the noise in the membrane potentials. In suboptimal working regime with

linear and quadratic cost parameters smaller than optimal, (yellow square in Fig 10a, (ν, μ) = (12, 12)), Up states emerge in active and quiescent state.

The signal can nevertheless be represented. Parameter: pspike = 1. B: Same as in A, with additional noise source, the failure in spike generation. Cost

parameters are smaller than optimal and correspond to the yellow square in Fig 10c with (ν, μ) = (12, 10). Parameter: pspike = 0.3. Other parameters are

in the Table 3 in S1 Table.

doi:10.1371/journal.pcbi.1005355.g011
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cells, only a proportion of cells actually fire. Moreover, a cell might not fire in each oscillation

cycle (on Fig 12d, red, magenta and green cells fired one spike while blue cell fired two spikes

and green cell fired none). As a result, single cell’s spike trains appear irregular both during

and outside of the Up state, while the underlying fast perturbation of membrane potential is

present in all cells and travels though the network. In comparison with the all-to-all connected

network, Up states in the model with local connectivity therefore rely on same computational

mechanism, but in addition show traveling property because of the spatial extension of the

model. As observed beforehand, duration of waves is highly sensitive to the cost on spiking.

Costs larger than optima lead to the absence of spontaneous waves during quiescence, and

eventually to the complete absence of spontaneous activity. In contrast, costs smaller than

optima result in an increase of the frequency and the duration of the waves, until they occur

continuously during both stimulus presentation and quiescence (Fig 12a). Traveling waves of

activity have recently been reported in V1 and V2 areas of the monkey in both active and qui-

escent states [33, 34].

Discussion

Predictive coding aims at representing an arbitrary time-varying signal as accurately as possi-

ble and with minimum number of spikes. The model performs a population code, where the

representation of the signal arises from joint activity of all the neurons in the network. When

subjected to perturbations, such a network will correct the erroneous representation of input

variables with additional spiking. In the quiescent state, spiking activity follows the same

computational principles as in the active state and the network now represents a silent (zero)

signal. Spiking in quiescent periods is triggered by the noise, which creates a prediction error.

The prediction error activates the self-correcting mechanism, which, depending on the cost on

spiking, corrects the initial error more or less efficiently. The self-correcting mechanism

reflects the computation, performed by the network. We propose the self-correcting mecha-

nism as a candidate mechanism to account for spontaneous activity in recurrently connected

networks.

While quiescent state activity can be mechanistically accounted for by activation of lateral

connections in recurrently connected circuits (see [8, 35] for in vitro, [7] for in vivo and [9] in

computo), it is less clear what is the “explanation” of spontaneous activity in terms of computa-

tion. The present work suggests that even an abundant spiking in the quiescent state might not

be arbitrary noise, but is instead a consequence of precise but inefficient computation. An Up

state in the quiescent condition can be understood as an attempt to maintain correct represen-

tation of a silent signal in the presence of noise. Decoding the internal estimate of the signal in

the latter situation shows that the internal representation during an Up state oscillates around

zero and is only minimally interfering with processing of the stimuli, despite the apparent vari-

ability in the response. Decoding quiescent state activity could in principle result in an arbi-

trary signal. If, in contrast, spikes are aimed at minimizing the coding error, the network

chooses a particular solution which is an oscillation around zero, the real value of the stimulus

and the desired value of the computation. This particular solution allows avoiding an arbitrary

erroneous representation and enforces the network to remain close to the correct representa-

tion at all times.

So far, a variety of hypotheses have been raised to explain the functional role of spontaneous

activity. Spontaneous activity has been related to the replay of the sensory experience [36],

reorganization of synaptic weights in the network [37], processing of the past experience [38],

memorization of sensory events [39, 40], bottom-up thalamic control [41] and top-down mod-

ulation [42]. In contrast to cited studies, the present work accounts for spontaneous activity by

Computational Account of Spontaneous Activity

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005355 January 23, 2017 28 / 34



considering it as an extension of a computation that the network might be performing with its

internal signals. It can be argued that the predictions of our model contrast with functional

accounts of spontaneous activity as a replay of sensory signals. During a replay, quiescent net-

work is re-activated, showing the same or similar pattern of activity as during the presentation

of the stimulus. Importantly, it also represents one of its past signals. The read-out of the neu-

ral activity should extract that signal as if it was an actual sensory response. On the contrary, a

network with predictive coding ensures that the internal signal in quiescent state stays around

zero, even though the noise triggers activity. Decoding these activities should therefore not

find any representation of a past signal during quiescence and during Up states.

Qualitatively different responses that change with the behavioral state of the animal have

been reported by several studies using electrophysiology [1, 7, 42, 43]. When the animal is

inactive, neural activity is characterized by low frequency fluctuations of the membrane poten-

tial and by bursts of spontaneous spiking, followed by periods of silence. While actively

Fig 12. Traveling waves. A: Percentage of time in the Up state as a function of cost parameters for the network with single noise source. For very low

costs, the network is permanently in the Up state. For high costs, Up states never occur. The transition between the region with Up states and the

region without those approximately coincides with points of minimal error (red dots). B: Cross-correlograms of quiescent state spiking between

neighboring cells with same selectivity (blue), opposite selectivity (red) and between distant cells (red). Selectivity relation between a pair of cells

determines very distinct cross-correlogram profiles. Neighbors with same selectivity fire in phase while neighbors with opposite selectivity fire in anti-

phase. Distant cells do not phase-lock their spike timing. C: An Up state is traveling through the network by engaging local connections between cells

of neighboring selectivity. Clusters of ON cells (blue dots) and OFF cells (red dots) are activated in alternation. D: Close-up in an Up state shows a

perturbation in the membrane potentials of single neurons that is transmitted locally to neighboring neurons (lower plot). While the perturbation of

membrane potentials propagate to all local cells, spiking pattern from one cell to another is irregular or absent. All parameters are in the Table 3 in S1

Table.

doi:10.1371/journal.pcbi.1005355.g012
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behaving, on the other hand, membrane potential fluctuations are of high frequency and the

network is in a desynchronized state. In our model, we have observed similar phenomena.

From active to quiescent state, the level of synchronization of single neurons with the network

increases. This happens automatically when the external input is set to zero and does not

require any change in model parameters. By changing the costs on spiking, which have simple

biological explanations as changing the excitability of the network, the model shows a contin-

uum of states, similarly to what has been observed in aforementioned studies. Relating net-

work dynamics to the network function, our work suggests that the two are closely inter-

dependent. Predictive coding models give a simple account on observed qualitative changes of

the network activity for the continuity of states, from alert active state to states with low level

of alertness. In vivo recordings in active and quiescent prefrontal cortex have indeed demon-

strated that neural responsiveness is modulated on-line, presumably in a behaviorally relevant

manner [13].

From models with predictive coding it follows that costs on spiking determine the working

regime of the network. Change in costs can be understood as the modulation of neural activity

by the behavioral state in biological networks. When the animal is actively behaving, the cost

on spiking would presumably be optimal because accurate representation of a signal is a prior-

ity, resulting in high responsiveness and giving rise to quickest and most efficient corrections

of the prediction error. Conversely, when the animal is inactive, the cost on spiking might be

suboptimal, resulting in more frequent Up states or else in sluggish representation of the input

signals with little spiking.

Within the predictive coding framework, we interpret the quadratic cost as the spike-trig-

gered adaptation and the linear cost as the homeostatic tuning of neural thresholds. The later,

in particular, is directly dependent on the level of the incoming noise in a non-monotonous

fashion. In the absence of homeostatic tuning of neural thresholds (i.e., with zero linear cost),

the predictive coding network shows regular Up states. We observe that the regularity of Up

states is in fact due to the recovery of adaptive currents after an Up state. Similar dependency

has been recently reported in [44], where the regularity of Up states is modulated by the extra-

cellular level of potassium.

Slow currents (i.e. with a slower time scale than the fast network interactions required by

predictive coding), as for example the NMDA current, were shown to have important contri-

bution to quiescent state activity [45]. Introduced in a predictive coding network model, slow

currents could implement a dynamical computation rather than just tracking of the input sig-

nals [14]. The present work describes a simplistic model, which captures only fast currents.

Slow currents can be included in the model to perform other types of computation than signal

tracking, for example differentiation of the input signal. Our future work is aimed at studying

the interplay of fast and slow currents during spontaneous activity. In addition, it might be

interesting to introduce heterogeneity in synaptic delays and in cost parameters. For simplic-

ity, we implemented costs as static parameters, affecting equally all cells of the network. It is

however closer to biology to assume costs as being variable over time and affecting different

cells in a heterogeneous manner.

The mechanism that drives the activity in the quiescent state gives general insights into the

network dynamics generated by recurrent connections. The mechanism that underlies quies-

cent state activity is obviously present also in the active state. In the active state, the observed

activity of the network is a combination of internal dynamics and the stimulus driven

response. A previous study [3] showed that the response of the network in the active state can

be decomposed into spontaneous activity and stimulus-related response. The same study also

shows that stimulus-induced part of the response is more or less invariant from one trial to

another while the spontaneous part is variable. According to this scenario, it is the
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spontaneous part of the response that accounts for the trial-to-trial variability that is observed

in the overall response. The stimulus-driven part of the response can therefore be seen as an

invariant drive, kicking the network while it is going through continuously evolving internal

dynamics. Our model corroborates same conclusions.

This work extends previous results that E/I balance is the dominant intrinsic source of sin-

gle neuron variability [10, 46, 47]. From the perspective of the model with predictive coding,

this variability is not a form of neural noise, but can be interpreted as a deterministic and cha-

otic neural code [14]. Present work shows that the model with predictive coding is robust to

perturbations with purely stochastic processes when cost parameters are adjusted, both in

terms of coding and in terms of dynamics. Similarly to [10], the model with predictive coding

assumes excitatory-inhibitory balance of inputs to single neurons and displays chaotic dynam-

ics, but, in contrast to the later, it assumes dense connectivity instead of sparse connections,

which, locally at least, is closer to experimental observations [13, 48]. This stronger and denser

connections allow for a larger repertoire of intrinsic dynamics, such as Up states, which can

co-exist with the representation of input signals.

In the model with predictive coding, Up states are due to small perturbations, a single

noise-induced spike, amplified by the strong excitatory recurrent connections in the network,

and quickly corrected by a re-balancing through the activation of the inhibitory connections.

When the network consists of more than 2 neurons, the network dynamics is chaotic and the

timing of spikes from one perturbation to another is not reproducible [14]. Our prediction is

compatible with the observation that small perturbations can induce a strong temporary

increase in the population firing rate [49]. However, even if we propose a similar mechanistic

interpretations than theirs, our interpretation in terms of implications for neural coding are

radically different. The study [49] took the irreproducibility of spike timing and chaotic net-

work dynamics as a support for rate coding. Our approach, in contrast, speaks in favor of a

temporal code, where the timing of each spike matters and is determined by a precise compu-

tation, carried out by the network. In our case, the variability of spike patterns can be

accounted for by the degeneracy of the neural code. Degeneracy, a source of intrinsic variabil-

ity, is due to the mapping of low dimensional space of input variables to high dimensional

space of network configurations. If the number of input variables is much smaller than the

number of neurons, the resulting spiking pattern following the perturbation of a single neuron

is determined by the specific configuration of the network at the moment of perturbation (i.e.

the initial conditions). Interestingly, our approach also shows that the variability on the level of

single units does not prevent an almost deterministic code at the population level. The high

dimensionality of the representational space of the network allows for a multitude of spiking

patterns that are nearly identically decoded. In such a context of a redundant neural code,

trial-to-trial variability can be seen as sampling in the space of possible solutions for the same

computational problems.

Supporting Information

S1 Table. List of variables and tables of network parameters. List of variables that define

models with predictive coding and tables of parameters used for simulations.

(PDF)
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