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High-definition spatial transcriptomic 
profiling of immune cell populations in 
colorectal cancer
 

Michelli Faria de Oliveira1,2, Juan Pablo Romero    1,2, Meii Chung1,2, 
Stephen R. Williams1, Andrew D. Gottscho    1, Anushka Gupta    1, 
Susan E. Pilipauskas1, Seayar Mohabbat1, Nandhini Raman    1, 
David J. Sukovich1, David M. Patterson1, Visium HD Development Team* & 
Sarah E. B. Taylor    1 

A comprehensive understanding of cellular behavior and response to the 
tumor microenvironment (TME) in colorectal cancer (CRC) remains elusive. 
Here, we introduce the high-definition Visium spatial transcriptomic 
technology (Visium HD) and investigate formalin-fixed paraffin-embedded 
human CRC samples (n = 5). We demonstrate the high sensitivity, 
single-cell-scale resolution and spatial accuracy of Visium HD, generating 
a highly refined whole-transcriptome spatial profile of CRC samples. 
We identify transcriptomically distinct macrophage subpopulations in 
different spatial niches with potential pro-tumor and anti-tumor functions 
via interactions with tumor and T cells. In situ gene expression analysis 
validates our findings and localizes a clonally expanded T cell population 
close to macrophages with anti-tumor features. Our study demonstrates 
the power of high-resolution spatial technologies to understand cellular 
interactions in the TME and paves the way for larger studies that will unravel 
mechanisms and biomarkers of CRC biology, improving diagnosis and 
disease management strategies.

CRC accounted for 9.4% of cancer-related deaths (0.9 million) in 2020, 
and its global incidence is predicted to double by 2035 (refs. 1,2).  
Its poor 5-year survival rate highlights the need for better early 
detection and prognostic biomarkers for future disease manage-
ment3. Growing evidence suggests that tumor heterogeneity is 
best described at the transcriptome level, rather than with classical 
histopathological or mutation-centered disease classifications4. 
Technologies that refine our understanding of the TME, including 
the diverse roles of innate and adaptive immune responses and cel-
lular crosstalk in CRC, have the potential to inform better clinical 
intervention strategies.

Sequencing-based genomic technologies have played an impor-
tant role in building our knowledge of CRC biology4–7. However, bulk 

sequencing, which involves averages data from cells and tissues, is con-
founded by the complexities of the TME and intratumor heterogeneity. 
Single-cell transcriptomic (single-cell RNA-sequencing (scRNA-seq)) 
technologies have partially filled this gap and allowed for detailed 
exploration of the cell types within the TME in CRC8–16. Although these 
studies add critical single-cell-level resolution to our understanding of 
CRC, they lack any information about the cellular organization within 
the tissue. Spatial transcriptomics offers a solution. Several commer-
cial technologies are currently available, including Visium CytAssist 
Spatial Gene Expression (‘Visium v2’, 10x Genomics), STOmics (BGI) 
and Curio Seeker (Curio Bioscience). Other published methods include 
Seq-Scope17, Nova-ST18, Open-ST19, HDST20, DBiT-seq21, Pixel-seq22 and 
XYZeq23. These methods have enabled the localization of cell types 
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resulting in a continuous lawn of capture oligonucleotides. This rep-
resents an increase of several orders of magnitude in barcode com-
plexity over earlier Visium slides, which have 55-µm circular capture 
areas with a 100-µm center to center gaps between them (Fig. 2a,b). For 
downstream analysis, the Space Ranger (version 3.0) pipeline outputs 
the raw 2-µm data and data binned at 8- and 16-µm resolution. Unless 
otherwise described, we used the 8-µm binned data in our analyses.

To assess Visium HD performance, we analyzed serial sections 
from a normal colon mucosa sample run on Visium v2 and Visium HD. 
Visium HD generated notably higher-resolution data, as shown by 
the improved unsupervised clustering, both in terms of the refined 
specificity of the clusters and the ability to map them to morphologi-
cal features of the colon mucosal tissue (Fig. 2c). Whole-transcriptome 
unique molecular identifier (UMI) counts at similar sequencing depth 
showed a strong correlation between the two technologies (Fig. 2d, 
R2 = 0.82 and Extended Data Fig. 1, R2 = 0.81 and 0.90), indicating that 
the Visium HD assay maintains the high assay sensitivity of Visium v2 
(Supplementary Table 1).

The estimated fraction of molecules arising from off-target probe 
binding events, that is, probes binding to genomic DNA (gDNA), was 
reduced in Visium HD (average of 4.13% in Visium v2 and 0.70% in Visium 
HD) (Supplementary Table 1). To assess any potential bias arising from 
such events, these probes were computationally excluded for this 
analysis, after which we observed a stronger correlation between the 
UMI counts from the different assays (R2 = 0.92, Fig. 2d; R2 = 0.93 and 
0.96, Extended Data Fig. 1).

In array-based spatial technologies, the analyte to be measured 
(messenger RNA (mRNA) itself or a ligated probe reporting on the 
mRNA) must move from the tissue to come in contact with the array. 
Precise transfer of analytes with minimal lateral movement is essential 
to ensure that the spatial transcript measurements are representative 
of the biology of the tissue being analyzed. To achieve this, tissue place-
ment and subsequent molecular biology reactions must be carefully 
controlled to minimize lateral movement of transcripts or their prox-
ies away from the site of origin. Similar to the Visium v2 assay, Visium 
HD uses the CytAssist instrument. The CytAssist controls reagent 
flow and thus allows target molecules from the tissue to be captured 
upon release, preventing free diffusion of transcripts and ensuring 
accurate transfer of analytes from tissues to the capture arrays. The 
spatial fidelity gains afforded by the CytAssist have been described 
previously29,30 (technical note CG000618, revision B). To quantify 
the spatial accuracy of Visium HD, we analyzed genes with distinct 
localization to the glands of normal colon mucosal tissue (goblet cell 
gene markers: CLCA1, FCGBP and MUC2). In each tissue section, we 
manually selected four regions of interest (ROIs) and, for each marker 
gene, quantified the number of UMIs that were within or outside of the 
annotated structures in which their expression is expected based on 
established expression patterns31. We observed that most transcripts 
(98.3–99%) were localized in their expected morphological locations 
within the source masks, and only a small proportion (0.97–1.73%) 
were in adjacent masks (Fig. 2e and Extended Data Fig. 2), consistent 
with faithful transfer of ligated probes from the tissue to the array at 
single-cell-scale resolution.

Visium HD maps the landscape of CRC at single-cell scale
We profiled three CRC samples using Visium HD and combined them 
into a single dataset. An initial analysis of the combined dataset identi-
fied 23 clusters grouped into nine major cell types (tumor, intestinal epi-
thelial, endothelial, smooth muscle, T cells, fibroblasts, B cells, myeloid, 
neuronal) and one unknown cluster (a cell cluster with a gene expression 
profile that did not readily match any known cell type), which aligned 
with the expected morphological features of the tissues (Fig. 3a).  
As an orthogonal measurement of cells present in normal and diseased 
colon samples, we generated a single-cell reference atlas of 260,506 
cells from serial FFPE sections of normal and CRC tissues (n = 8; Table 1). 

within tissues, which is critical for understanding the interaction 
between cells in the TME of CRC24–27. However, these technologies 
lack resolution at the single-cell scale or are typically only compat-
ible with freshly frozen tissues, and, as such, a deep understanding 
of tumor organization based on readily available biobanked samples 
remains elusive.

Here, we introduce Visium HD Spatial Gene Expression (‘Visium 
HD’), a whole-transcriptome assay with single-cell-scale resolution 
compatible with freshly frozen, fixed frozen and formalin-fixed 
paraffin-embedded (FFPE) samples. The Visium HD slides provide a 
dramatically increased oligonucleotide barcode density (~11,000,000 
continuous 2-µm features in a 6.5 × 6.5-mm Visium HD capture area, 
compared to ~5,000 55-µm features with gaps between the equivalent 
Visium v2 capture area), generating data that can be binned in square 
features. We demonstrate the use of Visium HD as a discovery plat-
form by profiling CRC FFPE tissue blocks from multiple patients. The 
single-cell-scale resolution of Visium HD allowed us to map distinct 
populations of immune cells, specifically macrophages and T cells, and 
evaluate DGE at the tumor boundary. We also generated a multi-patient 
single-cell reference dataset from a larger cohort of FFPE samples 
and used it to annotate deconvolved Visium HD data bins, validating 
the cell type populations identified by Visium HD and subsequently 
using the integrated data to comprehensively map the cellular com-
position and molecular signatures of the TME in CRC. Leveraging the 
high resolution of Visium HD, we examined the cells at the immediate 
periphery (within 50 µm) of the tumor. This allowed us to spatially 
map distinct macrophage subpopulations to specific tumor regions, 
to compare their transcriptomic profiles, which indicate that they 
may exert pro-tumor roles via different pathways, and to characterize 
cell–cell interactions. To validate the spatial accuracy of Visium HD, we 
analyzed a subset of genes using an independent spatial technology 
(Xenium In Situ Gene Expression28). We confirmed the presence of 
the two pro-tumor macrophage subpopulations in different tumor 
niches and pinpointed the location of the T cells within the TME. We 
also detected a clonally expanded T cell population and the microenvi-
ronment in which it resides, revealing a macrophage-containing niche 
with anti-tumor features.

Our study underscores the importance of using high-resolution 
spatial technologies in exploring the heterogeneity of cancer biol-
ogy. These advanced tools are crucial for precisely mapping diverse 
immune cell niches and elucidating the complex interactions between 
these cells and their microenvironment. Spatial technologies provide 
a detailed understanding of spatial variations in cell types, their sub-
populations and cell-to-cell relationships, which are key to develop-
ing targeted therapies and personalized treatment approaches. The 
combination of whole-transcriptome and targeted in situ spatial 
technologies used in our investigation provides a deep insight into 
the complex and dynamic nature of the TME, highlighting the impor-
tance of spatial context in understanding cancer heterogeneity and 
disease progression.

Results
Visium HD enables transcriptome-wide spatial gene expression analy-
sis at single-cell scale. Gene expression is measured by the capture of 
ligated probe pairs targeting the whole protein-coding transcriptome. 
We profiled tumor biopsies from five patients with colorectal adeno-
carcinoma, in addition to normal adjacent tissue (NAT) from three of 
these patients (Table 1). Serial sections of FFPE tissues were used to 
benchmark the technology performance or to explore the TME using 
Visium HD. Additionally, selected serial sections were used to generate 
an scRNA-seq dataset and for in situ gene expression analysis (Fig. 1).

Visium HD specifications and performance
The Visium HD capture array consists of 2 × 2-µm squares of uniquely 
barcoded oligonucleotides directly adjacent to each other on the slide, 
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Differential gene expression (DGE) analysis of the cells in this atlas 
allowed us to annotate cell types based on published cell gene markers 
(Extended Data Fig. 3). We used this dataset as a reference to deconvolve 
the HD data, which yielded a highly resolved map of the cell types within 
the tissue resembling the expected tissue morphology (Fig. 3b). Each 
patient sample was associated with a major and distinct tumor cell 
type (Extended Data Figs. 4 and 5) that mapped onto the tumor regions 
across each tissue section. We validated the spatial arrangement of 

these cell labels in Visium HD with the expression of well-known mark-
ers such as PIGR (goblet cells and enterocytes), CEACAM6 (tumor) and 
COL1A1 (fibroblasts) (Fig. 3c). When we compared the unsupervised 
clustering to the deconvolution results, we found that cell types with 
stereotypical morphological organization (for example, goblet cells 
and enterocytes in colon glands) can be identified based on the Visium 
HD clustering data alone. However, deconvolution based on single-cell 
data was useful for identifying subtypes of cells with a more random 

Table 1 | Samples evaluated in this study

Sample Colon region Stage Sex Age Visium HD Visium v2 Xenium Chromium Flex Chromium TCR

P1CRC Rectum II-A F 72 Included Included Included

P2CRC
Sigmoid III-B M 60

Included Included Included Included

P2NAT Included

P3CRC
Transversum III-B M 83

Included

P3NAT Included Included Included

P4CRC Not specified II-A F 61 Included

P5CRC
Not specified IV-A F 58

Included Included Included Included

P5NAT Included Included

NAT was available for P2, P3 and P5.

Chromium Single Cell RNA-seq

Xenium In Situ gene expression

Visium v2

Visium HD

Serial sections
FFPE

5 µm 

5 µm 

50 µm Chromium Flex Chromium X

Visium CytAssist

Visium CytAssist

5 µm 
Xenium analyzer

Bioinformatic analysis

Validation
tool

Cross-analysis
comparisons
with Visium
HD

Cross-analysis
comparisons
with Visium
HD

Reference
dataset

Fig. 1 | Analysis of CRC and NAT samples using Visium HD. Serial tissue 
sections were taken from colorectal adenocarcinoma (CRC, n = 5 samples) 
and NAT (n = 3 samples) FFPE blocks. A subset of samples were selected and 
analyzed with the Visium HD assay (n = 3 CRC and n = 2 NAT samples). Sections 
from the same FFPE blocks were assayed with scRNA-seq (Chromium Single 
Cell Gene Expression Flex; n = 8). Serial sections were analyzed with Xenium 

In Situ Gene Expression (n = 4 CRC samples) and assayed via the Visium v2 
assay (n = 1 CRC and n = 2 NAT samples). Single-cell data were used to create a 
reference dataset for cell type annotation. In situ data were used for validation 
of the findings from the Visium HD data and for subsequent analyses. 
Technology performance comparisons were made using data from matched 
datasets.
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Fig. 2 | Visium HD Spatial Gene Expression slide architecture and performance. 
a, Visium HD slide with two 6.5 × 6.5-mm capture areas, each containing a 
continuous lawn of uniquely barcoded 2 × 2-µm squares, which are binned to 8-µm 
squares for downstream analysis. Oligo, oligonucleotide; Read 1T, TruSeq Read 1; 
Poly(dT)VN, a string of T nucleotides followed by a variable nucleotide V (A, C or G)  
and then another variable nucleotide N (A, C, G or T). b, Visium HD slides, 
compared with Visium v2 slides, which have spots of 55 µm in diameter spaced 
100 µm apart. c, Comparison of serial sections of a representative normal colon 
mucosa sample, P3NAT (one replicate). Visium HD detects 18 clusters that closely 
correspond to tissue morphology, while Visium v2 detects three clusters. H&E, 
hematoxylin and eosin. d, Sensitivity comparison between Visium HD and Visium 
v2 on the representative sample P3NAT. The left plot shows expression levels of 

all probes (whole transcriptome); the right plot shows only probes spanning an 
exon–exon splice junction. Diagonal lines represent x = y. e, Transcript localization 
accuracy analysis performed across four randomly selected ROIs per tissue section 
(three independent samples, one replicate per sample) for selected goblet cell 
gene markers (CLCA1, FCGBP and MUC2); source masks are colon gland structures, 
and adjacent masks are the immediately adjacent regions containing lamina 
propria. Images show selected ROIs in a representative normal sample, P3NAT (one 
replicate); red lines outline the source mask, and yellow lines outline the adjacent 
mask. Table shows the median percentage of localized transcripts in the source and 
adjacent masks, the density of selected transcripts in both masks and the distance 
of selected transcripts from source masks (*). Four ROIs in each colon sample were 
included in this analysis.
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organization or very small cells, for example, B cell and T cell subtypes 
(Extended Data Fig. 6).

Tumor boundary analysis reveals macrophage subpopulations
As immune cell dynamics are known to play a key role in CRC progres-
sion, we used the Visium HD data to characterize the immune cell 
populations proximal to tumor cells. We used a custom distance-based 
analysis to identify all barcoded 8-µm bins within 50 µm of the regions 
we had labeled as tumor cells via spot deconvolution (Fig. 4a). We rea-
soned that a 50-µm radius around tumor cells was likely to contain cells 
that are either directly interacting with the tumor cells or influencing 
the TME. We quantified the cellular composition of these regions com-
pared to those identified in the rest of the tissue. In all tissue blocks, 
cancer-associated fibroblasts (CAFs) were the most prominent cell 
type while macrophages were consistently identified as the most abun-
dant immune cell type (Fig. 4b) in regions proximal to tumor cells. We 

corroborated these findings by examining the expression of known 
macrophage (C1QC) and CAF (COL1A1) markers (Fig. 4a).

As the most abundant immune cell type in the tumor periphery, 
we focused our analysis on the macrophage populations. We identified 
two macrophage subpopulations with specific gene expression pro-
files mainly defined by expression of SELENOP or SPP1 genes (Fig. 4c). 
Density estimation analysis revealed that the highly enriched regions 
of these macrophage subpopulations in the TME were mostly in dis-
tinct spatial niches (Fig. 4d). To gain insights on the potential role of 
these spatially specific macrophages in the TME, we performed an 
enrichment analysis of the differentially expressed genes. We observed 
that SELENOP+ macrophages were enriched for pathways involved in 
processes such as inflammatory response, tumor necrosis factor (TNF) 
signaling via NF-κB, apoptosis, and response to ultraviolet radiation. 
Meanwhile, SPP1+ macrophages were enriched for genes involved 
in coagulation, cholesterol homeostasis and upregulation of KRAS 
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signaling pathways. Notably, the epithelial–mesenchymal transition 
pathway and complement system were upregulated in both mac-
rophage subpopulations (Fig. 5a). Analysis of the tumor cells revealed 
that the different macrophage subpopulations were localized in tumor 
regions that also had distinct gene expression profiles. Tumor cells in 
areas enriched for SPP1+ macrophages showed differential expression 
of TGFBI and PERP genes (Fig. 5b), while tumor regions closer to SELE-
NOP+ macrophages were enriched for REG1A and REG1B genes (patient 
P1CRC) or the LCN2 gene (P2CRC and P5CRC; Fig. 5b). While REG1A 
and REG1B enrichment near SELENOP+ macrophages was primarily 
observed in P1CRC, we found upregulated expression of these genes 

in P2CRC goblet cells within the SELENOP+ macrophage niche. Unsu-
pervised clustering analysis of all goblet cells identified this distinct 
subpopulation (Fig. 5c). The goblet subpopulation expressing REG1A 
and REG1B localized at the normal–tumor tissue border of P1CRC and 
P2CRC, suggesting that these cells may be progressing to a tumorigenic 
state (Fig. 5d).

When we extended the characterization of macrophage diversity 
across the entire tissue sections, four distinct subpopulations became 
evident. SPP1 expression was restricted to one of these subpopulations. 
SELENOP was expressed in the other three subpopulations, one of which 
also expressed FOLR2, albeit in a low proportion of the subpopulation. 
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In line with previous reports32, the FOLR2+ macrophages, which were 
present only in one sample, were almost (>98%) exclusive to bins 
>50 µm from the tumor (Extended Data Fig. 7).

We next asked how the SELENOP+ and SPP1+ macrophages were 
interacting with the neighboring tumor cells and T cells. Using LIANA33, 
we assessed cell–cell communication and inferred ligand–receptor 
interactions within the previously defined tumor periphery region 
(≤50 µm of the tumor boundary). This revealed that the dominant SPP1+ 
macrophage interaction with tumor and T cells is via the CD44 receptor. 
SELENOP+ macrophages show distinct interactions with tumor cells 
and T cells, primarily influencing pro-tumor metabolic pathways and 
immune cell stimulation (Fig. 5e,f).

T cells exhibit clonally expanded niches within the CRC TME
It is known that T cell-infiltrated tumors have more positive patient out-
comes than those with T cells excluded34 and that the functional state of 
these infiltrated cells is also important35. Thus, we explored the localiza-
tion and function of T cells in our samples. Our periphery analysis identi-
fied T cells, but using the 8 × 8-μm binned data meant that most T cells 
in the tumor periphery were assigned to doublet bins or rejected (the 
algorithm was unable to predict the cell type) and therefore excluded, 
making them challenging to localize (Fig. 6a and Extended Data Fig. 8). To 
mitigate this, we leveraged the 2 × 2-µm data and assigned bins that were 
located within segmented nuclear polygons to create a gene-by-nucleus 
UMI count matrix for further processing (Fig. 6b). Using this approach, 
we identified T cells at the tumor boundary (Fig. 6c). We also examined 
the expression of known T cell markers (TRAC and CD3E) and other cell 
type markers, including PECAM1 (endothelial), IGKC (plasma), COL1A1 
(CAF), SPP1 or SELENOP (macrophages) and CEACAM5 (tumor) (Extended 
Data Fig. 9) to obtain a fine-grained map of the cell types in these tissue 
areas. Through this analysis, we identified and localized both CD4+ and 
CD8+ T cells at the tumor periphery but not in the surrounding normal 
tissue, suggesting that these infiltrating lymphocytes may be playing 
an active anti-tumor role.

To validate findings from the Visium HD data, we profiled the sam-
ples using Xenium In Situ Gene Expression with cell segmentation stain-
ing. We first benchmarked the sensitivity of Xenium with Visium HD on our 
samples. We limited the Visium HD data to the 422 genes on the Xenium 
panel (Supplementary Table 2) and found that Xenium was ~5.7× more 
sensitive on a per-gene basis, while Visium HD captured ~6.5× more tran-
scripts than Xenium owing to its whole-transcriptome nature (Extended 
Data Fig. 10). Consistent with the Visium HD findings, Xenium revealed 
heterogeneity within both tumor and macrophage cells (Fig. 7a,b). 
SELENOP+STAB1+ macrophages were found near REG1A+LCN2+ tumor 
cells and goblet cells (Fig. 7c,d) while SPP1+ macrophages were localized 
near TGFBI+PERP+ tumor cells (Fig. 7e,f). Interestingly, we observed that 
CAFs, which localized at the border of the TGFBI+ tumor, also expressed 
MMP11 (Fig. 7e,f), encoding a matrix metalloproteinase that breaks down 
ECM and is associated with poorer prognosis36. This colocalization of 
SPP1+ macrophages, TGFBI+ tumor cells and MMP11+ CAFs within the TME 
may suggest a coordinated effort to promote tumorigenesis.

To better understand the T cell response, we explored the clon-
ality of the antigen recognizing T cell receptors (TCRs) of the T cells 
in and around the CRC tumors. Using T cells isolated from dissoci-
ated tumor cells from the same patients, we performed Single Cell 
Immune Profiling to obtain the TCR sequences. This revealed a clo-
notype with 11% representation within the T cell population of sample 
P5CRC (TRAV38-1–TRAJ58; TRAB38-2/DV8–TRAJ57; TRBV4-2–TRBJ2-1; 
Supplementary Table 4) but no expansions in the other samples. No 
complementarity-determining region 3 (CDR3) matches to this clono-
type were found in VDJdb (https://vdjdb.cdr3.net/), indicating that this 
clonotype recognizes a neoepitope specific to this tumor.

As expanded clonotypes indicate an active adaptive immune 
response, we sought to localize these cells within the tissue. We 
designed probes targeting the CDR3 regions of the expanded clonotype 

and included them in the Xenium custom add-on panel (Supplementary 
Table 3). Xenium analysis identified clusters of clonally expanded CD8+ 
T cells residing close to tumor cells and within gut-associated lymphoid 
tissues (Fig. 7g,h). These T cells were localized within CXCL9-, CXCL10- 
and CXCL11-expressing foci, where STAB1+ macrophages, B cells and 
endothelial cells were present and contributing to the expression of 
these chemokines (Fig. 7h), known to recruit immune cells to the tumor 
site37. This observation was validated in the corresponding region of the 
Visium HD data (Fig. 7i). TRAC+ T cells were identified near CEACAM5+ 
tumor cells, SELENOP+C1QC+ macrophages and JCHAIN B cells. SELE-
NOP and JCHAIN were not included in the Xenium gene panel but were 
included in our analysis based on the Visium HD data, highlighting the 
complementary strengths of Xenium and Visium HD technologies.

Discussion
The advent of spatial transcriptomics has enabled a more comprehen-
sive understanding of biology in health and disease and is particularly 
relevant in oncology, where the localization of specific cell types in the 
TME can have prognostic implications. By enabling precise mapping of 
the TME, these technologies reveal the complex spatial relationships 
among cells, which are crucial for understanding tumor progression 
and resistance to therapy. However, existing technologies have limita-
tions related to resolution, tissue compatibility or ease of use. In this 
study, we introduced Visium HD, the next generation of the Visium tech-
nology, and used it to explore the TME in FFPE colon adenocarcinoma 
samples. We first demonstrated the high sensitivity, resolution and 
accuracy of Visium HD. Taking advantage of these features, we explored 
the immune cell composition in the immediate vicinity of CRC tumors, 
their potential role and interplay with other immune and tumor cells.

Immune cell interactions in the CRC TME remain poorly under-
stood, with TAMs showing controversial roles due to mixed M1–M2 
polarization and spatial distribution26. For example, it has been hypoth-
esized that tumor cells at the invasive front affect macrophage polari-
zation26. Visium HD enabled whole-transcriptome analysis within 
the spatially complex tumor boundary niche, with micrometer-level 
precision across a large tissue section, which has not been possible 
with existing technologies. We discovered macrophage populations 
with distinct gene expression profiles, unique spatial distributions and 
specific enriched pathways from data obtained from single archived 
tissue sections from different patients. Both SPP1+ and SELENOP+ 
macrophages are enriched in tumor tissues and more likely to adopt an 
M2-like phenotype exerting pro-tumor and pro-metastatic roles9,26,38,39. 
In our samples, the spatial distribution of both macrophage subtypes 
and the upregulation of genes in known tumorigenic pathways40 further 
support a pro-tumor role in the TME. SPP1+ macrophages were adjacent 
to tumor cells expressing TGFBI and PERP, and SELENOP+ macrophages 
were adjacent to tumor cells expressing REG1A and LCN2 genes, all 
genes that have been associated with metastasis, advanced tumor 
stage and poor prognosis41–44. Moreover, the predicted ligand–recep-
tor communication between SPP1+ (via SPP1–CD44) and SELENOP+ 
(via B2M–KLRD1) macrophages with CD8+ T cells in the TME could 
ultimately lead to reduced immune surveillance and evasion of the 
immune system by inhibiting cytotoxic activity45–47. These data suggest 
different pro-tumor mechanisms exerted by macrophage populations 
in different TME niches.

While REG1A expression initially seemed exclusive to a particular 
set of tumor cells, a granular subclustering analysis of goblet cells 
revealed a distinct subpopulation expressing REG1A, with features 
of both goblet cells and REG1A+ tumor cells. While these REG1A+ cells 
exhibited reduced DGE of goblet cell markers, they exhibited higher 
DGE of REG1A tumor-associated features. These REG1A+ goblet cells 
likely represent a transitional state of tumorigenesis, as REG1A may 
be involved in early tumor development in CRC48. Without Visium HD, 
identification and localization of this transitional goblet population 
would have been challenging.
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The pro-tumor features displayed by macrophage subpopula-
tions and the potential role in inhibiting immune cell proliferation and 
function led us to further our analysis on the T cells near the tumors. 
T cell infiltration into CRC tumors has been associated with favorable 

outcomes, suggesting a possible role for immunoediting in controlling 
tumor growth35. Using Xenium, we mapped the location of clonally 
expanded T cells within the CRC TME at single-cell resolution. These 
clonally expanded T cells colocalized with cells expressing CXCL9, 
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CXCL10 and CXCL11, encoding chemokines, which are known to attract 
cytotoxic T lymphocytes37. Consistent with this finding, these expanded 
T cells expressed cytotoxic genes, including PRF1, GZMA and GZMK. 
Notably, macrophages within these regions emerged as the primary 
source of CXCL9, CXCL10 and CXCL11 expression. This finding suggests 
that, despite the overall immunosuppressive TME, there are niches of 
anti-tumor immune responses where T cells are actively recruited to 
the tumor boundary. This is an important observation, as the balance 
between the pro-tumor and anti-tumor macrophages influences tumor 
progression and therapy response. Further research into macrophage 
plasticity and their ability to switch between these states could provide 
potential targets for cancer management strategies49,50. Identifying key 
biomarkers that signify this transition enables the development of new 

therapeutic targets, which have the potential to allow for earlier-stage, 
targeted and personalized cancer treatments. A limitation of this study 
is the small sample size, preventing us from drawing broad conclusions. 
However, we demonstrate that high-resolution spatial technologies 
can provide comprehensive insights that will be key in identifying 
biomarkers as potential therapeutic targets for CRC. This study lays 
the groundwork for future breakthroughs using larger cohorts.

Future studies using more sophisticated analyses can take full 
advantage of the 2-µm data afforded by Visium HD. While our nuclear 
segmentation analysis using the 2-µm resolution data allowed us to 
locate T cells within the tumor boundaries, truly accurate cell type 
assignment requires advanced cell segmentation algorithms that 
are not yet available. This could be accomplished by either using cell 
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surface staining information or through the development of spatially 
aware methods capable of including information from neighboring 
bins during unsupervised clustering51. These methods would also 
account for small cells and cells in dense neighborhoods, mitigating 
any need for a single-cell reference dataset.

High-definition spatial technologies are providing increasingly 
detailed information into cancer biology. Our results exemplify the 
valuable insights gained from studying immune cell populations in the 
TME with high-definition, whole-transcriptome spatial technologies 
and pave the way for future research to improve our understanding 
of tumor evolution and to inform therapeutic advances. Our study 
combined whole-transcriptome and targeted in situ spatial technolo-
gies to obtain additional information on the TME heterogenic nature. 
Given the poor survival rates of many cancers, there is a pressing need 
for better diagnostic and prognostic biomarkers to inform clinical 
strategies.

Leveraging high-definition spatial technologies on large 
cohort studies to characterize cells in tumors, in combination with 
cutting-edge analytical approaches powered by machine learning 
and artificial intelligence, will yield a detailed appreciation of tumor 
heterogeneity and the cell-to-cell interactions in these different TME 
niches and the identification of spatially resolved biomarkers. This 
understanding will provide critical insights into tumor evolution and 
treatment resistance, guiding the identification of crucial biomarkers 
and the development of targeted therapies.
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Methods
Biomaterials
Human biological samples were obtained from Discovery Life Sciences. 
The research use of these specimens was approved by the correspond-
ing institutional review boards under protocol numbers DLS-BB044-v.1 
and SB-GP_v1. All patients provided written informed consent to Dis-
covery Life Sciences for the research use of their biological samples.

An overview of the experimental design is presented in Fig. 1. 
Samples from five patients with colon adenocarcinoma (two males, 
three females, ages 58–72, pretreatment) were included in this study. 
From each patient, we included CRC FFPE blocks and NAT blocks for a 
subset of three patients (bringing the total to eight FFPE blocks), and 
we obtained paired freshly frozen dissociated tumor cells (for immune 
profiling analysis), alongside the three selected FFPE blocks used for 
spatial profiling (Table 1).

Tissue sectioning
Adjacent or near-adjacent 5-µm sections were taken from the FFPE tis-
sue blocks following the Xenium In Situ for FFPE — Tissue Preparation 
Guide (CG000578, revision C) for the Xenium workflow or the Visium 
CytAssist Spatial Gene Expression for FFPE — Tissue Preparation Guide 
(CG000518, revision C) for the Visium workflows.

Visium HD Spatial Gene Expression
H&E staining and imaging were performed following the Visium HD 
FFPE Tissue Preparation Handbook (CG000684). Samples were then 
processed and sequenced following the Visium HD Spatial Gene Expres-
sion Reagent Kits User Guide (CG000685). Space Ranger version 3.0 
was used for analysis. In addition to the native 2-µm feature size, Space 
Ranger outputs Visium HD data binned to 8-µm and 16-µm resolution. 
Unless otherwise specified, downstream analyses were performed on 
the 8-µm resolution data, which provide a 16-fold increase in the aver-
age number of UMI reads per bin in the gene–barcode matrix compared 
to a 2-µm square (Visium HD Spatial Gene Expression Performance 
Technical Note, CG000686, revision A), which is of a reasonable size 
to be processed through third-party tools. Additionally, the 8-µm 
bin data provide robust cell type annotations (that is, bins are small 
enough to provide single-cell scale for most cell types). We merged the 
UMI count matrices of the three sections and, given the dataset's large 
size, we adopted the sketch-based analysis approach in Seurat (https://
satijalab.org/seurat/articles/seurat5_sketch_analysis), sampling 15% 
of the entire dataset for downstream analysis52,53. The 15% sampling 
rate was chosen to ensure efficient computational performance. We 
used the leverage score as the sketching method. This method over-
samples rare populations to preserve the biological complexity of the 
sample. We identified variable features, scaled the data, performed 
principal-component (PC) analysis (PCA) and conducted graph-based 
clustering (20 PCs, resolution = 0.8). DGE analysis identified cluster 
marker genes, enabling manual annotation into ten broad cell types 
(level 1). For level 2 annotations, we reclustered each level 1 cluster  
(25 PCs, resolution = 0.1) to refine subtypes, performed DGE and anno-
tated cell types. Final annotations were extended to the full dataset.

When needed, the 2 × 2-µm data were used (in combination with 
nuclear stain) to provide additional information, particularly to locate 
smaller cell types (Nuclear segmentation).

Spatial accuracy
To measure spatial accuracy of mRNA detection, we identified mor-
phologically distinct ROIs and then pinpointed marker genes unique 
to each ROI. These marker genes should be expressed only in squares 
directly beneath their corresponding ROI. Using QuPath version 0.4.4 
(ref. 54), we selected four ROIs within normal colon mucosal glands 
(hereafter referred to as ‘source masks’) and areas of adjacent muscula-
ris mucosae (‘adjacent masks’), choosing three goblet cell marker genes 
(CLCA1, FCGBP and MUC2). We mapped the locations of all transcripts 

for these marker genes and calculated the proportion of accurately 
localized transcripts for each of the four ROIs. For the remaining tran-
scripts, we determined the Euclidean distance from the edge of the 
nearest source mask to the square of transcript detection. Additionally, 
we calculated the densities of the marker genes within both the source 
and adjacent masks for each ROI.

Visium CytAssist Spatial Gene Expression for FFPE
Visium CytAssist Spatial Gene Expression for FFPE (‘Visium v2’) was run 
on a subset of samples to demonstrate technological improvements of 
Visium HD. FFPE serial sections (5 µm) were placed on standard glass 
slides and stained with H&E following the Demonstrated Protocol 
Visium CytAssist Spatial Gene Expression for FFPE — Deparaffinization, 
H&E Staining, Imaging & Decrosslinking (CG000520). Samples were 
processed and sequenced following the Visium CytAssist Spatial Gene 
Expression Reagent Kits User Guide (CG000495). Space Ranger version 
3.0 was used for analysis.

Sensitivity comparison of Visium v2 and Visium HD
We assessed the sensitivity of Visium HD compared to Visium v2 on a 
gene-by-gene basis. Matched areas were manually selected in Loupe 
Browser version 8.0, and probe–barcode matrices from each dataset, 
generated by Space Ranger, were imported into Seurat version 5 (ref. 52) 
using the read10xh5() function. We used the ggplot2 R package to graph 
per-probe UMI counts. The data were displayed on a log10 + 1 scale,  
with Spearman correlations calculated as r2. Our comparison spanned 
all probes across the entire transcriptome and specifically focused 
on probes crossing an exon–exon splice junction (7,605 of 54,580 
probes). This latter comparison helps exclude most probes that could 
target gDNA or be susceptible to off-target effects. These probes that 
are marked as potentially binding to gDNA were excluded from the 
analysis computationally.

The gDNA estimate is obtained by fitting a piecewise linear model 
to genes with both spliced and unspliced probes. The model predicts 
the log-transformed gene counts for unspliced probes as a function of 
log-transformed gene counts for spliced probes and log-transformed 
estimated gDNA counts per gene per 1,000 spots under tissue:

xunspliced = gDNA + B (xspliced) − X̂gDNAII (xspliced > X̂gDNA) ,

where X̂gDNA is the estimated gDNA UMIs per gene, xunspliced and xspliced 
are the average number of UMIs corresponding to unspliced and 
spliced probes from a single gene, respectively, and II(xspliced > X̂gDNA) 
is an indicator function that equals one if xspliced is greater than X̂gDNA 
and zero otherwise.

For any fixed estimate of X̂gDNA, the model parameters gDNA and 
B are estimated by fitting a linear regression with a two-dimensional 
parameter vector. The relevant X̂gDNA values to consider while fitting 
the model are only those xspliced values seen in the genes under consid-
eration. Therefore, a linear model with every xspliced value seen in the 
dataset as X̂gDNA is fit, and the model with the smallest residual sum of 
squares is used for the estimates. For more details on gDNA, see the 
technical note Visium CytAssist Spatial Gene Expression for FFPE: 
Robust Data Analysis with Minimal Impact of Genomic DNA 
(CG000605, revision A).

Chromium Single Cell Gene Expression Flex
Cells were dissociated from 50-µm FFPE curls using the Demonstrated 
Protocol for Isolation of Cells from FFPE Tissue Sections for Chromium 
Fixed RNA Profiling (CG000632). Library preparation and sequencing 
followed the Chromium Fixed RNA Profiling for Multiplexed Samples 
User Guide (CG000527, revision D). Cell Ranger version 8.0.0 was used 
for analysis. To build the atlas, we used Seurat version 5 (ref. 52) to import 
the H5 file produced by the cellranger aggr pipeline. We then plotted 
the distribution of UMIs and genes per barcode, excluding the top and 
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bottom 2.5% of the distribution to account for outliers. We then used 
the same sketch approach as the HD data: identified variable features, 
scaled the data, performed PCA and conducted graph-based clustering 
(25 PCs, resolution = 0.6) and performed DGE analysis to identify cluster 
marker genes, enabling manual annotation into ten broad cell types 
(level 1). For level 2 annotations, we reclustered each level 1 cluster (25 
PCs, resolution = 0.1) to refine subtypes, performed DGE and annotated 
cell types. Final annotations were extended to the full dataset.

Spot deconvolution
Deconvolution methods aim to identify the cell types and their rela-
tive proportions contributing to the signal captured in a specific area 
(spot, square or bin). Spot deconvolution was used to classify and 
label bins with cell types derived from the Single Cell Atlas. We ran 
spacexr55 using doublet mode, which assigns one to two cell types per 
spot and is recommended for technologies with high spatial resolu-
tion such as Visium HD. Among the outputs, this mode provides the 
top two ranked cell types per spot, a matrix with the weights for all 
cell types in the reference in each of the spots and a variable represent-
ing the class of every bin. The available classes are ‘singlet’ (one cell 
type), ‘doublet_certain’ (two cell types), ‘doublet_uncertain’ (two cell 
types, but only confident of one), ‘reject’ (no prediction given). See the 
spacexr vignette for more detail (https://raw.githack.com/dmcable/
spacexr/master/vignettes/spatial-transcriptomics.html). Owing to 
the increased number of barcoded squares in Visium HD, we modified 
the code to improve runtime (https://github.com/dmcable/spacexr/
pull/206). We selected a minimum UMI threshold of 100 for a bin to be 
considered for the deconvolution step.

Characterizing the tumor periphery
To identify and analyze tumor periphery regions, we developed a 
custom pipeline (https://github.com/10XGenomics/HumanColon-
Cancer_VisiumHD). The key advantage of this method is its versatility; 
it is not restricted to tumors and can be applied to identify cell types in 
the boundaries of other tissues, such as colon glands or skeletal muscle 
tissue. Our algorithm first selects all bins labeled with the given cluster 
or cell type. For each bin, the algorithm then identifies all neighboring 
bins within a user-defined radius. We defined this as 50 µm based on 
biological relevance and to exploit the high resolution of Visium HD. 
A 50-µm boundary analysis is not possible with Visium v2, which has 
a spot diameter of 55 µm. To accurately delineate the boundary of the 
cluster or cell type, the algorithm excludes bins with the same label 
as the initial bin. To further refine the boundary identification, we 
removed singlet bins labeled with the given cluster but not in proximity 
to other bins with the same label. Specifically, we excluded bins that 
had fewer than 25 neighboring bins with the same label to ensure the 
selection of well-defined regions within the tissue.

For the macrophage-specific analysis, we selected 8-µm bins that 
were deconvolved as macrophages and located within 50 µm of tumor 
regions. For each patient, variable features were identified, the data 
were scaled and PCA was performed. Graph-based clustering was 
then conducted using the top ten PCs with a resolution of 0.2. Clusters 
were annotated based on the expression of SPP1 and SELENOP, and 
an integrated dataset was generated, including only the macrophage 
subpopulations consistently identified across all sections. To extend 
this analysis, all bins labeled as macrophages across all sections were 
included, irrespective of their proximity to the tumor boundary. For 
this broader dataset, 15 PCs and a resolution of 0.2 were used for cluster-
ing to achieve greater resolving power across patients. This approach 
aimed to determine whether the identified subpopulations were shared 
across patients or specific to individual patients.

Distance, local and regional analysis
After identifying regions enriched with immune cells, we selected the 
top three regions exhibiting the highest macrophage density (within 

bins categorized as tumor tissue) and delineated these areas as ROIs 
with a radius of 350 µm. Additionally, we identified a ‘cold’ region lacking 
immune infiltration. To identify genes associated with elevated immune 
cell density, we used DGE analysis. Subsequent enrichment analysis of 
differentially expressed genes (ranked by log2 (fold change)) used the 
Hallmark gene sets linked to specific biological pathways40 (https://www.
gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=H).

Ligand–receptor analysis
To assess cell–cell communication between macrophages and T cells, 
we used LIANA version 0.1.12, which provides a framework to combine 
cell communication methods to infer ligand–receptor interactions33. 
We selected all bins within the previously defined tumor periphery 
region (within 50 µm of the tumor boundary) to create an independent 
Seurat object to be used as input. We filtered the predicted interactions 
by selecting any interaction with aggregate_rank ≤ 0.01. This procedure 
was done on a per-patient basis.

Immune density analysis
To map the locations of specific immune cell types in the CRC samples, 
we used the coordinates for each bin and their labels provided by 
deconvolution. We counted only bins that were labeled as singlets. We 
used 2D kernel density estimation to select regions enriched in a given 
cell type. Density values were scaled to a maximum of 1.

Nuclear segmentation
Using the 8 × 8-μm binned data for the periphery analysis meant that 
most T cells in the tumor periphery were assigned to doublet bins 
or rejected (the algorithm was unable to predict the cell type) and 
therefore excluded, making them challenging to spatially localize 
(Fig. 6a and Extended Data Fig. 8). This is an effect of the 8 × 8-μm 
binned data approach for cell assignment (Fig. 6b), in which smaller 
cell types such as T cells (as compared to tumor cells) may colocalize 
other cell types within the 8 × 8-μm bin. To overcome this, we used an 
alternative approach to assign 2 × 2-μm squares to cells. We first iden-
tified regions enriched in either CD4+ or CD8+ T cells, independent of 
whether they were assigned to a singlet or doublet bin, and, with the use 
of the nuclear stain from a high-resolution H&E microscope image, we 
performed nuclear segmentation on these regions. To segment nuclei 
from the H&E images and assign 2 × 2-µm bins to the identified nuclei, 
we followed the analysis guide ‘Nuclei Segmentation and Custom Bin-
ning of Visium HD Gene Expression Data’ (https://www.10xgenomics.
com/analysis-guides/segmentation-visium-hd). The segmentation 
procedure was run on the full section using StarDist56. We used affine 
transformations to preserve the segmentation polygons when subset-
ting the image to specific ROIs. Once the 2-µm bins were assigned to the 
corresponding nuclear polygons, the data were transformed to create 
a gene-by-nucleus UMI count matrix for further processing.

Single-cell immune profiling
Freshly frozen dissociated tumor cells were sorted based on CD45 and 
CD3 expression to isolate T cells. Gene expression (5′) and TCR librar-
ies were generated and sequenced following the Chromium Next GEM 
Single Cell 5′ Reagent Kits v2 (Dual Index) User Guide (CG000331). Cell 
Ranger version 8.0.0 was used for analysis.

Design of TCR clonotype probes
Custom probes for Xenium were developed to target three CDR3 
sequences identified by VDJ sequencing (full list of clonotypes in Sup-
plementary Table 4, probe sequences in Supplementary Table 3). One 
40-bp probe was designed for each CDR3, centered on the CDR3 with 
some overhang into the adjacent framework regions. These probes 
were designed following the specifications in the Species Standalone 
Custom and Advanced Custom Panel Design for Xenium In Situ Techni-
cal Note (CG000683, revision C).
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Xenium In Situ
The P1CRC, P2CRC and P5CRC samples were processed following the 
Xenium In Situ Gene Expression with Morphology-based Cell Segmen-
tation Staining User Guide (CG000749) with the Xenium Human Colon 
Gene Expression Panel (322 genes) supplemented with an additional 
100 genes chosen to identify diverse immune populations we observed 
in the Visium HD data and characterize the TME (for the complete gene 
list, see Supplementary Table 2). The panel was designed using Xenium 
Panel Designer following the guidance in the Xenium Add-on Panel 
Design Technical Note (CG000643, revision B). The Xenium Onboard 
Analysis pipeline version 2.0.0 was run directly on the instrument for 
image processing, cell segmentation, image registration, decoding, 
deduplication and secondary analysis.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All datasets are available for download at the following website: https://
www.10xgenomics.com/products/visium-hd-spatial-gene-expression/
dataset-human-crc. Raw data have also been deposited in the Gene 
Expression Omnibus under accession number GSE280318. The source 
data used to generate most of the figures are provided as source data. 
For cases where the required source data contain more than 100,000 
observations, the data are available for download as Parquet files at 
https://github.com/10XGenomics/HumanColonCancer_VisiumHD/
tree/main/MetaData. Source data are provided with this paper.

Code availability
Custom scripts used for this paper are available on GitHub at https://
github.com/10XGenomics/HumanColonCancer_VisiumHD. All 
code has also been deposited at Zenodo57 (https://zenodo.org/
records/15042463).
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Extended Data Fig. 1 | Sensitivity comparisons between Visium v2 and Visium 
HD performed on serial sections of normal and colon cancer samples.  
a. CRC sample (P2CRC). b. Normal colon mucosa sample (P5NAT). Comparisons 
show strong correlation between UMI counts from all probes (54,580 probes; 

left panels, Unfiltered), and the probes that only span spliced gene target 
regions (7,605 probes; right panels, Spliced Probes), obtained from each assay, 
highlighting comparable sensitivity between assays.
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Extended Data Fig. 2 | Transcript localization accuracy. a. To assess localization 
accuracy of selected muscularis mucosae marker genes (ACTA2, DES, GREM1), 
we selected three regions of interest (ROIs) for each tissue; source masks (red) 
are muscularis mucosae, adjacent masks (yellow) are the immediately adjacent 
mucosa regions. The images show selected ROIs in a representative normal 
sample P5NAT. The table shows the median percentage of localized transcripts 
in the source in n= 3 samples (one replicate per sample). b. We analyzed the 

transcript localization of selected genes (MS4A1, CD52, CXCR4) known to 
be enriched in immune cells within lymphoid regions in three ROIs. Source 
masks (red) are lymphoid regions, and adjacent masks (yellow) represent the 
immediately adjacent submucosa areas. The images show selected ROIs in a 
representative normal sample P5NAT. Table shows the median percentage of 
localized transcripts in the source in n= 3 samples (one replicate per sample).

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-025-02193-3

Extended Data Fig. 3 | Cell type annotation of the sample-specific single cell 
reference atlas. a. Manual classification of the graph-based clusters into nine 
broad cell types, denoted as level 1 annotations. Left: Bar plot showing frequency 
of distinct cell types across the single cell data set composed of 5 CRC sections 
and 3 NAT sections. Right: UMAP plot showing level 1 cell type annotations in 

the single cell dataset. b. Finer annotation (level 2) of the cell types identified in 
the single cell data Left: UMAP plots showing cell type annotations in individual 
samples after further sub-clustering analysis of the single cell data. Right: UMAP 
plot showing level 2 cell type annotations in the single cell data.
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Extended Data Fig. 4 | Proportion of cell types identified in three CRC samples. Barplot with the proportion of each of the identified cell types after deconvolution 
on the three different CRC samples. Colors represent the sample.
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Extended Data Fig. 5 | Single cell analysis of tumor subpopulations in CRC 
(n=5) samples reveal tumor heterogeneity. a. UMAP plot with tumor cells 
colored by cluster (left) and colored by sample identifier (right). b. Dot plot 

displaying the scaled expression of the top differentially expressed genes across 
the 5 tumor subpopulations. c. UMAP plot colored by log normalized UMI counts 
of differentially expressed genes and tumor markers (CEACAM5, CEACAM6).
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Extended Data Fig. 6 | Sketch based analysis of Visium HD data without the 
integration of single cell data. a. Spatial plots with bins colored by cell type 
identified level 1 unsupervised clustering.Scale bar = 1mm. b. Heatmap from 
confusion matrix showing the relationship between cell labels provided via 

deconvolution (rows) and unsupervised clusters (columns). Heatmap is scaled 
by row, summing up to 100% per row. Longer color bars represent level 1 cell type 
annotations and small colored squares represent the level 2 clusters identified 
for each level 1 cell type.
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Extended Data Fig. 7 | Analysis of macrophage subpopulations in normal and 
tumor regions of colon cancer sections. a. Dot plot denoting the expression 
of differentially expressed genes in the 4 macrophages cluster identified via 
unsupervised clustering. b. Barplot with the proportion of each macrophage 
cluster. Colors represent distance to the tumor. c. Barplot with the proportion 

of each macrophage cluster. Colors represent the different samples. d. Spatial 
organization of the 4 identified macrophage populations in the colon cancer 
samples. Shades of gray represent normal and tumor regions in the section and 
colors represent the identified unsupervised clusters. Scale bars = 1mm.
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Extended Data Fig. 8 | Deconvolution class for 8 μm bins labeled as T cells. Barplots denoting the deconvolved class for CD4 T cells and CD8 T cells in the 50 micron 
TME and rest of the tissue for each patient (n= 3).
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Extended Data Fig. 9 | Localization of CD4 and CD8 T cells. a. Kernel density 
maps showing the differential spatial localization of CD4 and CD8 T cells in 
the CRC sections (n = 3). b. Expression of TRAC (T cell), CD3E (T cell), PECAM1 
(Endothelial), IGKC (Plasma), COL1A1 (CAF), SPP1 (Macrophage), SELENOP 

(Macrophage) and CEACAM5 (Tumor) in the segmented nuclei for each patient. 
UMI counts were grouped by 2 micron bins located within each segmented 
nuclei. Scale bars: black = 1mm; yellow = 50µm.
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Extended Data Fig. 10 | Cross-platform Sensitivity. Sensitivity comparisons 
between Visium HD and Xenium in situ gene expression data have been 
performed on serial sections from the same colon cancer FFPE blocks in a 
subset of 3 CRC samples. Plots show per gene pseudo bulk correlation between 
paired Visium HD (UMI counts) and Xenium in situ (gene counts) data. Xenium 
is on average 5.7x more sensitive on a per-gene basis than Visium HD for genes 

included in both panels at the sequencing depth used (range: 1309-1865 reads 
per 8 μm bin). Sensitivity was calculated by taking the geometric mean of the 
per gene fold difference between Visium HD and Xenium counts. Comparison 
of transcript diversity in the shared region found that Visium HD exhibited, on 
average, ~6.5x more transcripts than Xenium. See Supplementary Table 5.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data was collected using 10x Genomics analysis pipelines which are all publicly available, including: Space Ranger v3.0,, Cell Ranger v8.0.0, 
Xenium Onboard Analysis pipeline v2.0.0, Loupe Browser v8.0

Data analysis Data was analysed using 10x Genomics analysis pipelines which are all publicly available, including: Space Ranger v3.0, Cell Ranger v8.0.0, 
Xenium Onboard Analysis pipeline v2.0.0. Software (R or Python packages): Seurat v5, spacrxr v2.2.1, stardist v0.9.0 and LIANA v0.1.12 were 
used for downstream analysis.   
Custom scripts used for this paper are available on GitHub at: https://github.com/10XGenomics/HumanColonCancer_VisiumHD 
All code has also been deposited at Zenodo https://zenodo.org/records/15042463 
All details are outlined in the Methods section and third party tools are referenced. 
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All datasets generated in this manuscript are available for download here: https://www.10xgenomics.com/products/visium-hd-spatial-gene-expression/dataset-
human-crc 
For enrichment analysis we used the MSigDB_Hallmark_2020: https://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=H  
We have uploaded the data to Gene Expression Omnibus (GEO) under accession number GSE280318 
Data deposited at GEO contains raw data (fastq files) and processed data for the 8 micron bin size. Data available for download at the 10x Genomics website 
includes the all outputs from spaceranger, including the results for all bin sizes.  

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Not considered in study design due to limited sample number.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Not considered in study design as this information was not available.

Population characteristics Not considered in study design, information is included in Table 1 but was not considered in the analysis.

Recruitment Samples were obtained via a commercial vendor (Discovery Life Sciences).

Ethics oversight Human biological samples were obtained from Discovery Life Sciences. The research use of these specimens was approved by 
the corresponding Institutional Review Boards (IRB) under protocol numbers DLS-BB044-v.1 and SB-GP_v1. All patients 
provided written informed consent to Discovery Life Sciences for the research use of their biological samples. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample size. We selected samples that were all classified as colorectal adenocarcinoma, 
pre-treatment, on the basis of availability. We included samples from 5 patients, for 3 of these patients we were able to obtain samples from 
tumor, normal adjacent tissue (NAT), and dissociated tumor cells (DTC). 

Data exclusions None

Replication Visium HD experiments were performed on one replicate per patient sample included (as described in Methods and Figure legends). Findings 
were validated using an orthogonal spatial platform (Xenium in situ) for selected samples (as described in Methods and Figure legends).

Randomization Not relevant due to limited sample number.

Blinding Not relevant due to limited sample number.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.
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