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Abstract: Pleural and parenchymal lung injury have long been characterized by acute inflammation
and pathologic tissue reorganization, when severe. Although transitional matrix deposition is a
normal part of the injury response, unresolved fibrin deposition can lead to pleural loculation and
scarification of affected areas. Within this review, we present a brief discussion of the fibrinolytic
pathway, its components, and their contribution to injury progression. We review how local de-
rangements of fibrinolysis, resulting from increased coagulation and reduced plasminogen activator
activity, promote extravascular fibrin deposition. Further, we describe how pleural mesothelial cells
contribute to lung scarring via the acquisition of a profibrotic phenotype. We also discuss soluble
uPAR, a recently identified biomarker of pleural injury, and its diagnostic value in the grading of pleu-
ral effusions. Finally, we provide an in-depth discussion on the clinical importance of single-chain
urokinase plasminogen activator (uPA) for the treatment of loculated pleural collections.

Keywords: urokinase plasminogen activator; urokinase plasminogen activator receptor; fibrinolysis;
plasminogen activator inhibitor-1; acute lung injury and repair and pleural injury and pleural
organization

1. Introduction

Derangements of pathways of fibrin turnover, including the fibrinolytic system, have
long been associated with the pathogenesis of lung and pleural injury and repair [1,2].
In acute and chronic parenchymal lung injury, accelerated coagulation and a fibrinolytic
defect favor the formation of extravascular fibrinous transition neomatrices, which can
rapidly organize and scar [3–6]. These events occur in the setting of acute and chronic
inflammation, and organization of the fibrinous neomatrices in the alveolar and interstitial
lung compartments resemble those associated with microvascular leakage and organization
occurring in the context of neoplasia and other inflammatory conditions [7–10]. In the
pleural space, local inflammation likewise leads to increased microvascular permeability,
intrapleural egress of coagulation substrates, and inhibitors of fibrinolysis and rapid
organization with the formation of fibrinous intrapleural collections or loculae that are
capable of impeding pleural drainage [1].

Plasminogen activators (PAs) regulate local fibrinolysis and include tissue plasmino-
gen activator (tPA) and urokinase plasminogen activator (uPA). Both are capable of cleaving
plasminogen to generate the active protease plasmin, which, in turn, degrades and re-
models fibrin. While tPA is expressed in lung epithelial cells, fibroblasts, and mesothelial
cells [2], it is mainly involved in intravascular fibrinolysis [11]. However, tPA has a greater
affinity for fibrin than uPA, and its binding to fibrin increases its ability to cleave plasmino-
gen [11]. uPA appears to play a greater role in pericellular proteolysis by virtue of its ability
to bind to its receptor, uPA receptor (uPAR) [12]. Plasmin generated by tPA and urokinase
plasminogen activator (uPA) reciprocally generates more active two chain forms of the PAs.
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In both lung and pleural injury, plasminogen activator inhibitor-1 (PAI-1) appears to
play a critical role in outcomes and the process of accelerated organization and scarification.
PAI-1 is capable of inhibiting PAs, tPA, and uPA (two chain or active urokinase) within
the injured lung and pleural space [1,2]. The activity of these PAs decreases in relation to
the severity [13,14] of injury in both compartments [2,15,16]. PAI-1 thereby impedes local
fibrinolysis and promotes extravascular fibrin deposition in the injured lung and pleural
space [2]. Tissue factor expression by lung epithelial and/or mesothelial cells and lung
fibroblasts triggers activation of the coagulation system in these injuries, while fibrinolytic
activity is suppressed in resident cells mainly by increased expression of PAI-1 driven
by proinflammatory mediators released into the local microenvironment [2,17–24]. These
observations and those of other laboratories [13,25–47] support the concept that increments
of local coagulation and concurrent decrements of fibrinolysis occur in inflammation and
favor the formation and retention of fibrinous extracellular fibrin. Protracted collections of
extravascular fibrin can organize with scarification in the injured lung or pleural space [1].

Our purpose in this narrative review is to provide the readers with an overview of
the contributions of the urokinase plasminogen activator (uPA) and its receptor; uPAR, in
the pathogenesis of lung and pleural injury with particular emphasis on pleural disease.
New strategies and approaches to the development of new therapeutic interventions are
also reviewed with a review of recent contributions to these fields, building on prior key
foundational studies.

2. Similar Modes of Regulation Govern the Organization of the Fibrinous Transitional
Neomatrix in the Settings of Lung and Pleural Injury

Fluid phase and cellular derangements in pathways of fibrin turnover promote fibrin
deposition in lung and/or pleural injury. Based on studies of bronchoalveolar lavage and
immunohistochemical analyses, uPA is readily detectable in normal lung lining fluids
and is the major plasminogen activator represented there [4,5,21,48,49]. While studies
of the very small amounts of normal pleural fluid have not, to our knowledge, been
conducted, PA activity attributable to uPA and tPA occurs in pleural fluids of patients
with congestive heart failure and is generally undetectable after the induction of pleural
injury [19]. If unresolved, the inflammatory process suppresses local PA and fibrinolytic
activities and perpetuates extravascular fibrin deposition that may rapidly organize over
a few days (Figure 1) [3,50]. In the injured lung, early organization promotes accelerated
fibroproliferation that can often be detected by lung imaging and can eventuate in lung
restriction with long-term, severe morbidity, including respiratory compromise [51]. In the
pleural compartment, early organization occurs in the setting of empyema, complicated
parapneumonic pleural effusions, hemothoraces, or pleural malignancy and can likewise
result in remodeling with loculation or pleurodesis, scarification, pulmonary restriction,
and dyspnea [52].

The derangements in pathways of local fibrinolysis have led to the testing of inter-
ventions that target fibrin dissolution after lung or pleural injury. While anticoagulant
strategies are of conceptual appeal, they have not gained traction for the treatment of
patients with pleural or acute lung injury. This may be based largely on clinical trial testing
that has failed to show the efficacy in severe sepsis, which is often associated with lung
dysfunction [53]. Interestingly, there has been recent consideration of the targeting early
pulmonary organization associated with COVID-19 [54]. Whether that approach will be
of clinical benefit remains unclear but provocative [55]. Whether lung protection derives
from anticoagulants otherwise administered to prevent thrombosis in COVID-19 patients is
likewise unclear. On the other hand, in organizing pleural injury associated with loculation
and failed drainage, intrapleural fibrinolytic therapy (IPFT) is commonly used and is
particularly effective in pediatric patients, as recently reviewed [2].
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Figure 1. Aberrant fibrin turnover leads to accelerated scarification in the lung or pleural space.
The accelerated organization encompasses the invasion of the fibrinous neomatrix by fibroblasts
and myofibroblasts, which secrete collagen and initiate fibrotic repair. The neomatrix undergoes
continuing remodeling with infiltration by inflammatory cells, including macrophages. Parenchymal
lung scarification can be accelerated after acute lung injury or occur more slowly in interstitial lung
disease. Pleural scarification can occur with organization, leading to sequestration of pockets of
inflammatory pleural fluid; loculation, which can lead to pleural scarification. Pleural fibrosis may
also occur after intrapleural bleeding or particulate exposures, such as that due to asbestos. Brown
strands indicate fibrin. Green strands indicate collagen intercalated within the fibrinous neomatrix.

3. The Urokinase/Urokinase Receptor Interaction and Derangements Associated with
Lung or Pleural Injury

In the injured lung, pleural space, and virtually all forms of tissue injury, the active two
chain form of urokinase or the zymogen single chain urokinase binds to uPAR at the surface
of resident cells bearing this Glycosylphosphatidylinositol (GPI)-linked receptor to regulate
and localize pericellular proteolysis [56]. When two chain uPA cleaves plasminogen to
generate plasmin, plasmin-mediated conversion of single to two chain uPA also occurs
to increase the efficiency of pericellular fibrinolysis [57]. Signaling through uPAR can
also occur through the binding of uPA or independent of the binding of uPA to uPAR to
support the cellular invasion, migration, and cellular viability [56,58]. As uPAR lacks a
cytoplasmic domain through which cellular signaling can occur, studies to identify other
surface receptors that interact with uPAR are ongoing (Table 1).
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Table 1. Components of the urokinase plasminogen activator (uPA)/uPA receptor (uPAR) system.

Single Chain uPA; scuPA A Proenzyme that Can Bind uPAR and
Localize PA Activity to the Cell Surface

Two-chain uPA; tcuPA

Conversion of scuPA to this two-chain form
generates a much more active PA, can likewise

bind uPAR and is mainly involved in
pericellular proteolysis.

Tissue type plasminogen activator; tPA

Has a greater affinity for fibrin than tcuPA,
relatively more involved in intravascular

fibrinolysis, and binding to fibrin increases its
PA activity.

Plasminogen activator inhibitor 1; PAI-1

Main PA inhibitor in extravascular fluids in
lung and pleural injury, where it can exist in

active, cleaved, and inactivated or latent forms.
Active PAI-1 can inhibit both tcuPA and tPA.

uPA receptor; uPAR

Multidomain surface glycoprotein responsible
for cellular localization of uPA and can be

cleaved by uPA. Capable of mediating
signaling through interactions with other

surface receptors.

Cellular and extravascular derangements of the uPA/uPAR system occur in the
setting of acute organizing lung injury. In the injured lung, the profile of alveolar lining
fluids assumes more procoagulant and less fibrinolytic potential with increased levels of
PAI-1, thereby favoring alveolar fibrin deposition. The alveolar epithelium contributes
substantively to these derangements and is capable of regulating its own expression of
uPA, uPAR, and PAI-1, which involve unique posttranscriptional mechanisms [59]. The
posttranscriptional regulatory mechanisms involve the participation of p53 to, in turn,
control the viability of the lung epithelium [59]. The viability of lung epithelial cells is
increased when uPA and uPAR are relatively increased. Conversely, apoptosis of these
cells is favored by relatively increased expression of PAI-1 with reciprocally decreased uPA
and uPAR. In lung fibroblasts harvested from patients with idiopathic pulmonary fibrosis,
uPAR expression is likewise increased compared with fibroblasts harvested from the lungs
of individuals without lung disease [60]. Regulation of uPAR by lung fibroblasts is, in part,
controlled via posttranscriptional regulation, as are pleural mesothelial cells [61].

Preclinical information further supports the critical involvement of the uPA/uPAR
system in the pathogenesis of organizing lung injury. Increased uPA expression has been
found to mitigate accelerated, fibrosing lung injury induced by bleomycin [41,44,62]. In
a related vein, overexpression of PAI-1 aggravated bleomycin-induced lung injury, while
PAI-1 deficiency was salutary [63]. Interestingly, uPA or uPAR deficiency did not alter lung
hydroxyproline levels in bleomycin-treated mice, but areas of hemorrhage seen in wild-
type mice were abridged [42]. On the other hand, uPAR deficiency has been reported to
attenuate hypoxia-associated lung injury and reduce lung inflammation, while it likewise
impairs inflammation but limits containment of pneumococcal pneumonia with worsened
outcomes in mice [64,65].

A similar situation exists in the context of pleural injury, where greatly increased
pleural fluid PAI-1 and its activity effectively limits local fibrinolysis and predisposes
to a rapid, intrapleural organization that can occur over days [16,66–68]. In normalcy,
the pleural compartment is actually a potential space that expands to form a defined
anatomic compartment occupied by inflammatory pleural fluids in pleural infections
and other organizing processes [2]. Pleural mesothelial cells express uPA, uPAR, and
tPA, which may contribute to fibrinolysis at pleural surfaces. Fibrinolysis is limited by
overexpression of PAI-1 in pleural fluids that characterize virtually all forms of pleural
injury (Figure 2) [2,23,69]. These pleural collections may undergo rapid organization to
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loculate, impair pleural drainage and thereby increase morbidity in pleural infection,
hemothoraces, or neoplasia. In a murine model of carbon black/bleomycin-induced pleural
injury, pleural neomatrix organization was reduced in PAI-1 deficiency but significantly
increased by PAI-1 overexpression [70]. Overexpression of PAI-1 has been shown to worsen
tetracycline-induced pleural injury [16], and PAI-1-targeted IPFT has been shown to be
beneficial [71]. In this model and an empyema model in rabbits, intrapleural administration
of PAs has been shown to clear fibrinous pleural collections [2,50,72–75].

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 14 
 

 

to attenuate hypoxia-associated lung injury and reduce lung inflammation, while it like-

wise impairs inflammation but limits containment of pneumococcal pneumonia with 

worsened outcomes in mice [64,65]. 

A similar situation exists in the context of pleural injury, where greatly increased 

pleural fluid PAI-1 and its activity effectively limits local fibrinolysis and predisposes to 

a rapid, intrapleural organization that can occur over days [16,66–68]. In normalcy, the 

pleural compartment is actually a potential space that expands to form a defined anatomic 

compartment occupied by inflammatory pleural fluids in pleural infections and other or-

ganizing processes [2]. Pleural mesothelial cells express uPA, uPAR, and tPA, which may 

contribute to fibrinolysis at pleural surfaces. Fibrinolysis is limited by overexpression of 

PAI-1 in pleural fluids that characterize virtually all forms of pleural injury (Figure 2) 

[2,23,69]. These pleural collections may undergo rapid organization to loculate, impair 

pleural drainage and thereby increase morbidity in pleural infection, hemothoraces, or 

neoplasia. In a murine model of carbon black/bleomycin-induced pleural injury, pleural 

neomatrix organization was reduced in PAI-1 deficiency but significantly increased by 

PAI-1 overexpression [70]. Overexpression of PAI-1 has been shown to worsen tetracy-

cline-induced pleural injury [16], and PAI-1-targeted IPFT has been shown to be beneficial 

[71]. In this model and an empyema model in rabbits, intrapleural administration of PAs 

has been shown to clear fibrinous pleural collections [2,50,72–75]. 

 

Figure 2. The mesothelium and disordered fibrin turnover. Increased TGF-β expression in re-

sponse to injury increases plasminogen activator inhibitor-1 (PAI-1) expression. In the aggregate, 

PAI-1 expression and activity are overexpressed in exudative pleural effusions. This increase in 

PAI-1 reduces plasminogen conversion to active plasmin by single chain urokinase plasminogen 

activator (scuPA), two chain urokinase plasminogen activator (tcuPA), and tissue plasminogen 

activator (tPA). These effects decrease local expression of fibrinolytic activity, which decreases 

fibrin degradation, leading to aberrant extravascular fibrin deposition. scuPA or the high molecu-

lar weight form of tcuPA can bind uPA receptor (uPAR) and be localized to the cell surface or be 

present unbound in pleural fluids. NFκB is NF kappa B, a signaling mediator that is in particular 

implicated in the transcriptional regulation of PAI-1 expression by pleural mesothelial cells. MV is 

microvesicles, which have been shown to contain TF. Brown strands indicate fibrin. 

The use of IPFT in clinical practice is likewise predicated on the concept that incre-

ments of pleural fluid PA activity can increase intrapleural plasmin generation and fibri-

nolysis sufficient to improve pleural drainage and clinical outcomes [1,2]. IPFT is gener-

ally accepted as effective in pediatric patients and can improve outcomes in adult patients, 

although adult patient dosing is empiric, and no PA is currently approved for this indica-

tion [2,76–78]. 

  

Figure 2. The mesothelium and disordered fibrin turnover. Increased TGF-β expression in response
to injury increases plasminogen activator inhibitor-1 (PAI-1) expression. In the aggregate, PAI-1
expression and activity are overexpressed in exudative pleural effusions. This increase in PAI-1
reduces plasminogen conversion to active plasmin by single chain urokinase plasminogen activator
(scuPA), two chain urokinase plasminogen activator (tcuPA), and tissue plasminogen activator (tPA).
These effects decrease local expression of fibrinolytic activity, which decreases fibrin degradation,
leading to aberrant extravascular fibrin deposition. scuPA or the high molecular weight form of
tcuPA can bind uPA receptor (uPAR) and be localized to the cell surface or be present unbound
in pleural fluids. NFκB is NF kappa B, a signaling mediator that is in particular implicated in the
transcriptional regulation of PAI-1 expression by pleural mesothelial cells. MV is microvesicles,
which have been shown to contain TF. Brown strands indicate fibrin.

The use of IPFT in clinical practice is likewise predicated on the concept that in-
crements of pleural fluid PA activity can increase intrapleural plasmin generation and
fibrinolysis sufficient to improve pleural drainage and clinical outcomes [1,2]. IPFT is
generally accepted as effective in pediatric patients and can improve outcomes in adult
patients, although adult patient dosing is empiric, and no PA is currently approved for this
indication [2,76–78].

4. The uPA/uPAR System and the Contribution of Mesenchymal Differentiation of
Pleural Mesothelial Cells to Pleural Thickening and Scarification

uPAR has been implicated in the pathogenesis of pleural injury and builds upon and
extends studies linking uPAR to pleural neoplasia. Interestingly, uPAR has been shown
to be involved in the pathogenesis of neoplasia and a target for the development of new
therapeutics for several different forms of cancer [79]. In the setting of neoplasia, uPAR
expression may be primarily upregulated in the tumor cells themselves or in endothelial
or in infiltrating myeloid cells. In malignant pleural mesothelioma cells, uPAR expression
correlated with tumor burden, aggressiveness and mortality in mice [58]. Cellular pro-
liferation, migration and invasion were increased in REN malignant mesothelioma cells
that have increased uPAR expression. uPAR silencing in these cells decreased cellular
indices of aggressiveness, while exposure to uPA and bovine fetal serum enhanced these
effects. Conversely, increasing uPAR expression in a less aggressive mesothelioma line
significantly increased tumor virulence in vitro and in vivo. The responses suggest the
possibility that uPAR-targeted therapeutics now in development may be of value for the
treatment of pleural malignant mesothelioma.
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Extending this work, uPAR expression by pleural mesothelial cells has been linked
to the regulation of pleural remodeling. uPAR internalization was reduced by treatment
of human pleural mesothelial cells with TNF-α or IL-1β, mediators which have been
implicated in inflammation and the pathogenesis of pleural injury [1,2]. This effect was
attributable to decreased expression of the lipoprotein receptor related protein-1; LRP-1,
which stabilized uPAR at the cell surface. This stabilization augmented uPA-mediated
proteolytic activity at the cell surface, as well as cellular migration [80]. In a murine model
of pleural organization induced by carbon black and bleomycin, it was found that PAI-
1 deficiency increased pleural thickness and lung restriction likely as a consequence of
sustained mesomesenchymal transtion (MesoMT) [70]. The effects involved crosstalk with
coagulation proteases and plasmin generation was likewise augmented in pleural lavage
of PAI-1-/- mice. Increased plasmin activity was likewise detected in the pleural lavage of
mice with empyema induced by intrapleural administration of Streptoccus pneumoniae [81],
indicating that pleural fibrinolysis is enhanced in pleural injury induced by local instillation
of noxious chemicals or bacterial infection.

The expansion of the pool of subpleural myofibroblasts contributes to the pleural
thickening and neomatrix deposition that characterizes pleural injury and predisposes to
the development of pleural fibrosis [69,82,83]. Pleural mesothelial cells have been shown
to contribute to that response and undergo a process of mesenchymal phenotypic change
called mesomesenchymal transition (MesoMT, Figure 3). The uPA-uPAR system plays a
major role in the regulation of this process [1]. In studies to evaluate the impact of coagula-
tion and fibrinolytic proteases on induction of MesoMT, uPA, as well as plasmin, factor Xa
and thrombin were found to induce this phenotypic change in human pleural mesothelial
cells [70]. Plasmin, thrombin and TGF-b commonly induce MesoMT through phosphatidyl
inositol-kinase/AKT/NF kappa (κ) B signaling [84]. The therapeutic targeting of GSK-3β
likewise blocked induction of MesoMT and the progression of pleural fibrosis in a novel
model of pleural injury [85]. At present, the role of uPA and uPAR in the induction of Me-
soMT remains to be further elucidated. The effects of proinflammatory cytokines on uPAR
stabilization at the surfaces of pleural mesothelial cells via regulation of LRP1 [80], uPA
mediated induction of MesoMT [70] and uPA-mediated induction of collagen-1 in these
cells suggest a critical role for the uPA/uPAR system in MesoMT and pleural remodeling.
Future studies will be needed to define the role of uPAR in the pathogenesis of pleural
organization and scarification.
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Figure 3. Induction and consequences of MesoMT. Upon stimulation by TGF-β, Factor Xa, thrombin,
uPA, or plasmin, pleural mesothelial cells assume a mesenchymal phenotype by undergoing MesoMT.
The population of cells undergoing MesoMT expands in the setting of organizing pleural inflam-
mation. Cells undergoing MesoMT elongate compared to unstimulated pleural mesothelial cells
and assume the functionality of myofibroblasts and increase expression of neomatrix components
including collagen, fibronectin, and PAI-1.
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5. The Role of Soluble uPAR in Pleural Injury: Biomarker, Effector, or Both?

The structure of uPAR incorporates three domains: DI-III. High affinity binding to its
ligand, uPA, primarily involves domain I, while requiring the structural integrity of all
three domains [86]. Although a splice variant of the PLAUR gene can generate a soluble
uPAR construct [87], soluble uPAR is also generated by cleavage of cell-surface uPAR and
occurs in serum and other biologic fluids, including pleural effusions [88,89]. suPAR can
be generated by cleavage of the GPI-anchor of uPAR at the cell surface by enzymes such as
phospholipase C [90]. Cleavage of a protease sensitive linker region between domains I
and domains II-III can also occur via uPA or plasmin among other proteases. Thus, soluble
suPAR fragments include domains I-III, I or II-III, as previously reviewed [88]. suPAR,
incorporating all domains, retains the ability to bind uPA, via its growth factor domain [91],
supporting the concept that this form of suPAR could be a scavenger capable of binding
uPA and thereby altering effects of the interaction of uPA with cell surface uPAR such as
migration or invasion.

Interestingly, Higazi and colleagues reported that binding of the proenzyme single
chain uPA to suPAR increased its catalytic activity [92]. The authors speculated that scuPA
exists in a latent and more active state and that binding of scuPA to suPAR favored the
more active conformation, which was more susceptible to inhibition by PAI-1. On the
other hand, these observations were disputed by Behrendt and colleagues, who found
that the binding of scuPA to suPAR did not accelerate the PA activity of scuPA and in
fact had an inhibitory effect on the activation of scuPA to two chain more active uPA by
plasmin [93]. The basis for the disparities between these studies remain unclear but are
possibly technical. Liberation of domain I from suPAR exposes a chemotactic sequence on
the remaining domains (II-III), most of which may be shed from neutrophil membranes,
which is a chemotaxin for monocytic cells [94]. Conversely, suPAR domain I has poor
affinity for scuPA or uPA and is thereby unable to serve as a scavenger binding either
protein [88].

In a recent study, pleural fluid suPAR levels were found to correlate with the require-
ment for invasive management in parapneumonic pleural effusions [89]. This work extends
prior work showing that elevated levels of suPAR occur in a range of biologic fluids in
infectious, autoimmune and neoplastic diseases, as previously reviewed [88]. Given the
lack of reliable, validated predictors of the need for use of IPFT or surgery for relief of
complicated, organizing pleural infections that loculate, Arnold and colleagues sought to
determine if pleural fluid or serum suPAR levels predict the need for such management
and how suPAR determinations compared with traditional biomarkers such as pleural fluid
pH, glucose and lactate dehydrogenase levels. Pleural fluid and serum suPAR levels were
determined in 93 subjects with parapneumonic pleural effusions and 47 controls that had
either benign transudative or malignant causes of their pleural effusions. A commercially
available ELISA assay was used and was able to detect intact suPAR or the domain II-III
fragment. The main findings of this important study were that pleural fluid suPAR levels
were greater in patients with loculated parapneumonic pleural effusions. Pleural fluid
suPAR levels were also superior to pleural fluid pH, glucose, and lactate dehydrogenase
(LDH) in combination in terms of predicting the need for IPFT or surgical intervention.
Serum suPAR correlated with levels of C-reactive protein, a biomarker of inflammation
often used to assess clinical trends in patients with parapneumonic pleural effusions [68].
Pleural fluid suPAR was significantly increased in patients with parapneumonic pleural
effusions that were loculated. At a cutoff level of 35 ng/mL, pleural fluid suPAR demon-
strated a 100 percent sensitivity, 91 percent specificity for predicting pleural loculation in
patients with parapneumonic pleural effusions. Positive and negative likelihood ratios
were likewise favorable, and pleural fluid suPAR better predicted loculation than pH. In
nine patients with parapneumonic pleural effusions that were initially free-flowing and
subsequently loculated, baseline pleural fluid suPAR was elevated to levels equivalent to
those found in loculated pleural effusions. Pleural fluid suPAR at the same cutoff was the
most accurate biomarker predicting insertion of a chest tube. Lastly, pleural fluid suPAR
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was superior to the conventional biomarkers in predicting the use of IPFT or surgical
intervention and was the only significant baseline parameter that did so. Similar trends
were seen in the smaller number of patients with malignancy, in that pleural fluid suPAR
was significantly increased in loculated malignant effusions and was non significantly
elevated in patients with delayed loculation. The encouraging results suggest that pleural
fluid suPAR could improve clinical decision making for the management of organizing
pleural infection. The authors properly point out that while pleural fluid suPAR appears
to address an unmet clinical need, validation would require a future large, multicenter
clinical trial of suPAR-directed clinical management versus current standard management.
Whether pleural fluid suPAR can add a precision medicine dimension to such management
decisions remains to be proven, but this work underscores the relevance of derangements
of the uPA/uPAR system to the field.

6. The Use of scuPA for Treatment of Pleural Loculation

For over seventy years, IPFT has been used to treat pleural loculation with failed
drainage [2,78]. To date, several agents have been used, now mainly including tPA with
or without DNase and urokinase. Many centers have adopted the use of tPA/DNase
based on the efficacy demonstrated in adult patients in the MIST-2 clinical trial [95]. Others
use tPA alone or two chain urokinase where it is available. Unfortunately, the dosing,
administration schedules and agents used for IPFT are all empiric, with no agent currently
approved for the indication of treatment of pleural loculation and failed drainage [77].
There are relatively small reports suggesting that two chain uPA (uPA)-based IPFT may be
of advantage. uPA-based IPFT was found to be effective in a small randomized, double
blinded study of patient with either complicated parapneumonic pleural effusions or
empyema [96]. uPA IPFT was also found to be associated with greater efficacy in patients
with complicated parapneumonic pleural effusions and less bleeding complications than
tPA [97]. In a third small study, uPA was as effective as tPA/DNase for patients requiring
IPFT for empyema or parapneumonic pleural effusions but bleeding complications were
reduced [98].

Over twenty years ago, we initiated studies in which scuPA, a relatively PAI-1-resistant
PA, was used to reverse pleural organization and adhesions in rabbits with tetracycline-
induced pleural loculation [50]. Given the similarities of the fibrinolytic system between
rabbits and humans, the model was amenable to the testing of human plasminogen acti-
vators. We found that scuPA effectively alleviated fibrinous intrapleural collections and
adhesions in the model and that single dose treatment was well-tolerated. Single dose
administration was as effective as multiple dose scuPA IPFT and generated durable in-
trapleural PA activity supporting local fibrinolysis [50,72]. In a comparative study, it was
found that scuPA was more effective at resolving intrapleural adhesions than any clinically
prorated dose of low molecular weight two chain uPA and demonstrated a trend toward bet-
ter efficacy than tPA [73]. We found that scuPA was processed intrapleurally with formation
of bioactive uPA/a2macroglobilin complexes, which appear to contribute to slow release
of PA within pleural fluids [99]. In this study, PAI-1 resistant uPA activity was increased in
rabbits with tetracycline-induced pleural injury and was related to removal of fibrinous
intrapleural collections. PAI-1 resistant enzymatic activity was not found in animals treated
with intrapleural low molecular weight uPA or tPA. We identified an equilibrium between
an active and relatively inactive form of scuPA, which limited its inactivation by PAI-1 and
favored formation of the bioactive uPA/a2macroglobilin complexes.

Based upon these findings and other studies conducted by our group [2], scuPA was
manufactured with support by the National Heart Lung and Blood Institute SMARTT
(Science Moving towArds Research Translation and Therapy) program, providing sufficient
amounts of material for formal toxicology studies needed to enable clinical trial testing.
Good Manufacturing Practice (GMP) grade scuPA was also made available for use in
clinical trial testing.
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7. New Strategies to Limit Pleural Organization: Clinical Trial Testing of scuPA for
Treatment of Empyema or Complicated Parapneumonic Pleural Effusions

Phase 1 clinical trial testing was next conducted in a multicenter clinical trial performed
in Australia Trial Registration: ANZCT ID: ACTRN12616001442493 [68]. In this first-in-kind
trial in the field, the safety of scuPA IPFT at daily doses over three days of 50.000–800,000
IU scuPA was tested in patients with complicated parapneumonic pleural effusions or
empyema and failed drainage. In all, 14 patients were studied. scuPA was well-tolerated
with no bleeding, surgical referrals, or treatment-associated adverse events. In the pleural
fluids, scuPA rapidly saturated PAI-1 activity, increased pleural fluid PA and fibrinolytic
activities, and generated increased pleural fluid levels of D-dimers. As expected, complexes
of uPA/a2macroglobilin were generated. No systemic fibrinolysis was detectable, and
D-dimer levels remained unchanged from those at baseline in the patients. While this was
a safety trial, hints of efficacy were demonstrated in that all but one patient had decreased
pleural fluid opacification. At the 800,000 IU dose, pleural sepsis was clinically relieved in
both treated patients, and the same effects were observed in two others receiving lower
doses of scuPA IPFT.

The favorable Phase 1 trial findings formed the predicate to proceed with Phase 2
efficacy testing, which is now being conducted at multiple sites in the US: ClinicalTrials.gov
Identifier: NCT04159831 a phase 2, randomized, placebo-controlled, double-blind, dose-
ranging study evaluating LTI-01 (single chain urokinase plasminogen activator, scuPA) in
patients with infected, non-draining pleural effusions. The trial design incorporates three
doses; 400,000 IU, 800,000 IU, 1,200,000 IU scuPA IPFT, or saline-vehicle placebo, which
will be given daily for up to three days. The estimated enrollment is a total of 160 patients
or 40 per group. The primary outcome measure is treatment failure due to ongoing pleural
sepsis or impaired drainage resulting in surgical referral, and the secondary outcome
measure is change in pleural opacity by chest CT scanning at day 4, 1 day after the last IPFT
treatment or at the time of treatment failure. The effects of scuPA IPFT on derangements of
the fibrinolytic system in pleural fluids will be assessed using the same methods deployed
in the Phase 1 trial [68]. This trial is designed to confirm the efficacy of scuPA IPFT in
patients with infection-related loculation and failed drainage and to identify an optimal
dose of scuPA that can either be used for FDA approval or a follow-up Phase 3 study, as
may be required.

8. Conclusions

The uPA/uPAR system plays an important role in the pathogenesis of pleural orga-
nization through the regulation of local proteolysis, cellular differentiation, and pleural
remodeling. In a translational vein, suPAR appears to be a promising new candidate to
predict outcomes of pleural injury and to help clinicians to personalize decision making
and inform better management of organizing pleural injury. scuPA IPFT is an equally
promising translational candidate that is currently in clinical trial evaluation that could
offer the first evidence-based, potentially more effective new therapy for patients with
nondraining loculated pleural effusions.
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