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Abstract

Major depressive disorder (MDD) is a clinically heterogeneous disorder. Its mecha-

nism is still unknown. Although the altered intersubject variability in functional con-

nectivity (IVFC) within gray-matter has been reported in MDD, the alterations to

IVFC within white-matter (WM-IVFC) remain unknown. Based on the resting-state

functional MRI data of discovery (145 MDD patients and 119 healthy controls [HCs])

and validation cohorts (54 MDD patients, and 78 HCs), we compared the WM-IVFC

between the two groups. We further assessed the meta-analytic cognitive functions

related to the alterations. The discriminant WM-IVFC values were used to classify

MDD patients and predict clinical symptoms in patients. In combination with the

Allen Human Brain Atlas, transcriptome-neuroimaging association analyses were fur-

ther conducted to investigate gene expression profiles associated with WM-IVFC

alterations in MDD, followed by a set of gene functional characteristic analyses. We

found extensive WM-IVFC alterations in MDD compared to HCs, which were associ-

ated with multiple behavioral domains, including sensorimotor processes and higher-

order functions. The discriminant WM-IVFC could not only effectively distinguish

MDD patients from HCs with an area under curve ranging from 0.889 to 0.901

across three classifiers, but significantly predict depression severity (r = 0.575,

p = 0.002) and suicide risk (r = 0.384, p = 0.040) in patients. Furthermore, the
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variability-related genes were enriched for synapse, neuronal system, and ion chan-

nel, and predominantly expressed in excitatory and inhibitory neurons. Our results

obtained good reproducibility in the validation cohort. These findings revealed inter-

subject functional variability changes of brain WM in MDD and its linkage with gene

expression profiles, providing potential implications for understanding the high clini-

cal heterogeneity of MDD.
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1 | INTRODUCTION

Major depressive disorder (MDD) is a highly prevalent psychiatric dis-

order and a major cause of disability (DALYs & Collaborators, 2018).

According to the World Health Organization, MDD will be the leading

cause of disease burden worldwide by 2030 (Lepine & Briley, 2011).

MDD is known to be a clinically heterogeneous disorder characterized

by a mixture of emotional, cognitive, and autonomic symptoms

(Malhi & Mann, 2018). Although growing studies reported structural

and functional brain alterations in MDD (Zhuo et al., 2019), our cur-

rent understanding of its pathophysiology is unclear with inconsistent

findings across studies. This hampers the discovery of reliable neuro-

imaging-based biomarkers that can guide clinical diagnosis and opti-

mize treatment. One major reason for this situation is that most prior

MDD studies have utilized case–control designs to evaluate mean

group differences between patients and healthy controls (HCs), ignor-

ing the intersubject differences among patients with MDD.

As an advanced neuroimaging technique, resting-state functional

MRI (rs-fMRI) provides an unprecedented opportunity to noninva-

sively investigate the brain functional connectivity (FC), which is

based on the temporal synchronization of blood-oxygenation-level-

depend (BOLD) signals between pairs of brain regions (Biswal

et al., 1995). Recently, a great deal of evidence supports that this

inter-regional FC architecture is unique among individuals and reflects

individual differences in cognitive or behavior (Li, Wei, et al., 2021;

Smith et al., 2015). Therefore, an increasing body of rs-fMRI studies

have moved towards characterizing the intersubject variability in FC

(IVFC) (Horien et al., 2019; Mueller et al., 2013). It has been reported

that IVFC within gray-matter (GM-IVFC) exhibited a sizeable regional

variability in HCs, with significantly higher variability in high-order

cognitive networks and lower variability in lower-order perceptual

networks (Li, Wei, et al., 2021). A meta-analysis further revealed that

the regions with high IVFC have important value in identifying individ-

uals and predicting higher cognitive functions (Finn & Todd Consta-

ble, 2016). In addition, GM-IVFC has been reported in some

psychiatric and neurological disorders, including—but not limited to—

schizophrenia (Sun et al., 2021), epilepsy (Dumlu et al., 2020) and

MDD (Hou et al., 2023). For instance, Chen et al. reported greater

heterogeneity in the visual cortex in both schizophrenia and MDD

patients compared to HCs (Sun et al., 2021). Hou et al. found that the

MDD group had increased IVFC in 33 GM regions of six brain net-

works (Hou et al., 2023). Overall, these findings highlight the implica-

tions of IVFC.

White-matter (WM), another fundamental component of the neu-

ral system, serves as the conduit for neural signal transmission

between GM regions (Fields, 2008). However, its variabilities in con-

nectome organization across individuals have been relatively unex-

plored. In recent years, emerging evidence has demonstrated a

reliable detection of BOLD signals in WM. Ji et al. found that low-fre-

quency BOLD fluctuations in WM exhibited a specific rather than a

random distribution of noise (Ji et al., 2017). It has been reported that

WM functional connectomes can predict individual general fluid intel-

ligence to explore brain-behavior relationships (Li, Biswal,

et al., 2020). Moreover, a network-based study indicated that WM

functional connectomes exhibited a stable and reliable small-world

topology, offering a neuromarker for MDD-related prognosis and

diagnosis (Li, Chen, et al., 2020). All these advances have improved

our understanding of the functional information in WM and showed

that FC in WM may be a potential approach to investigate behavioral

phenotypes in MDD. Newly discovered evidence has revealed that

IVFC within WM (WM-IVFC) also exhibits a nonuniform spatial distri-

bution in HCs, similar to GM-IVFC (Li, Wu, et al., 2021). Additionally,

the study implied that WM-IVFC might provide complementary func-

tional information for understanding pathophysiology mechanisms of

some psychiatric disorders (Li, Wu, et al., 2021). To the best of our

knowledge, no study has previously explored whether WM-IVFC is

altered in MDD patients, and whether such alteration can provide

valuable information for classification and prediction of this disorder.

Many studies indicated that MDD is a moderately heritable disor-

der (Corfield et al., 2017; Flint & Kendler, 2014; Sullivan et al., 2000).

Genome-wide association studies (GWAS) identified several risk

genes associated with MDD, some of which play key roles in the bio-

logical functions of presynaptic differentiation and neuroinflammation

(Howard et al., 2019). Moreover, there is literature that has demon-

strated the contribution of genetics to the brain's IVFC (Gao

et al., 2014). Recent advances in comprehensive brain-wide gene

expression atlases such as the Allen Human Brain Atlas (AHBA)

(Hawrylycz et al., 2012) have provided a workable route to linking

spatial variations in gene expression to neuroimaging phenotype. By

means of this powerful transcription-neuroimaging association
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analysis, researchers have identified several sets of genes whose

expression levels are linked to brain structural and functional abnor-

malities in MDD (Xue et al., 2022) (Li, Seidlitz, et al., 2021). Nonethe-

less, the molecular genetic underpinnings of WM-IVFC changes in

MDD remain unknown.

In the current study, to fill these gaps, we first examined

between-group WM-IVFC differences in two independent cohorts

and analyzed the behavioral relevance related to the alterations. Next,

the discriminant WM-IVFC values were used to classify MDD patients

and predict clinical symptoms in patients. In combination with the

AHBA, transcriptome-neuroimaging association analyses were further

conducted to identify genes whose expression profiles were associ-

ated with WM-IVFC changes. Finally, a set of analyses were per-

formed to describe functional features of the identified genes.

Schematic overview of the study design is provided in Figure 1.

2 | MATERIALS AND METHODS

2.1 | Participants

The discovery cohort included 145 MDD patients and 119 age- and

sex-matched HCs recruited from the Affiliated Yuhuangding Hospital

of Qingdao University. The validation cohort included 54 MDD

patients and 78 well-matched HCs recruited from the Affiliated Hos-

pital of Binzhou Medical College. Inclusion and exclusion criteria for

all participants are described in the Data S1 (Method 1). 24-item Ham-

ilton Depression Rating Scale (HAMD) (Williams, 1988) and Nurses'

Global Assessment of Suicide Risk scale (NGASR) (Cutcliffe &

Barker, 2004) were applied to capture depression severity and suicide

risk in patients. This study was conducted in accordance with the

Declaration of Helsinki and was approved by the Ethics Committee of

Yantai Yuhuangding Hospital and Affiliated Hospital of Binzhou Medi-

cal College. Written informed consent was obtained from all

participants.

2.2 | Data acquisition and image preprocessing

All participants in the discovery cohort underwent MRI image scan-

ning using a 3.0T scanner (Discovery 750; GE Healthcare, USA). The

MRI data of participants in the validation cohort were collected using

a Siemens Skyra 3.0T scanner (Siemens Medical, Erlangen, Germany).

Detailed scan sequences and parameters are described in the Data S1

(Method 2). Functional images were preprocessed using DPARSF

(v5.2, http://rfmri.org/dparsf) and SPM12 toolbox (http://www.fil.ion.

ucl.ac.uk/spm). Slice timing correction and head motion correction

were conducted after removing the first 15 time points. Participants

F IGURE 1 Schematic overview of the study design. (a) WM-IVFC calculation. (b) The discriminant WM-IVFC values were used to distinguish
MDD patients from HCs and predict depressive severity and suicide risk in patients. (c) Gene expression profiles in WM regions of the left
hemisphere were obtained from six postmortem normal brains from AHBA. (d) PLS regression was used to investigate the association between
MDD-related WM-IVFC changes and gene expression profiles. (e) A set of analyses were performed to describe functional features of the
identified genes. AHBA, Allen human brain atlas; HAMD, Hamilton depression rating scale; IVFC, intersubject variability in functional
connectivity; LR, logistic regression; NGASR, Nurses' Global Assessment of Suicide Risk scale; PLS, partial least squares; RF, random forest; SVM,
support vector machine; SVR, support vector regression; WM, white-matter.
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with excessive head motion (2 mm translation or 2.0� rotation) were

excluded. Structural images were co-registered to the preprocessed

functional images, and then segmented into GM, WM, and cerebrospi-

nal fluid (CSF) by using DARTEL. The resulting images were normal-

ized to the Montreal Neurological Institute space, and each voxel was

resampled to 3 � 3 � 3 mm3. Next, the mean signals from CSF, Fris-

ton-24 head motion parameters were regressed out by multiple linear

regression analysis. To avoid elimination of important neural signals,

we did not remove WM and brain global signal. Finally, smoothing

with 6 mm full-width half-maximum, detrending, and temporal filter-

ing (bandpass, 0.01–0.08 Hz) were performed.

2.3 | Construction of WMFC matrix

To construct the brain WMFC matrix, 48 WM regions of interest

(ROIs) were initially defined by the JHU ICBM-DTI-81 atlas (Table S1).

The time series were then extracted from each ROI by averaging the

time series of all voxels within that region. Finally, the Pearson's corre-

lation coefficients between the time series of each pair of ROIs were

calculated and normalized using Fisher's z-transformation, resulting in

a 48 � 48 WMFC matrix for each subject.

2.4 | WM-IVFC calculation and group differences

WM-IVFC was estimated in line with a previous study on GM-IVFC

(Li, Wei, et al., 2021). The FC profile of each ROI was vectored as

Fi s,tð Þ, where i=1, 2, …, 48, the value represented the FC between

ROI i and the remaining 47 ROIs; s (s� 1, 2, …,n) denoted the subject,

n is the number of subjects in the corresponding group; t (t� 1, 2)

denoted the scan session. Specifically, for each subject, all 170 time

points were evenly split into two halves (i.e., 1–85 time points for ses-

sion 1, 86–170 time points for session 2) (Sun et al., 2021). The

between-subject variability between subjects s1 and s2 for ROI i in

each scan session was defined as:

Ri s1,s2,tð Þ¼1�corr Fi s1,tð Þ,Fi s2,tð Þð Þ

where corr was the function of the Pearson's correlation. The average

between-subject variability of subjects s1 and s2 across two sessions

for ROI i was estimated as:

R0
i s1,s2ð Þ¼1

2
Ri s1,s2,1ð ÞþRi s1,s2,2ð Þ½ �

The within-subject variability was measured based on two ses-

sions of a subject. Given an ROI i, the within-subject variability of sub-

ject s was defined as:

Ni sð Þ¼1�corr Fi s,1ð Þ,Fi s,2ð Þð Þ

The average within-subject variability of two different subjects s1

and s2 for ROI i was estimated as:

N0
i s1,s2ð Þ¼1

2
Ni s1ð ÞþNi s2ð Þ½ �

To estimate the “pure” intersubject variability, the IVFC of ROI i

between subjects s1 and s2 was estimated by removing the average

within-subject variability from the average between-subject variabil-

ity, that is:

IVFCi s1,s2ð Þ¼R0
i s1,s2ð Þ�N0

i s1,s2ð Þ

The IVFC of ROI i regarding a single subject s was then calculated

as the mean of intersubject variability between s and all other subjects

in a group. By averaging intersubject variability across all subjects of

each group, the IVFC of ROI i was obtained. Finally, the WM-IVFC

map can be obtained for each group.

To estimate significant WM-IVFC changes in MDD, WM-IVFC

maps were compared between MDD patients and HCs using a two-

sample t test based on each ROI, with gender and age considered as

covariates. Subsequently, a statistical t-map was generated.

Significance was set at p < 0.05 with FDR correction for multiple com-

parisons. In addition, Pearson's correlation was performed between

WM-IVFC values in the significantly altered WM-IVFC regions and

clinical variables (HAMD and NGASR scores) in MDD patients.

2.5 | Behavioral relevance analysis

To investigate the behavioral relevance of WM-IVFC changes in

MDD, we examined their associations with behavior terms from the

NeuroSynth database (http://www.neurosynth.org) (Yarkoni

et al., 2011). We used the “decoder” function in Neurosynth to exam-

ine the spatial correlations between the t map of WM-IVFC and the

meta-analytic map of each term in the database.

2.6 | Classification and prediction of MDD

We distinguished MDD patients from HCs using support vector

machine (SVM), random forest (RF), and logistic regression

(LR) models. The models were implemented using Machine Learning

Toolbox for MATLAB software (version, matlab 2018b; https://www.

mathworks.com/products/statistics.html). The discriminant WM-IVFC

values were treated as classification features. We used the grid search

algorithm to find and determine the optimal parameters of the

machine learning algorithm, and the parameters with the highest area

under curve (AUC) were selected as the optimal. The optimal parame-

ters (c and gamma) for SVM are 0.5 and 0.25. The models were vali-

dated using a 10-fold cross-validation procedure. Basically, all training

subjects were partitioned into 10 folds (each fold with a roughly equal

sample size), and each time one fold was selected as the testing set,

while the remaining nine folds were combined together as the training

set. The entire 10-fold cross-validation process was further repeated

10 times. Finally, we reported the average classification results across

100 trials. The classification performance of the models could be
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quantified using accuracy, sensitivity, specificity, and AUC of receiver

operating characteristic curve (ROC). We also identified features with

high discriminative power in three models by examining the weight

vectors.

In addition, support vector regression (SVR) models implemented

using the MATLAB-based LIBSVM toolbox (v3.5, https://www.csie.

ntu.edu.tw/�cjlin/libsvm/) were constructed to predict depression

severity and suicide risk in MDD patients. Based on discriminant

WM-IVFC values of MDD patients, a grid search algorithm within a

10-fold cross-validation procedure was implemented to automatically

identify the optimal parameters for the SVR algorithm. The optimal

parameters (c and gamma) for SVR are 1.4 and 5.6. We evaluated the

predictive performance by calculating the root mean square error

(RMSE) and Pearson correlation between the predicted and actual

HAMD and NGASR scores.

2.7 | Gene expression data preprocessing

Brain gene expression data were obtained from the downloadable

AHBA dataset (http://human.brain-map.org) (Hawrylycz et al., 2012),

which was derived from six postmortem brains (age: 42.50

± 13.38 years, male/female: 5/1, Table S2). According to the Arnatke-

vic et al. (Arnatkeviciute et al., 2019), the gene expression data pre-

processing steps included: (i) verifying probe-to-gene annotations,

(ii) filtering of probes, (iii) probe selection, (iv) sample assignment,

(v) normalization of expression measures, and (vi) gene filtering. Since

the AHBA dataset only includes the right hemisphere data for two

subjects, we only considered the left hemisphere WM regions.

2.8 | Transcription-neuroimaging association
analysis

To explore the association between regional WM-IVFC changes (t-

values from left hemisphere WM regions) and transcriptional activity

for all 15,633 genes, a multivariate method called partial least squares

(PLS) regression (Krishnan et al., 2011) was used. Gene expression

data and regional changes in WM-IVFC were set as predictor variables

and response variables, respectively. The first component of the PLS

(PLS1) was the linear combination of gene expression values, which

was most strongly correlated with regional changes in WM-IVFC. We

adopted a spatial autocorrelation corrected permutation test (5000

times) (Vasa et al., 2018) to examine the statistical significance of the

variance explained by PLS1. Bootstrapping was used to estimate

the error of PLS1 weight estimated for each gene, and the ratio of the

weight of each gene to its bootstrap standard error was used to calcu-

late the Z scores and sequence the genes according to their contribu-

tion to PLS1 (Morgan et al., 2019). The set of genes with an FDR of

5‰, either positive (PLS1+), or negative (PLS1�), constituted the

intersubject variability gene list.

To explore the contribution of the MDD-related genes in the PLS

analysis, we first obtained the overlapping genes from the 269 MDD-

related genes defined by GWAS (Howard et al., 2019) and 15,633

background genes. Then the gene expression levels of these overlap-

ping genes were assessed for correlations with between-group differ-

ences in WM-IVFC. FDR < 5% was used to declare significant results

for multiple comparisons.

2.9 | Gene functional features

2.9.1 | Functional enrichment

To investigate the biological functions of the genes associated with

WM-IVFC changes in MDD, we performed functional enrichment

analyses using Metascape (https://metascape.org/gp/index.html#/

main/step1). The gene list was analyzed for significant enrichment of

gene ontology (GO) biological processes and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathways. The enrichment was thre-

sholded for significance at 5%, corrected by the FDR.

2.9.2 | Cell type analysis

We also explored whether the genes related to WM-IVFC changes in

MDD were enriched for specific brain cell types. To obtain gene sets

from each cell type, we compiled data from five different single-cell

studies using postmortem brain tissue in human postnatal subjects.

This approach avoids any deviation from sampling, analysis, or thresh-

olding, leading to the initial inclusion of 58 cell classes. Following the

procedure in Seidlitz et al. (Seidlitz et al., 2020), we further divided cell

types into seven canonical classes: microglia, endothelial cells, oligo-

dendrocyte precursors, oligodendrocytes. astrocytes, and excitatory

and inhibitory neurons. Only one study included the annotation of the

Per (pericyte) type, thus this gene set was excluded. Next, we over-

lapped the gene set of each cell type with the gene list. The p value of

the number of overlapped genes in each cell type was obtained by a

permutation test (5000 times), and corrected by FDR with p < 0.05.

2.9.3 | Protein–protein interaction

Protein–protein interaction (PPI) analysis was conducted with STRING

v11.0 (https://string-db.org/) to examine whether the genes associ-

ated with WM-IVFC changes in MDD could construct a PPI network

with a highest confidence interaction score of 0.9. The top 10% genes

were defined as hub genes by using the degree and MCC algorithms

of the Cytoscape.

2.10 | Validation analysis

The above between-group differences in WM-IVFC were examined in

the validation cohort. Pearson correlation analysis was conducted to

examine the similarity between the t map from the discovery cohort

and the identically derived t map from the validation cohort. To fur-

ther externally validate the generalization of the classification models
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using SVM, RF, LR, and the predictive model, the models trained using

the discover cohort were applied to the validation cohort directly.

For validating the identified genes associated with WM-IVFC

changes in MDD, a multigene-list meta-analysis was performed

between the gene lists of the discovery and validation cohorts. The

set of genes with an FDR of 5‰ was significant in the validation

cohort. The degree of gene overlap was evaluated by the odds

ratio (OR).

3 | RESULTS

3.1 | Demographic and clinical characteristics

The demographic and clinical characteristics of the discovery and vali-

dation cohorts are shown in Table 1. No significant differences were

found in gender, age, body mass index, and education between MDD

and HCs (p = 0.323, 0.207, 0.215, and 0.127). MDD patients

obtained significantly higher HAMD scores than HCs (p < 0.05).

3.2 | WM-IVFC changes in MDD patients

The regional two-sample t test revealed a mix of increased and

decreased WM-IVFC in MDD patients (Figure 2 and Table 2). Specifi-

cally, MDD patients showed significantly increased IVFC in the genu

of corpus callosum, right anterior corona radiata, left superior corona

radiata, left external capsule, right cingulum hippocampus, right sagit-

tal stratum, right superior longitudinal fasciculus, bilateral superior

fronto-occipital fasciculus, and left uncinate fasciculus relative to HCs

(pFDR < 0.05). In addition, MDD patients showed significantly

decreased IVFC in the left corticospinal tract, left inferior cerebellar

peduncle, right superior cerebellar peduncle, bilateral cerebral pedun-

cle, right anterior limb of internal capsule, and left posterior limb of

internal capsule in comparison with HCs (pFDR < 0.05). We found that

there was a significantly positive correlation between WM-IVFC

values and HAMD scores in the right superior fronto-occipital

fasciculus of MDD patients (r = 0.395, p = 0.019; Figure S1). How-

ever, no significant correlations (all p > 0.05) were found between

WM-IVFC values and NGASR scores in MDD patients.

3.3 | Behavioral relevance

The MDD-related WM-IVFC changes were correlated with multiple

behavioral terms mainly involved in sensorimotor processes, including

“visual”, “motor” and “sensory”, as well as higher-order functions,

such as “working memory”, “learning task”, “execution”, “motor imag-

ery”, “emotion”, and “language” (Figure 3a).

3.4 | Classification and prediction of MDD

The classification models achieved excellent performance with the

AUC of 0.889, 0.901, 0.897; accuracy of 0.870, 0.852, 0.833; sensitiv-

ity of 0.900, 0.867, 0.767; specificity of 0.833, 0.833, 0.917 for SVM,

RF, and LR classifiers, respectively. Classification performance of the

three models is given in Figure 3b and Table S3. Then we summarized

the top 10 features with the highest discriminative power in three

models, and six of these features overlapped, as shown in Table S4.

Additionally, the predictive model showed a significant correlation

between the observed and predicted HAMD scores (RMSE = 0.033,

r = 0.575, p = 0.002; Figure 3c). And a significant correlation

between the observed and predicted NGASR scores (RMSE = 0.036,

r = 0.384, p = 0.040; Figure 3d) was also found. The results imply

that the discriminant WM-IVFC of MDD patients could predict

depression severity and suicide risk.

3.5 | Gene expression related to WM-IVFC
changes in MDD patients

The PLS1 component accounting for approximately 59.4% of the vari-

ance was statistically significant (pspin <0.001, the permutation test

TABLE 1 Demographic and clinical characteristics (mean ± SD).

Characteristics

Discovery cohort Validation cohort

MDD (n = 145) HCs (n = 119) p value MDD (n = 54) HCs (n = 78) p value

Gender (male/female) 46/99 37/82 0.323 18/36 29/49 0.495

Age (years) 37.54 ± 12.93 34.68 ± 11.54 0.207 43.73 ± 10.07 45.61 ± 8.40 0.362

Race Chinese Chinese Chinese Chinese

BMI 21.87 ± 3.76 23.91 ± 3.95 0.215 24.12 ± 3.52 23.87 ± 3.44 0.289

Education (years) 10.18 ± 3.78 11.79 ± 3.21 0.127 11.84 ± 2.93 12.13 ± 3.17 0.192

Duration of illness (months) 21.13 ± 27.06 NA 12.32 ± 15.96 NA

HAMD-24 32.09 ± 12.60 4.24 ± 3.72 <0.001 30.86 ± 11.52 2.24 ± 3.32 <0.001

NGASR 8.97 ± 1.88 NA NA NA

Abbreviations: BMI, body mass index; HAMD, Hamilton depression rating scale; HCs, healthy controls; MDD, major depression disorder; NA, not available;

NGASR, Nurses' Global Assessment of Suicide Risk scale.
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randomly “spins” the t map). As shown in Figure 4b, the distribution

of the PLS1 scores revealed a regional variation in the transcriptional

architecture of human WM. And PLS1 scores were positively corre-

lated with the between-group t map (r = 0.770, pspin <0.001;

Figure 4c). We found 1004 genes comprised the regional changes in

WM-IVFC gene list, including 787 PLS1+ (Z > 5) and 217 PLS1�
(Z < �5) genes (all pFDR <0.005; Figure 4d). We then selected

221 genes by overlapping 269 MDD-related genes defined by GWAS

with the 15,633 background genes. Transcriptional correlation with

WM-IVFC changes was significantly correlated with 69 of 221 genes

(all pFDR <0.05; Figure 4e and Table S5), including 51 positive correla-

tions and 18 negative correlations. The gene with the highest positive

weight was AREL1 (r = 0.761, p = 0.001). The gene with the lowest

negative weight was FHIT (r = �0.654, p = 0.008; Figure 4f).

3.6 | Gene functional features

The top 20 significant pathways were identified. With regard to GO,

we found the variability-related genes were significantly enriched for

biological processes associated with synapse (modulation of chemical

synaptic transmission, synaptic signaling, regulation of synapse struc-

ture or activity, synaptic organization), nervous system (neuron pro-

jection development, brain development, regulation of neuronal

F IGURE 2 Group differences of
WM-IVFC. (a) WM-IVFC map in HCs;
(b) WM-IVFC map in MDD; (c) Between-
group comparison (t-map) of regional
WM-IVFC (uncorrected); (d) WM regions
showed statistically significant
differences (pFDR < 0.05). IVFC,
intersubject variability in functional
connectivity; WM, white matter.

GAI ET AL. 7 of 16



synaptic plasticity), and ion channel (metal ion transport, neurotrans-

mitter-gated ion channel clustering). There were also significantly

enriched KEGG pathways, such as Oxytocin signaling pathway. The

results of functional enrichment are provided in Figure 5a and

Table S6.

Cell type analysis revealed that the variability-related genes were

primarily expressed in neurons, both excitatory (176 genes, adjusted

pperm <2.803 � 10�4, FDR-corrected) and inhibitory (97 genes,

adjusted pperm = 0.0048, FDR-corrected). The corresponding results

are illustrated in Figure 5b.

PPI analysis revealed that the variability-related genes could con-

struct an interconnected PPI network (Figure 5c). The resulting net-

work had 952 connected proteins and 472 edges, significantly more

than the 301 edges expected by chance (p < 10�16). Moreover, we

identified 20 hub genes based on the degree and MCC algorithms

(Figure 5d and Table S8). Notably, nine genes were found to overlap

between the two methods.

3.7 | Reproducibility of WM-IVFC changes in
MDD and transcriptomic profiles

Many WM regions with significant differences determined by using

discovery cohort still exhibit significant differences between patients

and control groups in the validation cohort (Figure 6a). The between-

group t-map from the validation cohort was positively correlated to

the discovery cohort (r = 0.336, p = 0.019; Figure 6b). The classifica-

tion models achieved good performance in the validation cohort, with

the AUC of 0.877, 0.886, and 0.877 for SVM, RF, and LR classifiers,

respectively (Figure 6c and Table S3). The predictive model showed a

significant correlation between the observed and predicted HAMD

scores in the validation cohort (RMSE = 0.003, r = 0.362, p = 0.032;

Figure 6d).

In the validation cohort, we found that 532 PLS1+ and 83 PLS�
genes (all pFDR <0.005) were significantly overexpressed in WM

regions, consisting of 615 regional WM-IVFC gene list differences.

There was a significant overlap between the gene lists in the discov-

ery and validation cohorts: OR = 35.4, p < 0.0001 (Figure 6e). We

also identified several overlapped enrichment pathways between the

discovery and replication cohorts, including “modulation of chemical

synaptic transmission”, “synapse organization”, “regulation of synapse

organization”, “brain development”, and “second-messenger-medi-

ated signaling” (Figure 6f, g). This supports the generalized relation-

ship between gene expression and the MDD-related WM-IVFC

changes.

4 | DISCUSSION

To our knowledge, this study is among the first to report altered inter-

subject functional variability of brain WM in MDD and its association

with transcriptional profiles. Here we uncovered extensive WM-IVFC

alterations in MDD compared to HCs, which were associated with

domains involving sensorimotor processes and higher-order cognition.

Moreover, the discriminant WM-IVFC could be utilized to distinguish

MDD patients from HCs and predict the depression severity and

TABLE 2 WM regions showed statistically significant differences (pFDR < 0.05).

WM ROIs Abbreviation R/L t value p value

MDD > HC

Genu of corpus callosum GCC 4.137 1.061 � 10�4

Anterior corona radiata ACR R 2.504 0.0029

Superior corona radiata SCR L 2.213 0.0041

Sagittal stratum (include inferior longitudinal fasciculus and

fronto-occipital fasciculus)

SS R 1.987 0.0067

External capsule EC L 2.390 0.0036

Cingulum (hippocampus) CGH R 2.358 0.0036

Superior longitudinal fasciculus SLF R 2.549 0.0028

Superior fronto-occipital fasciculus SFO R 2.617 0.0026

Superior fronto-occipital fasciculus SFO L 3.258 7.115 � 10�4

Uncinate fasciculus UF L 2.702 0.0023

MDD < HC

Corticospinal tract CST L �3.671 2.815 � 10�4

Inferior cerebellar peduncle ICP L �4.098 6.239 � 10�4

Superior cerebellar peduncle SCP R �2.833 0.0019

Cerebral peduncle CP R �2.347 0.0034

Cerebral peduncle CP L �3.119 9.024 � 10�4

Anterior limb of internal capsule ALIP R �2.231 0.0042

Posterior limb of internal capsule PLIC L �1.977 0.0065
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suicide risk in patients. Further transcriptome-neuroimaging correla-

tion analysis revealed that the variability-related genes were enriched

for synapse, neuronal system, and ion channel, and predominantly

expressed in excitatory and inhibitory neurons. We demonstrated the

generalizability of our results in an independent cohort. Our findings

provided potential implications for understanding clinical heterogene-

ity of MDD.

4.1 | MDD-related WM-IVFC alterations

In the present study, MDD patients showed increased IVFC in multi-

ple WM regions. These altered regions are consistent with those

reported in previous studies based on other technologies. The corpus

callosum, as the largest interhemispheric commissure in the human

brain, connects the anterior cingulate cortex and orbitofrontal cortex

of the two hemispheres (Roland et al., 2017). It is generally believed

that corpus callosum abnormalities underlie many of the emotional,

cognitive and behavioral deficits in MDD (Koshiyama, Fukunaga,

Okada, Morita, Nemoto, Usui, & Cocoro., 2020). The superior longitu-

dinal fasciculus, inferior longitudinal fasciculus, and fronto-occipital

fasciculus belong to long contact tracts, which are connected with the

cortex of the ipsilateral hemisphere (Schmahmann et al., 2007). They

play important roles in cognitive function, visual spatial processing,

object recognition and memory (Koshiyama, Fukunaga, Okada, Morita,

Nemoto, Yamashita, & Hashimoto, 2020; Thomas et al., 2009).

Reduced fractional anisotropy (FA) and disruptions in WM integrity in

these structures have been reported in MDD (Cole et al., 2012; de

Diego-Adelino et al., 2014). It has been shown that cingulum partici-

pates in working memory functioning and diffusion MRI studies have

revealed that FA at cingulum hippocampus decreased in MDD com-

pared to HCs (Bubb et al., 2018; Korgaonkar et al., 2014). Aberrant

microstructure of the uncinate fasciculus, a WM tract implicated in

emotion regulation, has been hypothesized as a neurobiological mech-

anism of MDD (Xu et al., 2023). In our study, increased intersubject

functional variability was observed in uncinate fasciculus and corona

radiata, which extend previous findings that the microstructure of

these tracts may be significant neural indicators of individual differ-

ences in cognitive domains including emotion and attention (Niogi

et al., 2010; Pedersen et al., 2022). Our study also supports the role of

the abnormal external capsule in MDD as previously described (Cole

et al., 2012). Greater IVFC of these WM regions could partially explain

high heterogeneity of clinical symptoms and the diverse dysconnectiv-

ity observed across studies in MDD. A previous study showed that

F IGURE 3 The clinical relevance of WM-IVFC changes in MDD. (a) Distribution of behavior terms correlated with MDD-related WM-IVFC
changes. (b) ROC curves of the models based on altered regional WM-IVFC using SVM, RF, and LR classifiers. (c) Prediction of depression severity
based on altered regional WM-IVFC in MDD patients. (d) Prediction of suicide risk based on altered regional WM-IVFC in MDD patients. AUC,
area under curve; HAMD, Hamilton depression rating scale; LR, logistic regression; NGASR, Nurses' global assessment of suicide risk scale; RF,
random forest; ROC, receiver operator characteristic; SVM, support vector machine; SVR, support vector regression.
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intersubject functional variability was widely increased in brain GM of

MDD patients, which was correlated with individual behavioral differ-

ences (Hou et al., 2023). Our study enhances current knowledge by

offering unique insight into functional variability of brain WM. In addi-

tion, the study also showed that IVFC in some WM regions was

decreased in MDD. Generally, corticospinal tract, cerebellar peduncle,

cerebral peduncle and internal capsule are thought to communicate

motor-related information (Lemon, 2008). Damage to the internal cap-

sule is closely related to motor and sensory dysfunction in MDD

(E. V. Sullivan et al., 2010). We speculate that decreased IVFC in these

WM tracts may be indicative of MDD-related behavioral changes,

such as motor retardation (Shaffer et al., 2022). Collectively, our find-

ings have provided preliminary evidence of WM-IVFC alterations in

MDD patients.

4.2 | Clinical significance of WM-IVFC alterations

The correlation results showed that when the WM-IVFC value of right

superior fronto-occipital fasciculus in MDD increased, the depression

symptom aggravated. Some studies reported that fronto-occipital fas-

ciculus plays a vital role in depression (Manelis et al., 2021). Unexpect-

edly, we did not find any significant correlations between WM-IVFC

values and NGASR scores in MDD patients. The reasons for the non-

significant findings are elusive, but they may be related to the

relatively small sample size, the clinical features of patients (first-epi-

sode, treatment-naïve), and others. Regarding behavioral relevance,

our meta-analysis confirmed that MDD-related changes in WM-IVFC

were associated with multiple behavioral domains, including sensori-

motor processes and higher-order functions. Echoing this finding, def-

icits in these behavioral domains have been widely reported in MDD

(Bubl et al., 2010; Dillon & Pizzagalli, 2018; Millan et al., 2012). We

further conducted additional exploratory analyses to investigate the

potential clinical significance of WM-IVFC. For classification applica-

tion, the discriminant WM-IVFC could be utilized to effectively distin-

guish MDD patients from HCs. Previous literature has suggested that

WM functional topology could serve as a neuromarker for MDD clas-

sification (Li, Chen, et al., 2020). Our results further contribute to the

understanding of the importance of functional organization within

WM for the diagnosis of MDD. And the models using SVM, RF, and

LR classifiers all achieved commendable classification performance.

This implies that our findings remain unaffected by the choice of clas-

sifier. Notably, the IVFC of the corpus callosum contributed greatly to

MDD classification in three models, which is consistent with reports

suggesting that the corpus callosum appears to be consistently more

affected in MDD (Won et al., 2016). Our findings, along with other

studies, demonstrated that both structural and functional alterations

of corpus callosum can distinguish MDD patients from HCs (Matsuoka

et al., 2017). For prediction application, apart from predicting depres-

sion severity, altered regional WM-IVFC showed potential value in

F IGURE 4 Gene expression profiles related to WM-IVFC changes in MDD. (a) WM-IVFC differences between MDD and HCs in the left
hemisphere (uncorrected). (b) Weighted gene expression map of PLS1 scores in the left hemisphere. (c) Scatterplot of PLS1 scores (weighted sum
of 15,633 gene expression value in left WM regions) versus between-group differences in WM-IVFC. (d) Ranked PLS1 loadings. (e) MDD-related
genes expression profiles from GWAS correlated with WM-IVFC differences. Overlapped genes between GWAS and 15,633 background genes.
(f) Genes that are strongly correlated with between-group differences in WM-IVFC. GWAS, genome-wide association studies; IVFC, intersubject
variability in functional connectivity; WM, white matter.
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predicting suicide risk in individuals with MDD. Suicide is the most

serious consequence of depression (Kessler et al., 2005). There is a

particularly high incidence of suicide among MDD patients, leading to

a substantial increase in the economic burden nationwide (Ma

et al., 2019). Thus, conducting screening for suicide attempts holds

immense significance.

4.3 | Gene expression profiles related to WM-
IVFC alterations

MDD-related changes in WM-IVFC may be attributed to various

factors, including genetic, molecular, and neuronal alterations. The

positive correlation between PLS1 scores and the between-group

t map means that positively weighted genes were overexpressed in

WM regions where IVFC was increased in MDD, while negatively

weighted genes were overexpressed in WM regions where IVFC

was decreased in MDD. Further overlapped gene correlation analy-

sis suggested that AREL1 was the strongest positively correlated

gene, with FHIT showing the strongest negatively association. The

AREL1 gene codes for an E3 ubiquitin ligase involved in protein ubi-

quitination and degradation. Intriguingly, β-Arrestins undergo post-

translational modification through ubiquitination and are suggested

to play a role in the pathophysiology of depression and in the mech-

anism of antidepressant action (Golan et al., 2013). FHIT plays an

important role in systemic oxidatively generated DNA/RNA damage

F IGURE 5 A set of analyses on the genes related to WM-IVFC changes in MDD. (a) Ontology terms for variability-related genes (pFDR <0.05).
The size of the circle represents the number of genes involved in a given term. (b) Overlapping gene numbers of variability-related genes in each
cell types (pFDR <0.05). (c) A PPI network with statistical significance was constructed by variability-related genes. (d) 20 hub genes based on the
degree and MCC algorithms in the PPI network. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; OPC, oligodendrocyte
precursors; PPI, protein–protein interaction. The asterisk indicates significance found.

GAI ET AL. 11 of 16



(Karras et al., 2014), which is linked to depression severity in indi-

viduals with MDD (Jorgensen et al., 2013). It is a circadian clock

modification gene and related to daytime sleepiness (Gottlieb

et al., 2007), potentially contributing to the development of MDD.

Our findings demonstrate the genetic association with WM-IVFC

phenotypes.

4.4 | Functional features of variability-
related genes

Enrichment analyses showed that the identified variability-related

genes were significantly enriched for synapse, neuronal system and

ion channel. It is widely believed that brain function relies on the abil-

F IGURE 6 Reproducibility of WM-IVFC changes in MDD and transcriptomic profiles. (a) Regional between-group WM-IVFC differences in
validation cohort. (b) Pearson's correlation analysis for t-values between discovery and validation cohorts (r = 0.336, p = 0.019). (c) ROC curves
of the models using SVM, RF, and LR classifiers in the validation cohort. (d) Prediction of depression severity of MDD patients in the validation
cohort. (e) Circos plot of genes overlapped between discovery and validation cohorts. (f) A subset of representative terms from all clusters. (g) The
same enrichment network with its nodes displayed as pie sections. Each pie sector is proportional to the number of hits originating from a gene
list. AUC, area under curve; HAMD, Hamilton Depression Rating Scale; LR, logistic regression; NGASR, Nurses' Global Assessment of Suicide Risk
scale; RF, random forest; ROC, receiver operator characteristic; SVM, support vector machine; SVR, support vector regression.
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ity of neurons to communicate with each other and that inter-neuro-

nal communication primarily depends on synapses (de Wit &

Ghosh, 2016). Basic studies have shown that ketamine, a rapid antide-

pressant, can reverse the effects of stress and depression on synapse

function and generate new synapses in stress-sensitive brain regions

(Duman & Aghajanian, 2012). Neurons are a main component of the

neurovascular unit. Neurovascular interactions are crucial for main-

taining homeostasis of the brain internal environment and contribute

to normal brain development (Iadecola, 2017). There is growing evi-

dence of neurovascular coupling disruption in major psychiatric disor-

ders, including MDD (Segarra et al., 2019). Ion channels are important

mediators of physiological functions in the central nervous system,

influencing neuronal activity, signal transduction, and neurotransmit-

ter release (Kumar et al., 2016). Ion channels, such as low-voltage-sen-

sitive T-type calcium channel inhibitor and potassium channel Kir4.1

inhibitor have been reported to hold promise as therapeutic targets

for depression (Hashimoto, 2019). The identified KEGG pathways also

have MDD-related biological annotations. Oxytocin-mediated synap-

tic plasticity in the nucleus accumbens establishes a critical period for

social reward learning (Nardou et al., 2019), which have implications

for understanding the pathogenesis of social dysfunction in MDD.

Our findings not only contribute to a better understanding of the

molecular basis of WM-IVFC changes in MDD, but hold the value for

clinical translation.

The study showed that the cellular organization of the human

brain provides a biological mechanism capable of translating MDD-

related WM-IVFC changes into specific cell types alterations. Our

results showed variability-related genes were specifically expressed in

excitatory and inhibitory neurons, which was consistent with the pre-

vious single-cell gene expression study in MDD (Nagy et al., 2020). In

recent years, the target cell types in MDD pathophysiology have

expanded from excitatory neurons to inhibitory interneurons (North-

off & Sibille, 2014). Considering the crucial role that the balance

between excitatory and inhibitory neurons plays in information pro-

cessing and high-order cognitive functions (Fee et al., 2017), an imbal-

ance between the two may contribute to MDD.

Of note, the genes associated with WM-IVFC alterations in MDD

could construct an interconnected PPI network. The hub genes identi-

fied by the degree and MCC algorithms showed significant overlap,

which hold important functional significance for the pathology and

treatment of MDD. For example, the Dlg4 gene encodes for post-syn-

aptic density protein 95 (PSD95), a major synaptic protein that clus-

ters glutamate receptors and is critical for plasticity (Bustos

et al., 2017). PSD95 is considered to be implicated in MDD and sev-

eral novel antidepressants targeting glutamate receptors have been

developed (Dean et al., 2021). The validation of the gene set obtained

from WM-IVFC changes was further confirmed by this information.

4.5 | Limitations

This study has limitations. First, we only uncovered the WM-IVFC

changes in MDD from the brain region level. And its changes should

be analyzed from multiple scales including voxels and networks in the

future. Second, we calculated WM-IVFC by splitting the time series

into the first and the second halves in this study. The R-fMRI data

should be collected in two sessions on two different days to validate

the replicability of the findings. Third, the gene expression data and

neuroimaging data were not collected from the same participants,

and were susceptible to intersubject variability. Fourth, the AHBA only

included data for the right hemisphere of two participants. Thus, the

relationship between genes and MDD-related WM-IVFC changes does

not represent the condition of the entire brain. Further studies on

relating gene expression profiles to bilateral WM-IVFC alterations in

MDD by leveraging transcriptional data from the AHBA and weighted

gene co-expression network analysis (Xue et al., 2022) are expected.

Fifth, as there were no NAGSA scores available for MDD patients in

the validation cohort, we were unable to validate this finding. Future

research should test the reproducibility of this finding on an indepen-

dent, large cohort of participants. Finally, IVFC between brain regions

is thought to result from gene–environment interaction. The influence

of environmental factors on the heterogeneity of brain function and

clinical manifestations in MDD should be investigated in the future.

5 | CONCLUSIONS

In conclusion, we uncovered widely altered WM-IVFC in MDD, which

showed strong behavioral relevance and could be used as a potential

biomarker for classification and prediction of this disorder. We further

linked WM-IVFC phenotypes to gene expression levels. This study

offered unique insight into intersubject functional variability of brain

WM, promoting an integrative understanding of clinical heteroge-

neous in MDD.
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Váša, F., Romero-Garcia, R., Lalonde, F. M., Clasen, L. S.,

Blumenthal, J. D., Paquola, C., Bernhardt, B., Wagstyl, K.,

Polioudakis, D., de la Torre-Ubieta, L., Geschwind, D. H., Han, J. C.,

Lee, N. R., … Raznahan, A. (2020). Transcriptomic and cellular decoding

of regional brain vulnerability to neurogenetic disorders. Nature Com-

munications, 11(1), 3358. https://doi.org/10.1038/s41467-020-

17051-5

Shaffer, C., Westlin, C., Quigley, K. S., Whitfield-Gabrieli, S., & Barrett, L. F.

(2022). Allostasis, action, and affect in depression: Insights from the

theory of constructed emotion. Annual Review of Clinical Psychology,

18, 553–580. https://doi.org/10.1146/annurev-clinpsy-081219-

115627

Smith, S. M., Nichols, T. E., Vidaurre, D., Winkler, A. M., Behrens, T. E.,

Glasser, M. F., Ugurbil, K., Barch, D. M., Van Essen, D. C., &

Miller, K. L. (2015). A positive-negative mode of population covariation

links brain connectivity, demographics and behavior. Nature Neurosci-

ence, 18(11), 1565–1567. https://doi.org/10.1038/nn.4125
Sullivan, E. V., Zahr, N. M., Rohlfing, T., & Pfefferbaum, A. (2010). Fiber

tracking functionally distinct components of the internal capsule.

Neuropsychologia, 48(14), 4155–4163. https://doi.org/10.1016/j.

neuropsychologia.2010.10.023

Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic epidemiology

of major depression: Review and meta-analysis. The American Journal

of Psychiatry, 157(10), 1552–1562. https://doi.org/10.1176/appi.ajp.
157.10.1552

Sun, X., Liu, J., Ma, Q., Duan, J., Wang, X., Xu, Y., Xu, Z., Xu, K., Wang, F.,

Tang, Y., He, Y., & Xia, M. (2021). Disrupted intersubject variability

architecture in functional connectomes in schizophrenia. Schizophrenia

Bulletin, 47(3), 837–848. https://doi.org/10.1093/schbul/sbaa155

Thomas, C., Avidan, G., Humphreys, K., Jung, K. J., Gao, F., &

Behrmann, M. (2009). Reduced structural connectivity in ventral visual

cortex in congenital prosopagnosia. Nature Neuroscience, 12(1), 29–31.
https://doi.org/10.1038/nn.2224

Vasa, F., Seidlitz, J., Romero-Garcia, R., Whitaker, K. J., Rosenthal, G.,

Vertes, P. E., Shinn, M., Alexander-Bloch, A., Fonagy, P., Dolan, R. J.,

Jones, P. B., Goodyer, I. M., NSPN Consortium, Sporns, O., &

Bullmore, E. T. (2018). Adolescent tuning of association cortex in

human structural brain networks. Cerebral Cortex, 28(1), 281–294.
https://doi.org/10.1093/cercor/bhx249

Williams, J. B. (1988). A structured interview guide for the Hamilton

depression rating scale. Archives of General Psychiatry, 45(8), 742–747.
https://doi.org/10.1001/archpsyc.1988.01800320058007

Won, E., Choi, S., Kang, J., Kim, A., Han, K. M., Chang, H. S., Tae, W. S.,

Son, K. R., Joe, S. H., Lee, M. S., & Ham, B. J. (2016). Association

between reduced white matter integrity in the corpus callosum and

serotonin transporter gene DNA methylation in medication-naive

patients with major depressive disorder. Translational Psychiatry, 6(8),

e866. https://doi.org/10.1038/tp.2016.137

Xu, E. P., Nguyen, L., Leibenluft, E., Stange, J. P., & Linke, J. O. (2023).

A meta-analysis on the uncinate fasciculus in depression.

Psychological Medicine, 53(7), 2721–2731. https://doi.org/10.1017/

S0033291723000107

Xue, K., Liang, S., Yang, B., Zhu, D., Xie, Y., Qin, W., Liu, F., Zhang, Y., &

Yu, C. (2022). Local dynamic spontaneous brain activity changes in

first-episode, treatment-naive patients with major depressive disorder

and their associated gene expression profiles. Psychological Medicine,

52(11), 2052–2061. https://doi.org/10.1017/S0033291720003876
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D.

(2011). Large-scale automated synthesis of human functional neuroim-

aging data. Nature Methods, 8(8), 665–670. https://doi.org/10.1038/
nmeth.1635

Zhuo, C., Li, G., Lin, X., Jiang, D., Xu, Y., Tian, H., Wang, W., & Song, X.

(2019). The rise and fall of MRI studies in major depressive disorder.

Translational Psychiatry, 9(1), 335. https://doi.org/10.1038/s41398-

019-0680-6

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Gai, Q., Chu, T., Li, Q., Guo, Y., Ma, H.,

Shi, Y., Che, K., Zhao, F., Dong, F., Li, Y., Xie, H., & Mao, N.

(2024). Altered intersubject functional variability of brain

white-matter in major depressive disorder and its association

with gene expression profiles. Human Brain Mapping, 45(5),

e26670. https://doi.org/10.1002/hbm.26670

16 of 16 GAI ET AL.

https://doi.org/10.1038/mp.2014.68
https://doi.org/10.1037/emo0000996
https://doi.org/10.1037/emo0000996
https://doi.org/10.1073/pnas.1707050114
https://doi.org/10.1073/pnas.1707050114
https://doi.org/10.1093/brain/awl359
https://doi.org/10.1093/brain/awl359
https://doi.org/10.1146/annurev-cellbio-100818-125142
https://doi.org/10.1146/annurev-cellbio-100818-125142
https://doi.org/10.1038/s41467-020-17051-5
https://doi.org/10.1038/s41467-020-17051-5
https://doi.org/10.1146/annurev-clinpsy-081219-115627
https://doi.org/10.1146/annurev-clinpsy-081219-115627
https://doi.org/10.1038/nn.4125
https://doi.org/10.1016/j.neuropsychologia.2010.10.023
https://doi.org/10.1016/j.neuropsychologia.2010.10.023
https://doi.org/10.1176/appi.ajp.157.10.1552
https://doi.org/10.1176/appi.ajp.157.10.1552
https://doi.org/10.1093/schbul/sbaa155
https://doi.org/10.1038/nn.2224
https://doi.org/10.1093/cercor/bhx249
https://doi.org/10.1001/archpsyc.1988.01800320058007
https://doi.org/10.1038/tp.2016.137
https://doi.org/10.1017/S0033291723000107
https://doi.org/10.1017/S0033291723000107
https://doi.org/10.1017/S0033291720003876
https://doi.org/10.1038/nmeth.1635
https://doi.org/10.1038/nmeth.1635
https://doi.org/10.1038/s41398-019-0680-6
https://doi.org/10.1038/s41398-019-0680-6
https://doi.org/10.1002/hbm.26670

	Altered intersubject functional variability of brain white-matter in major depressive disorder and its association with gen...
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Participants
	2.2  Data acquisition and image preprocessing
	2.3  Construction of WMFC matrix
	2.4  WM-IVFC calculation and group differences
	2.5  Behavioral relevance analysis
	2.6  Classification and prediction of MDD
	2.7  Gene expression data preprocessing
	2.8  Transcription-neuroimaging association analysis
	2.9  Gene functional features
	2.9.1  Functional enrichment
	2.9.2  Cell type analysis
	2.9.3  Protein-protein interaction

	2.10  Validation analysis

	3  RESULTS
	3.1  Demographic and clinical characteristics
	3.2  WM-IVFC changes in MDD patients
	3.3  Behavioral relevance
	3.4  Classification and prediction of MDD
	3.5  Gene expression related to WM-IVFC changes in MDD patients
	3.6  Gene functional features
	3.7  Reproducibility of WM-IVFC changes in MDD and transcriptomic profiles

	4  DISCUSSION
	4.1  MDD-related WM-IVFC alterations
	4.2  Clinical significance of WM-IVFC alterations
	4.3  Gene expression profiles related to WM-IVFC alterations
	4.4  Functional features of variability-related genes
	4.5  Limitations

	5  CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


