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The OpenWorm project has the ambitious goal of producing a highly detailed

in silico model of the nematode Caenorhabditis elegans. A crucial part of this

work will be a model of the nervous system encompassing all known cell

types and connections. The appropriate level of biophysical detail required

in the neuronal model to reproduce observed high-level behaviours in the

worm has yet to be determined. For this reason, we have developed a frame-

work, c302, that allows different instances of neuronal networks to be

generated incorporating varying levels of anatomical and physiological

detail, which can be investigated and refined independently or linked to

other tools developed in the OpenWorm modelling toolchain.

This article is part of a discussion meeting issue ‘Connectome to

behaviour: modelling C. elegans at cellular resolution’.
1. Introduction
Computational models of the nervous system are developed at multiple scales

to answer questions about how low level interactions between biological

entities lead to higher level functions [1–3]. Models based on the nematode

Caenorhabditis elegans have been created at many levels including individual

neurons [4] and muscles [5], subcircuits responsible for generating specific

behaviours [6–9], body-wide processes including locomotion [10–12], and

detailed nervous system/musculature models [13]. Each of these models selects

a subset of anatomical and physiological properties known to exist in the worm

and can address a specific set of questions relevant to that level of detail. How-

ever, simplifying assumptions are often made to facilitate theoretical analysis of

the model or for computational efficiency, and this can often lead to difficulty

using the developed model for addressing other questions outside the scope of

the original study [14].

The OpenWorm project [15] aims to create an open source computational

model of C. elegans which will be constrained by biological data down to the

individual cell level, and can be used to simulate the behaviour of the worm

as it interacts in a 3D environment. While a fully constrained, highly detailed

model of the worm reproducing a range of known behaviours requires much

further work, a number of subprojects have been developing the computational

infrastructure required for such detailed simulations (see also [16,17] in this

issue). An important driving factor in these subprojects has been ensuring

the individual applications are useful as research tools in their own right, inde-

pendent of other elements of the OpenWorm platform and in scenarios where

the full-scale worm model would not be appropriate for the scientific question

being addressed.
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An essential part of the detailed worm model developed

by the OpenWorm project will be a simulation of the nervous

system of C. elegans, which will have to interact with all other

elements of the platform. To this end, a computational frame-

work in the Python scripting language, c302, has been

developed which aims to facilitate the creation of models of

the nervous system and musculature of C. elegans. Models

generated by the framework can contain all known cells or

subsets thereof, and can have varying levels of biophysical

detail for the individual neurons, muscles and synapses.

Information on the numbers, types and polarity of synaptic

connections are incorporated into the models from the structured

information on these gathered by the OpenWorm project.

The c302 models are generated in standardized format

(NeuroML [18,19]) ensuring they can be used with a variety

of preexisting tools and libraries for model visualization,

simulation and analysis. This will facilitate models generated

by c302 being incorporated into the detailed 3D worm body

models in OpenWorm. It will allow simulation of network

activity during behaviour down to the level of the membrane

potential and internal calcium dynamics of individual neur-

ons, while also allowing more abstract neuronal models to

be used where appropriate. This open source framework

can be used for multiple types of investigation into the

dynamical underpinnings of the C. elegans nervous system.
2. Methods
(a) NeuroML
The elements of the neuronal networks that are generated by this

framework are expressed using the NeuroML model description

language [18,19]. NeuroML is an XML-based format which spe-

cifies the hierarchical structure and parameters required to create

models of cells, ion channels, synapses, input stimuli and 3D

populations of synaptically connected neurons. Models

described in this format can be parsed by or mapped to the

native formats of neuronal simulation platforms to simulate

the dynamical behaviour of the systems described. There are a

growing number of applications, libraries and databases which

support NeuroML, allowing C. elegans models in this format to

be more easily visualized, analysed and compared with other

models, using a number of pre-existing tools.1 The options

for specifying cell models in NeuroML format range from

abstract point-neuron models with one (e.g. leaky integrate

and fire, LIF) or two state variables [20,21], to conductance-

based models with active membrane currents, which can have

a single compartment, a stylized representation for dendritic

and axonal trees or be based on detailed reconstructions of

neuronal morphologies. Ion channel models can be based

on the Hodgkin–Huxley formalism [22] or kinetic scheme/

Markov models [23]. In addition to the electrical behaviour of

the modelled cells, an internal pool of calcium can be rep-

resented, as well as its influence on the conductance of calcium

gated ion channels. Synapse models include spike triggered

chemical synapses (either fixed or plastic based on activation his-

tory), continuously transmitting analogue synapses, or electrical

transmission through gap junctions.

An important feature of the NeuroML language introduced

in version 2 [19] is that model structure and dynamics are speci-

fied in a machine readable format, LEMS (Low Entropy Model

Specification language). This describes the hierarchical structure

of the model elements, but also the dimensional parameters for

each element, and how the state variables change, both continu-

ously and in response to events in the network (e.g. a NeuroML

file for a LIF cell will only state the value of the threshold and
reset voltages, capacitance, etc. but the LEMS definition will

state how to calculate the membrane potential from these par-

ameters at each time step). This unambiguous format for the

dynamical behaviour of the model allows simulators to be devel-

oped which natively understand the LEMS format and can

simulate the models, as well as facilitates the mapping to other

simulation platforms. While a number of widely used model

types are present in the core NeuroML elements, these can

easily be extended with new cell, channel or synapse models

by creating definitions in LEMS, which are then compatible

with the rest of the model generation and simulation toolchain.

(b) Python
The programming language in which the c302 framework is built

is Python, and it is through scripts in this language that users can

interact with it. Many software applications in computational

neuroscience have added scripting interfaces for Python in

recent years [24,25], and the open source nature of the language

and associated modules has made it the chosen language for a

number of subprojects in the OpenWorm initiative. For example,

the package PyOpenWorm2 gives programmatic access via

Python scripts to numerous types of data on C. elegans, as can

be found in resources such WormBase [26] and WormAtlas.org.3

A number of Python modules have been developed to sup-

port models in NeuroML and LEMS. libNeuroML4 [27] can be

used to parse, edit, save and validate NeuroML documents,

while PyLEMS5 is a Python module for reading/writing LEMS

files, while natively allowing simulation of the majority of

LEMS models. pyNeuroML6 builds on libNeuroML and gives

access to a greater range of functionality for handling NeuroML

inside Python scripts, and crucially allows access to all of the

functionality originally developed in Java [19] for converting

NeuroML into code for dedicated high-performance neuronal

simulators (e.g. NEURON [28]).

(c) Neuronal simulations
Simulation of the electrical activity is a crucial use case for the

generated network models. jNeuroML is a Java implementation

of LEMS [19] and can run simulations of any of the described

networks where the neuron models are represented by a single

compartment. NEURON [28] is a neuronal simulator which is

widely used in the computational neuroscience community,

including for the Blue Brain Project neocortical microcircuit

model [29] and Allen Institute MindScope project [30]. All net-

works generated in c302 can run in NEURON, and simulations

are generally faster than in jNeuroML.

Simulation of the internal calcium concentration dynamics is

also important for modelling the nervous system of C. elegans, as

it allows comparison against the growing body of calcium ima-

ging results [4,31–33]. This type of modelling is well supported

in both jNeuroML and NEURON.

(d) Open Source Brain
Open Source Brain (OSB, [34]) is an online resource promoting

the collaborative development and sharing of standardized

models in computational neuroscience.7 Users of OSB can

create projects linked to open source code sharing repositories

(e.g. on GitHub8) containing NeuroML models, which can then

be accessed and visualized in 3D on OSB. Model cell and net-

work properties can be analysed, and simulations generated

(by converting the NeuroML files into simulator specific code),

executed on the OSB servers and replayed inside the browser.

A core component of OSB for handling the NeuroML models

is Geppetto9 [16], a Web-based platform for model visualization

and simulation which was originally developed as part of the

OpenWorm project.
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Figure 1. c302 overview. The increasing levels of biophysical detail that can be used for models generated by the framework are shown (A – D on y-axis), along with
examples of subnetworks of the worm’s neuromuscular system which are to be created (x-axis). Each of the 16 boxes represents a generated instance of cells (small
circles for somas with black dendrites/axons where present) connected by chemical (orange) or electrical (red) synapses. The neurons can be represented by LIF-
(blue) or conductance-based (dark orange) models, as can the muscle cells (light/dark green). Specific instances of the network can be generated by Python scripts,
which save the model structure as NeuroML. This can in turn be automatically converted to supported formats, including NEURON to simulate the electrical activity
of the model.
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(e) Cell models
Incorporating previously published model elements into the c302

framework will be an important part of ensuring the resultant

network is constrained at many levels. Two published cell

models from C. elegans have been converted to NeuroML and

can be included in c302 networks. The muscle cell model of

Boyle & Cohen [5] includes fast and slow Kþ currents and an

inactivating Ca2þ current.10 Another muscle model [35] with

one Kþ and one Ca2þ channel has recently been incorporated

into the framework.11 Both of these models are based on exper-

imental work of Jospin and colleagues characterizing the Kþ

and Ca2þ currents in the body wall muscle of C. elegans [36,37].

( f ) Synapse models
While the majority of chemical synapse models used in network

models of vertebrate systems are spike triggered (using the cross-

ing of a specific threshold in the presynaptic cell as a signal for a

transient change in postsynaptic conductance), a continuously

transmitting, analogue synapse is a better approximation of

synaptic transmission for C. elegans [38]. To this end, two options

for analogue synapses have been implemented for use in c302,

one based on a model developed for the pyloric network of

the crustacean stomatogastric ganglion [39] and another from a

network model of C. elegans locomotion with simple passive

neurons but continuously transmitting synapses [11].

(g) Availability of software
All of the software packages described here are open source and

available for download. The main framework for c302 can be
found at https://github.com/openworm/c302. The README

file for the package gives installation instructions as well as

examples of how to run the standard examples, generate new

networks, change parameters in the configurations, add

new stimulations, and visualize and run the networks on OSB.

The Python package can also be installed using pip install c302.

A Docker12 image containing c302 and a number of other

OpenWorm packages configured to work together is available

at https://github.com/openworm/OpenWorm.
3. Results
(a) c302
The framework we developed, c302, allows the generation of a

wide range of network models, which can be used to investi-

gate different aspects of the C. elegans nervous system. c302

makes the processes of code generation, network simulation

and analysis as transparent as possible for the user. It breaks

down the space of all possible network configurations along

two broad axes (figure 1): the subset of the neuronal network

to incorporate; and the level of detail to use in the individual

neurons and synapses. Use of the framework involves specify-

ing a configuration along each of these axes, and the relevant

files for simulating the corresponding network can be created.

The framework allows all or subsets of the 302 neurons

of the adult hermaphrodite to be included in the model

(figure 1, x-axis). While the level of detail of the model of

the neuron (single or multicompartmental, see below)

https://github.com/openworm/c302
https://github.com/openworm/c302
https://github.com/openworm/OpenWorm
https://github.com/openworm/OpenWorm
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Figure 2. c302 – generated models visualized on Open Source Brain (OSB) website. (a) Screenshot of network of 20 neurons present in the pharynx of C. elegans.
Spherical somas and dendrites/axons of the cells can be seen on top (each cell has different colour). Window on bottom shows interactive connectivity matrix, with
bars on left/top of main matrix showing colour corresponding to pre/postsynaptic cells respectively (cells are defined on right of matrix). Each block in the matrix is
coloured by the weight of the chemical connections based on number of known connections from the connectome (black: no connection; purple: one connection/
0.01 nS; red: 13 connections, 0.13 nS). (b) Network with four pairs of synaptically connected cells (left; neurons in purple, pink and red, muscle in green; cells have
same 3D locations as used for corresponding somas in c). Membrane potential plots from simulation executed via OSB Web interface are shown on right. In all cases
the presynaptic neuron receives two pulses of input (top plot) and the response of neurons connected via excitatory chemical synapse (orange), inhibitory chemical
synapse ( purple) and gap junction (green) are shown in middle plot. Bottom plot shows response of muscle cell connected via excitatory synapse. (c) Screenshot of
OSB project page for c302 showing network containing all neurons and muscles. Neurons are coloured according to type (red: interneurons; pink: sensory; purple:
motor neurons) and the four quadrants of muscles (green) are located away from the body for clarity. Window on right shows connections in network in a 2D force-
directed graph (colours of circles for cells correspond to those in 3D view). Cells with stronger connections are located closer together. The 20 cells of the pharynx are
clearly separated on the right owing to lower numbers of connections from these to other cells in the rest of the network. Green muscle cells are also clearly visible
on the periphery. Not all cells are listed on right, but hovering over individual circles in the Web browser will show the name of the cell.
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determines whether the full 3D structure of the axons and

dendrites are included, in all cases the somas of the relevant

neurons are positioned at the known location for that cell.

The cellular reconstructions of Christian Grove as part of

the Virtual Worm project [40] were used as the basis of the

multicompartmental NeuroML models. Additional data

from PyOpenWorm on cell classes (sensory, motor neuron,

interneuron, etc.), receptors and neurotransmitters are

added to the cell models on generation.13 Muscle cells can
also be generated and these are organized into four quad-

rants, each containing 24 muscles for convenience.14 These

muscles are positioned in four rows separated from the

worm body to facilitate visualization of connections/activity

(as shown in figure 2c).

Connectivity parameters between neurons (and between

neurons and muscles) can be taken from two alternate sources:

(i) spreadsheets generated by Varshney and colleagues [41]

and obtained from WormAtlas15; (ii) data generated by the
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WormWiring project16 of the Emmons laboratory at Albert

Einstein College of Medicine. The latter source, while more

complete, is not yet published, and the former source may

be more appropriate for many studies. In any case, the net-

work can be regenerated with either connectome by

changing a single parameter in the configuration script.

Regarding the level of biophysical detail that can be

selected for the neurons and synapses, a number of sample

configurations have been created (figure 1, y-axis). Each con-

figuration describes the cell model to use (based on NeuroML

prototypes; currently all neurons are based on one set of cell

parameters, and all muscles are based on another set), and

the parameters for the excitatory chemical synapses (defined

in this first approximation as those where the neurotransmit-

ter of the presynaptic cell is not GABA), inhibitory chemical

synapses (GABA-transmitting cells), and gap junctions.

By default, individual connections between pairs of cells

within each of these three classes of connections differ only

in their weights (the product of a baseline conductance and

the known number of connections between the pair taken

from the selected connectome). However, the weights of

individual connections can be modified to investigate how

such changes impact network behaviour.

A number of parameter sets (fully specifying the NeuroML

models at that level of detail) have been created which vary

from simplistic representations of the network to biophysically

detailed representations (figure 1, y-axis). These are par-

ameters A (comprising LIF cells; spike triggered synaptic

transmission for all connections); parameters B (LIF cells

with an extra parameter based on cell firing rate, as a proxy

of cell activity; electrical connections for gap junctions);

parameters C (single-compartment, conductance-based cells

with ion channels; spike triggered synapses and gap junc-

tions); parameters D (similar to C with multicompartmental

cells). Some variations of these parameter sets are included

with the c302 framework; for example C1 and D1 (based on

parameter sets C and D respectively) use analogue synaptic

connections for chemical synapses.

Python scripts describe each of the network subsets

(e.g. c302_Pharyngeal.py, c302_Full.py) and each parameter set

( parameters_A.py, etc.). Generation of a NeuroML description

of one of the 16 configurations shown in figure 1 only requires

specifying the subset of the network and a biophysical

detail parameter set; for example python c302_Pharyngeal.py
D generates the network illustrated in figure 2a.

The code repository for c302 has been linked to an OSB

project.17 Figure 2 shows a number of generated models dis-

played on OSB. Figure 2a illustrates 20 cells from the pharynx

generated with full morphologies, along with a connectivity

matrix for the network. Figure 2b shows the result of running

a simulation via OSB containing eight single-compartment

cells. Plots are shown of the membrane potentials recorded

from the cells. A network with the full complement of neur-

ons and muscles is shown in figure 2c. The inset shows a

visualization generated from the network connections

which have been extracted from the NeuroML description.

(b) Case study of network model in c302:
forward locomotion

To illustrate the ability of the c302 framework to generate

network models exhibiting realistic behaviours, we develo-

ped an example network incorporating single-compartment,
conductance-based neurons and muscles (based on

parameters C1), and a subset of neurons known to be invol-

ved in forward locomotion, to investigate whether the

network produces muscle activity that can be used to drive

the worm forwards.

The circuit (figure 3a) comprises the following neurons:

left and right pair command neurons AVB (AVBL, AVBR),

18 B-type motor neurons including 7 dorsal (DB1–DB7)

and 11 ventral (VB1–VB11), 19 inhibitory D-type motor

neurons consisting of 6 dorsal (DD1–DD6) and 13 ventral

(VD1–VD13), and 96 body-wall muscle cells (with only 95

receiving input). We used the wiring data generated for the

hermaphrodite C. elegans by the WormWiring project, apart

from the connections that have been overwritten below. As

the weights of the synaptic connections in the C. elegans con-

nectome have not yet been defined [42], we simplified the

network by assuming all synaptic connections share the

same weight in the network, even if multiple individual

connections are present in the connectome.

To generate the activity required for forward locomotion,

we used the following simplifying assumptions when

constructing the network:

— Assumptions on the network structure. A symbolic represen-

tation of the hypothesized circuit for simulating forward

crawling is shown in figure 3a. AVB makes gap junctions

with B-type motor neurons. We assume that DB and VB,

cholinergic motor neurons, excite their downstream muscle

cells with excitatory synapses while GABAergic neurons,

DD and VD groups, inhibit the muscle cells. DB group excites

VD neurons and inhibits the DD motor neurons. Similarly,

VB motor neurons activate the DD inhibitory motor neurons

and inhibit the VD motor neurons. These hypotheses for the

polarity of synapses in the network are preliminary assump-

tions to create the forward locomotion activity, which

obviously require further experimental validation.

— Head muscle cells are directly stimulated by synchronized
periodic current pulses. Neurons that are presynaptic to

the head muscle cells are not included in the model. We

therefore directly injected synchronized oscillatory current

pulses to generate alternating bends of the dorsal and

ventral muscles in the head (the first seven muscle cells

in each group: left/right dorsal muscles, left/right ventral

muscles). We adjusted the delays between dorsal and

ventral muscles and between two dorsal/ventral pulses

so that the muscles of the head contract with the same

frequency as the rest of the body.

— AVB neurons are active during the forward crawling period. In

a forward movement state, AVB neurons are active [32].

They modulate locomotion of the worm by inducing or

accelerating forward movement. Synaptic inputs to the

AVB neuron pairs from their upstream neurons were

approximated by an input current pulse into the cell for

the duration of the simulation, in order to keep the

neuron active during the forward-movement period.

— An external current pulse, hypothesized as a central pattern
generator system, periodically stimulates the first dorsal and
ventral B-type motor-neurons. We assumed a central pattern

generator (CPG) mechanism that induces phase-shifted

dorsoventral body bends in the B-type motor neuron

networks, from the neck posteriorly to the tail. We

approximated the input from this hypothetical CPG by

injecting periodic current pulses directly into the first B



(a)

(b)
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Figure 3. Simulation of neuronal and muscle activity of C. elegans during forward crawling. (a) Symbolic representation of the neural circuit composed of AVB
interneurons, B-type and D-type motor neurons for generation of the forward crawling activity. Gap junction connections represented by black lines, excitatory
chemical synapses by black arrows, inhibitory synapses by red connections. On the left, a high-level view of connectivity between classes of neurons and the
dorsal (DM) and ventral (VM) muscle groups is shown. On the right, connections between the individual neurons within each of the DB, DD, VB and VD classes
are illustrated (the dots indicate the same connections as between cells 1 and 2 are present between 2 and 3, and so on). (b) Hypothetical central pattern generator
modulatory inputs to DB1 and VB1 motor neurons. (c) Motor neuron activity during 5 s of real-time simulation of the forward locomotion neural circuit. (d ) Activity
of the body-wall muscles (variations in [Ca2þ]) during the forward locomotion simulation.
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motor neurons, DB1 and VB1 (figure 3b). These currents

then flow through the chain of B-type motor neurons

which are linked to each other with gap junctions.

— A proprioceptive mechanism in B-type motor neurons. When a

body segment bends, a posteriorly located motor neuron

receives additional excitatory current due to stretch

receptors signalling the bending of a more anterior body

segment [43]. As a result of such a proprioceptive mech-

anism, the bends get propagated along the body. We

added a functional excitatory mechanism between neigh-

bouring DB/VB neurons to approximate the propagation

of this proprioceptive feedback. This is symbolically

shown in (figure 3a, right) by an arrow between the

B-type motor neuron groups.

The forward locomotion cell network was simulated within

the c302 framework for 5 s. Figure 3c,d respectively represents
the membrane potential dynamics of the individual neurons,

and the intracellular calcium kinetics of all 96 body muscles

(note that MVL24 is silent). The simplified circuit successfully

generated travelling waves in the muscle cells, from head to

tail, which are observed experimentally during forward

locomotion [44].

The generated network can be visualized on OSB along

with the activity of the cells (figure 4). In this way, simu-

lations of the network can be set running, parameters

edited and changes in activity visualized, all from within

the browser.
4. Discussion
We developed a framework in Python that can be used to

generate a number of configurations of network models for



Figure 4. Activity of forward locomotion network in c302 simulated and visualized on OSB. 3D image on top left shows the 39 neurons that are modelled as single
compartments following the line of the worm body, along with the four muscle quadrants (as shown in figure 3c). Window on right shows the membrane potential
of all cells as a heatmap. Cells are arranged in alphabetical order from top to bottom and a subset of the cell names are shown on the left of heatmap, with a scale
on the right. Window on the bottom left shows a selection of membrane potential traces of muscles, and the current time of the simulation replay is also displayed.
The scale on the heatmap is also used for the colouring for the 3D cells, which changes with time as the saved simulation results are replayed. The approximately
synchronous activation of the two dorsal muscle quadrants, and out-of-phase activity of the ventral quadrants, can be seen in this 3D view.
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investigating the activity of the nervous system of C. elegans.

Users select the level of biophysical detail to use for the cells

and synapses, together with the subset of cells to use in the

network, and the framework will generate the network

expressed in standardized NeuroML format, which can be

used for visualizing, analysing and simulating the network.

To illustrate the functionality of the framework, we devel-

oped a network model comprising a subset of neurons

involved in forward locomotion together with the four

muscle quadrants, and showed how this network of

conductance-based, single-compartment cell models can

give rise to travelling waves of activation in the muscles,

which would be required for moving the worm forwards.

There has been much previous work in simulating

individual elements [4,5,35] or network models of C. elegans
[6,9–12]. While many useful insights have been gained by

these individual studies, the computational models them-

selves are usually difficult to reuse for other investigations,

and may be quite difficult to reproduce if the original

source code has not been made available [45]. The c302

framework has been developed to create a generic platform

on which multiple studies can be carried out, and with an

ecosystem of tools to greatly facilitate disseminating, compar-

ing and reusing models. The special advantage of doing this

for C. elegans is that its individual neurons have been named

and many connections and relationships well studied, and

models in this space already have a high degree of conceptual

overlap, compared with models in other neuronal systems

where there is far less consensus about the important level
of modelling abstraction among experimentalists. Making

the source code for c302 available from the start has been a

key aspect of ensuring maximal usability of the framework

by others.

Use of a standard format, NeuroML, for generating

networks comes with a number of advantages. Tools and

libraries already exist that support NeuroML, and a platform

like OSB opens up a range of options for visualizing, analys-

ing and simulating the networks, and making them more

accessible to non-computational neuroscientists. There are

benefits in the other direction as well; the requirement for

analogue synapses in c302 was the motivation for intro-

ducing this element into NeuroML, meaning other

computational models using this synapse type could be

converted to the format, e.g. the pyloric pacemaker network [39].

The c302 framework will be used to develop a highly

detailed, well-constrained model of the nervous system to

drive the 3D worm body simulation created using the Siber-

netic fluid mechanics simulator [17,46], and to examine the

parameter space under which the model exhibits realistic

behaviours. However, it is not yet clear what level of detail

in the nervous system will be required to achieve such a cor-

respondence, so flexibly enabling more or less complex

elements to be substituted into the network at each level

will be important for this development process. It is also

clear that many questions about nervous system function in

C. elegans can be addressed along the way with simplified

networks (as shown by the network presented here exhibiting

basic properties required for forward locomotion), which
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can be gradually refined and assumptions/simplifications

removed.

Initial work has already taken place to use the simulated

[Ca2þ] levels in the muscle cells of c302 (figure 3d ) to drive

the contraction of the corresponding muscles in the Sibernetic

model. The resultant behaviour of the worm as it interacts with

the surrounding fluid environment can then be investigated in

terms of the neuronal properties. Since the actual contraction

of the worm is calculated (as opposed to the expected bending

based on the propagating oscillatory activity along the body)

the system can be used for more accurate models of proprio-

ceptive feedback. This will be important in investigating the

various theories of how activity is generated and propagated

along the body of the worm during locomotion [47]. Having

full access to the 3D environment will also facilitate simu-

lations of response to external stimuli such as touch and

chemical or temperature gradients.

The c302 framework will also be extended to incorporate

other known features of the C. elegans nervous system not

currently supported. It is known that neurons can communi-

cate through volume transmission of monoamines and

neuropeptides [48]. These data have already been incorpor-

ated into PyOpenWorm, and therefore c302 is in a good

position to incorporate the interaction networks implied by

the data for a more complete description of neuronal infor-

mation processing. The existing framework for modelling

synaptic transmission through analogue synapses can readily

be extended to handle such interactions. Individual bio-

chemical signalling pathways and even gene expression

networks could also be incorporated at the subcellular level

via the existing mapping between NeuroML/LEMS and the

Systems Biology Markup Language (SBML, [49]).

Other OpenWorm tools currently under development

that will play an important part in improving and constrain-

ing c302 models include ChannelWorm,18 which aims to

create a database of information on, and models of, ion chan-

nels known to be expressed in C. elegans; a SciUnit-based

testing framework,19 to ensure model elements at different

levels in the generated models conform to expected behav-

iour; and the Movement Validation subproject, which

is producing specifications for, and an implementation of,

the WCON (Worm tracker Commons Object Notation)
format,20 which can be used to compare tracked worm move-

ment as extracted from videos of behavioural experiments to

simulated activity.

We hope that the c302 framework, together with the other

tools in the OpenWorm toolchain, will form an accessible,

open source platform on which to build and share detailed

investigations into the neuronal underpinnings of C. elegans
behaviour.

Data accessibility. The software described in this article is open source
and section 2g outlines how to access it.

Competing interests. We declare we have no competing interests.

Funding. P.G. was funded by the Wellcome Trust (101445). The authors
would like to thank Microsoft Azure for their support by providing
computation resources through the Microsoft Azure for Research
Award, granted to R.H.

Acknowledgements. We would like to thank the many members of the
OpenWorm community who have contributed to, and helped test,
the various elements that have gone into this modelling framework,
particularly Eoghan Dunne, Rick Gerkin, Vahid Ghayoomie, Finn
Krewer, Rayner Lucas and Mike Vella.
Endnotes
1See https://neuroml.org/tool_support.
2See https://github.com/openworm/PyOpenWorm.
3See https://pyopenworm.readthedocs.io/en/latest/data_sources.html.
4See https://github.com/NeuralEnsemble/libNeuroML.
5See https://github.com/LEMS/pylems.
6See https://github.com/NeuroML/pyNeuroML.
7See http://www.opensourcebrain.org.
8See http://www.github.com.
9See http://www.geppetto.org.
10See https://github.com/openworm/muscle_model.
11See https://github.com/openworm/JohnsonMailler_MuscleModel.
12See https://www.docker.com.
13See https://pyopenworm.readthedocs.io/en/latest/data_sources.
html.
14No connections are made to muscle ‘MVL24’ (the ventral left hand
quadrant in the real worm has only 23 muscles) and so it never gets
activated in the generated models.
15See http://www.wormatlas.org/neuronalwiring.html.
16See http://wormwiring.org/sex/hermaphrodite.php.
17See http://www.opensourcebrain.org/projects/c302.
18See https://github.com/openworm/ChannelWorm.
19See https://github.com/openworm/tests.
20See https://github.com/openworm/tracker-commons.
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