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Abstract

Background: The identification of individuals at increased risk of poor health-related outcomes is a priority.
Geriatric research has proposed several indicators shown to be associated with these outcomes, but a head-to-head
comparison of their predictive accuracy is still lacking. We therefore aimed to compare the accuracy of five geriatric
health indicators in predicting different outcomes among older persons: frailty index (FI), frailty phenotype (FP),
walking speed (WS), multimorbidity, and a summary score including clinical diagnoses, functioning, and disability
(the Health Assessment Tool; HAT).

Methods: Data were retrieved from the Swedish National Study on Aging and Care in Kungsholmen, an ongoing
longitudinal study including 3363 people aged 60+. To inspect the accuracy of geriatric health indicators, we
employed areas under the receiver operating characteristic curve (AUC) for the prediction of 3-year and 5-year
mortality, 1-year and 3-year unplanned hospitalizations (1+), and contacts with healthcare providers in the
6 months before and after baseline evaluation (2+).

Results: FI, WS, and HAT showed the best accuracy in the prediction of mortality [AUC(95%CI) for 3-year mortality
0.84 (0.82–0.86), 0.85 (0.83–0.87), 0.87 (0.85–0.88) and AUC(95%CI) for 5-year mortality 0.84 (0.82–0.86), 0.85 (0.83–
0.86), 0.86 (0.85–0.88), respectively]. Unplanned hospitalizations were better predicted by the FI [AUC(95%CI) 1-year
0.73 (0.71–0.76); 3-year 0.72 (0.70–0.73)] and HAT [AUC(95%CI) 1-year 0.73 (0.71–0.75); 3-year 0.71 (0.69–0.73)]. The
most accurate predictor of multiple contacts with healthcare providers was multimorbidity [AUC(95%CI) 0.67 (0.65–
0.68)]. Predictions were generally less accurate among younger individuals (< 78 years old).

Conclusion: Specific geriatric health indicators predict clinical outcomes with different accuracy. Comprehensive
indicators (HAT, FI, WS) perform better in predicting mortality and hospitalization. Multimorbidity exhibits the best
accuracy in the prediction of multiple contacts with providers.
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Background
The identification of individuals at increased risk of poor
health-related outcomes is a clinical and public health
priority. Indeed, risk stratification plays a pivotal role in
medical decision-making, public resource allocation, and
research [1, 2]. For example, unplanned hospitalizations,

which are a major driver of healthcare costs, often lead
to disability onset or progression [3, 4] and delirium [5,
6], preventing older adults from being discharged home.
The identification of older persons at increased risk of
unplanned hospital admissions could help to better tar-
get preventive strategies [7] (i.e. therapeutic review) to-
ward specific groups of patients.
Accomplishing such a task is particularly critical

among older persons. In fact, persons older than 60
are among the most strenuous users of healthcare re-
sources [8, 9], and their number is expected to double
worldwide by 2050 [10]. Indeed, a noteworthy variabil-
ity is found among older persons, even of the same
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age, in terms of functional and cognitive performance,
number and severity of chronic diseases, quality of life,
and prognosis [11, 12].
In the last decades, researchers in geriatrics have pro-

posed several indicators shown to be strongly associated
with the development of poor health-associated out-
comes, such as death and unplanned hospitalizations.
The co-occurrence of multiple chronic conditions in the
same individual (multimorbidity), for example, has a
strong impact on health, higher than that expected by
simply summing diseases [13]. Frailty, a state of in-
creased vulnerability to stressors due to poor resolution
of homeostasis [14], is another concept that gained re-
cent recognition because of its prognostic value, even
beyond the borders of geriatric practice [15, 16]. Fur-
thermore, simple functional measures, such as the evalu-
ation of normal pace walking speed, have been shown to
be strongly associated with survival [17]. Lastly, sum-
mary scores evaluating multiple domains have been
shown to have high predictive accuracy [18, 19].
These indicators differ not only in their theoretical

foundation, but also in their operationalization. For ex-
ample, while a general consensus on the definition of
frailty has been reached [20], several ways to assess it in
clinical practice and research are in use [14]. Further-
more, while these indicators have been validated in vari-
ous cohorts [21–23], a head-to-head comparison of their
accuracy in the prediction of different outcomes is still
lacking. Such studies are of particular interest, as they
may allow clinicians (as well as researchers and policy
makers) to choose the most suitable predictive tool ac-
cording to aims, needs, and data availability.
Thus, the aim of this study is to compare the accuracy

of five geriatric health indicators (the frailty index, the
frailty phenotype, multimorbidity, walking speed, and a
summary score—the Health Assessment Tool) in the
prediction of mortality, unplanned hospitalizations, and
multiple contacts with healthcare providers.

Methods
Study population
Data were gathered from the Swedish National Study on
Aging and Care in Kungsholmen (SNAC-K). SNAC-K is
an ongoing population-based study, started in 2001. In-
dividuals aged 60+ living in the central area of
Stockholm (Sweden), either at home or in institutions,
were asked to participate in the study. A comprehensive
assessment using standard questionnaires, medical ex-
aminations, and interviews was performed to retrieve
demographic, clinical, and functional measures of the
3363 (response rate 73.3%) persons enrolled. Data from
neuropsychological assessments and physical tests were
also collected, as elsewhere described [24]. Every wave of
the study was approved by the Regional Ethical Review

Board in Stockholm, Sweden. Written informed consent
was obtained from each participant, or from a proxy, in
case of cognitive impairment. The public or patients
were not involved during the development of this study:
anyhow, we plan to disseminate the findings of this re-
search to participants of SNAC-K and to the public.

Geriatric health indicators
Frailty index (FI)
The frailty index is a commonly employed measure of
frailty, firstly proposed by Rockwood et al. [25]. It is
based on the ratio (range 0–1) between the number of
deficits (i.e. signs, symptoms, diseases, biomarkers, func-
tional status, physical performance indicators) exhibited
by the individual and the total number of potential defi-
cits taken into consideration by researchers. In SNAC-K,
two geriatricians (DLV and AZ) selected 45 variables
(Additional file 1: Table S1) and re-codified them, in ac-
cordance with the recommendations provided by Searle
et al. [26]. For baseline description purposes, participants
were considered frail if they exhibit a FI ≥ 0.25, robust
with a FI ≤ 0.08, and pre-frail in between, as previously
reported [27]. The frailty index was considered missing
if two or more variables were not available (N = 348).

Frailty phenotype (FP)
The frailty phenotype is a commonly used and validated
operational definition of physical frailty, originally pro-
posed by Fried et al. [28]. It evaluates five criteria: slow
walking speed, low grip strength, unintentional weight
loss, exhaustion, and low physical activity (the operatio-
nalization carried out in SNAC-K is available elsewhere
[29]). For baseline description purposes, individuals
meeting at least three criteria were considered frail, and
those meeting one or two criteria were considered pre-
frail, while the remaining were considered robust. Values
were missing for 599 people in at least one criterion.

Multimorbidity
In SNAC-K, diseases were coded in accordance with
the International Classification of Diseases 10th edi-
tion. Diagnoses were ascertained by physicians based
on medical history, medical records, physical examina-
tions, and instrumental and laboratory analyses. For
baseline description purposes, we defined multimor-
bidity as the count of chronic conditions, based on 60
disease categories identified by Calderon-Larranaga et
al. [30]. To examine the distribution of multimorbidity
in our population, we used the cut-off of two or more
chronic diseases.

Walking speed (WS)
In SNAC-K, a nurse noted the time needed for the par-
ticipant to complete a 6-m straight path, walking at
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usual pace. Participants were allowed to use walking aids
but had to complete the path without help. In case of in-
ability to complete the path, a walking speed of zero was
recorded. For those who self-reported slow walking
speed or in case of at-home assessment, a 2.4-m path
was used. For baseline description purposes, a WS cut-
off of < 0.8 m/s was used to identify slow walking speed
in our study population, as previously suggested [17].

Health Assessment Tool (HAT)
Proposed by our group [18], HAT is a summary score
evaluating five characteristics: walking speed, Mini-Men-
tal State Examination (MMSE) score, limitations in in-
strumental activities of daily living, limitations in basic
activities of daily living, and count of chronic diseases.
HAT was built regressing these characteristics against
the latent variable “health status” using a nominal re-
sponse model (more details are available in the appendix
of the original article [18]), obtaining a score ranging
from 0 (poor health) to 10 (good health). It has been
shown to be reliable over time and to adequately predict
different adverse outcomes [18, 31]. For baseline de-
scription purposes, poor health status was considered
for individuals with a HAT score ≤ 3.3, while good
health was considered for those with a HAT score ≥ 6.6.
Data were missing for eight people.

Outcomes
Vital status was retrieved within 3 and 5 years of follow-
up using the Swedish Cause of Death Register [32]. The
Stockholm County Council Register (as part of the Na-
tional Patient Register [33, 34]) was used to gather data
on hospitalizations and contacts with outpatient care
providers (i.e. visits to both primary and specialist care),
as previously described [18]. These registers contain in-
formation on the type of admission (i.e. planned or un-
planned), among others. We defined “acute
hospitalization” as experiencing at least one unplanned
admission during the first year or the first 3 years after
the baseline assessment. “Multiple provider contacts”
was defined as having multiple outpatient visits in the
6 months prior and after the baseline assessment. We
used the median number of planned outpatient visits
(i.e. 2) as the cut-off.

Other measures
Education level was measured as the highest degree ob-
tained. Cognitive status was assessed using the MMSE
score (both as a continuous variable and using a cut-off
of 24 [35]). Disability was defined as being impaired in
at least one out of six basic activities of daily living [36].

Statistical analyses
To assess the accuracy of the different geriatric health
indicators, we used the area under the receiver operating
characteristic curve (AUC). In this paper, we employed
the AUC as measure of predictive accuracy, since it al-
lows to simultaneously consider the sensitivity and spe-
cificity of a continuous variable in the prediction of an
outcome. The AUC was obtained using non-parametric
ROC analysis [37], including the different indicators as
continuous variables. The analyses were repeated strati-
fying by age, using a cut-off of 78 years, the median age
of our study population. To compare the average scores
of the different indicators across individuals of the same
age, the raw scores were standardized into z-scores,
using the baseline mean and standard deviation of the
population. The analyses were conducted on 10 imputed
datasets performing multiple imputation by chained
equations. For those people for whom data on the health
indicators were missing (28.4%), we created an indicator
variable. This variable was equal to 1 if a given observa-
tion was missing in any health indicators and to 0 other-
wise. We performed logistic regression with missing
value as the outcome to test whether any of the other
variables were associated with the probability to be miss-
ing (Additional file 2: Table S2). These variables were
used in the imputation process. For the main analyses,
pooled estimates were calculated according to Rubin’s
rule [38]. The same analyses were conducted in the
complete case sample (71.6%), showing consistent results
in terms of direction and magnitude (Additional file 3:
Table S3). All analyses were performed using Stata 15
(Stata Corp, Texas, USA), with an alpha level of .05.

Results
The baseline characteristics of the study population are
shown in Table 1: the mean age was 74.7 (standard devi-
ation, SD 11.2) and 2182 (65%) participants were female.
Older (i.e. ≥ 78 years, N = 1581) individuals were more
likely to be female, less educated, and affected by disabil-
ity, while younger participants were more likely to have
better cognitive performance (all p < 0.001).
The scores for all indicators were worse among older

individuals, as shown in Table 1 and Fig. 1a, with the ex-
ception of the count of chronic conditions, which exhib-
ited a plateau and a subsequent slight decline after the
age of 90 years. The proportion of individuals character-
ized by poor health according to HAT (≤ 3.3) and of
those frail according to the FI (≥ 0.25) was similar across
all ages (Fig. 1b). The proportion of persons with slow
WS (< 0.8 m/s) and of those considered frail according
to the FP steeply increased after the age of 80 years.
The mean follow-up time in our study was 4.41 years.

Figure 2 (and Additional file 4: Table S4 and Additional
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file 5: Figure S1) depicts the predictive accuracy (AUC:
area under the ROC curve) of the different indicators.

Mortality
In our study population, 477 participants (14.2%) died in
the first 3 years of follow-up and another 291 in the sub-
sequent 2 years (5-year mortality 22.8%). All indicators,
with the exclusion of MM, predicted mortality with
AUCs higher than 0.75: FP was the least performing in-
dicator [3-year mortality AUC (95%CI) 0.80 (0.78–0.82);
5-year mortality AUC (95%CI) 0.79 (0.77–0.80)], while
HAT showed the best AUCs [3-year mortality AUC

(95%CI) 0.87 (0.85–0.88); 5-year mortality AUC (95%CI)
0.86 (0.85–0.88)]. Mortality was predicted with similar
AUCs by the FI [3-year mortality AUC (95%CI) 0.84
(0.82–0.86); 5-year mortality AUC (95%CI) 0.84 (0.82–
0.86)] and WS [3-year mortality AUC (95%CI) 0.85
(0.83–0.87); 5-year mortality AUC (95%CI) 0.85 (0.83–
0.86)]. MM showed the worst AUC overall [3-year mor-
tality AUC (95%CI) 0.71 (0.68–0.73)].

Acute hospitalization
The 16.1% (N = 542) of our sample experienced at least
one unplanned hospitalization in the first year of follow-

Table 1 Baseline characteristics of the study population, stratified by age

< 78 years old
N = 1782 (53.0%)

≥ 78 years old
N = 1581 (47.0%)

p value Total
N = 3363

Age, mean (SD) 65.5 (4.8) 85.1 (6.1) < 0.001 74.7 (11.2)

Sex (female), n (%) 1024 (57.4) 1158 (73.2) < 0.001 2182 (64.9)

Education*

Elementary, n (%) 154 (8.6) 451 (28.5) < 0.001 590 (17.7)

High school, n (%) 817 (45.9) 848 (53.7) 1651 (49.6)

University, n (%) 811 (45.5) 282 (17.8) 1090 (32.7)

MMSE, mean (SD) 29.0 (2.1) 25.2 (7.4) < 0.001 27.6 (4.9)

MMSE < 24, N (%) 25 (1.4) 348 (22.0) < 0.001 462 (14.7)

≥ 1 impaired ADL, n (%) 26 (1.5) 303 (19.2) < 0.001 283 (8.6)

Frailty index

≤ 0.08, n (%) 1390 (78.0) 436 (27.6) < 0.001 1826 (54.3)

0.08–0.25, n (%) 375 (21.0) 856 (54.1) 1231 (36.6)

≥ 0.25, n (%) 17 (1.0) 289 (18.3) 306 (9.1)

Median (IQR) 0.04 (0.05) 0.12 (0.14) < 0.001 0.07 (0.09)

Frailty phenotype

Robust, n (%) 972 (54.6) 319 (20.2) < 0.001 1291 (38.4)

Pre-frail, n (%) 738 (41.4) 681 (43.0) 1419 (42.2)

Frail, n (%) 72 (4.0) 581 (36.8) 653 (19.4)

Health assessment tool

≥ 6.6, n (%) 1672 (93.8) 792 (50.1) 2464 (73.3)

3.3–6.6, n (%) 94 (5.3) 506 (32.0) < 0.001 600 (17.8)

≤ 3.3, n (%) 16 (0.9) 283 (17.9) 299 (8.9)

Median (IQR) 9 (0.8) 6.5 (4.4) < 0.001 8.6 (2.6)

Multimorbidity

0 chronic dis., n (%) 97 (5.4) 9 (0.6) < 0.001 106 (3.1)

1 chronic dis., n (%) 289 (16.2) 37 (2.3) 326 (9.7)

2+ chronic dis., n (%) 1396 (78.4) 1535 (97.1) 2931 (87.1)

Median (IQR) 3 (2) 5 (4) < 0.001 4 (3)

Walking speed

< 1.0 m/s, n (%) 267 (15.0) 1112 (70.3) < 0.001 1379 (50.0)

< 0.8 m/s, n (%) 141 (7.9) 890 (56.3) < 0.001 1031 (30.7)

Median (IQR) 1.2 (0.5) 0.6 (0.6) < 0.001 1 (0.6)

Abbreviations: n number, SD standard deviation, IQR interquartile range, MMSE Mini-Mental State Examination
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up, while 1134 participants (33.7%) had one or more un-
planned hospitalizations in the first 3 years following
baseline assessment. Indicators exhibited AUCs ranging
from 0.66 (0.64–0.68) [AUC(95%CI) for FP in the pre-
diction of 3-year unplanned hospitalization] to 0.73
(0.71–0.76) [AUC(95%CI) for FI in the prediction of 1-
year unplanned hospitalization].

Multiple provider contacts
The number of individuals who had at least two contacts
with care providers in the 6 months prior and after the
baseline assessment was 1959 (58.2%). Among the out-
comes considered, “multiple provider contacts” was

predicted with the lowest AUCs. The best AUC (95%
CI) was exhibited by MM 0.67 (0.65–0.68).

Age-stratified analyses
AUCs for mortality were lower among younger individ-
uals than among older ones, as shown in Fig. 3 (and
Additional file 6: Table S5), although most of the confi-
dence intervals were overlapping. Among younger indi-
viduals, HAT, FI, and WS showed a trend of increased
accuracy in predicting mortality and unplanned
hospitalization. Multimorbidity and FI predicted pro-
vider contacts with similar accuracy among younger and
older individuals.

Fig. 1 a Comparison of standardized indicator scores across age groups at baseline (HAT and WS were inverted to allow comparison). b
proportion of individuals characterized by frailty index ≥ 0.25, frail phenotype, HAT ≤ 3.3, multimorbidity (2+ chronic diseases), and WS < 0.8 m/s
in different age groups at baseline

Fig. 2 Comparison between areas under the ROC curve (AUCs) of different indicators in the SNAC-K population (n = 3363). HAT: Health
Assessment Tool
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Sensitivity analyses conducted on the complete case
dataset showed similar results in terms of magnitude
and direction. Most indicators exhibited similar AUCs
for the prediction of all outcomes, with the exception of
FP and FI that showed a slightly lower predictive per-
formance in the complete case analysis, compared to the
main analysis (Additional file 3: Table S3).

Discussion
All geriatric health indicators showed an AUC ≥ 0.70
in the prediction of mortality, while they were less ac-
curate in predicting unplanned hospitalization and
contact with multiple providers. Besides, important
differences were observed in the prediction of one
same clinical outcome by the different indicators.

AUCs were lower among younger old persons for all
indicators, with the exception of multimorbidity.
HAT, WS, and FI were the most accurate predictors
of mortality and unplanned hospitalization, while mul-
timorbidity showed the highest AUCs in the predic-
tion of contact with multiple healthcare providers.
Our findings are in line with the literature that reports

AUCs ≥ 0.80 for the prediction of mortality using the FI
[27, 39, 40]. Previous studies showed a prognostic accur-
acy for the FP ranging between 0.70 [40, 41] and 0.75
[42], although a significant variability in the assessment
of the five phenotypical criteria is present. Ritt et al. [42]
reported an AUC of 0.50 in the prediction of unplanned
hospitalizations using the FP: the fact that the assess-
ment was conducted in routine clinical practice

Fig. 3 Comparison between areas under the ROC curve (AUCs) of different indicators in a young older adults (< 78 years old) and b oldest old
(≥ 78 years old). HAT: Health Assessment Tool
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conditions and the short follow-up (i.e. 6 months) might
explain the difference with our findings. Several different
multi-domain scores have been proposed in the previous
years: despite the noteworthy variability in the variables
included, reported AUCs for the prediction of unplanned
hospitalization were generally higher than 0.70 [43].
Our results confirm the ability of physical function to

accurately predict poor health outcomes among older in-
dividuals [17, 44–47]. Several studies suggest that dis-
ability and functional measures are strongly associated
with poor health-related outcomes among older adults
[17, 48, 49]. The combination of physical function and
other domains, such as cognition [50, 51] or the severity
of a pre-defined number of chronic conditions [19], has
already been shown to help better stratify older individ-
uals with poor prognosis. In our study, comprehensive
indicators (FI and HAT) exhibited a minor but signifi-
cantly higher AUCs for mortality and hospitalization,
when compared to a single functional measure (WS).
Different studies compared the accuracy in the predic-
tion of mortality of physical functional indicators, such
as the FP, and more comprehensive ones, such as the FI,
showing different results. Our findings confirm the re-
sults of Ritt et al. [39] and Wigadgo et al. [52], who
found that FP exhibited a lower discriminative perform-
ance than FI in hospitalized and community-dwelling
adults. Anyhow, Li et al. [53] found similar AUCs for
these two indicators. The differences with our results
might be explained by the fact that in this last study, all
phenotypical criteria were derived from the questions of
the Short Form Survey (SF-36) and not by directly asses-
sing walking speed or grip strength. Probably, compre-
hensive indicators benefit from the diversity of the
information taken into account, with the inclusion of
measures corresponding to different domains [51].
Interestingly, our results showed that WS alone exhib-

ited higher AUCs for every outcome when compared
with FP, despite the inclusion of walking speed among
its criteria. Walking speed has been shown to be a reli-
able proxy of physical frailty [54, 55]: this might suggest
that gait speed already provides a consistent part of the
details captured by this operationalization of frailty. On
the other hand, walking speed cut-offs employed for
frailty phenotypical criteria (lowest quintile, adjusted by
sex and height [28]) are particularly strict. While this
seems to improve the specificity of FP, it might nega-
tively affect its sensitivity [52] and, thereby, its AUC.
Furthermore, our study confirms that the simple

count of chronic diseases is the most accurate indica-
tor in predicting the use of healthcare resources, but
is not as reliable in the prediction of mortality, as
already described by previous studies [56]. Indeed,
diagnoses—more than frailty and mobility impair-
ment—seem to trigger clinical consultations. Previous

studies already showed that increased mortality risk
among persons affected by multimorbidity is probably
due to a limited number of index diseases, rather
than to the accumulation of chronic conditions [57].
Specific clusters of multimorbidity and the speed of
accumulation—rather than the simple number—of
chronic diseases have been shown to be reliably asso-
ciated with several negative outcomes [58–61].
Having multiple contacts with care providers was

poorly predicted by the studied indicators compared
to other outcomes. Several factors might influence the
number of contacts with providers, beyond people’s
healthcare needs: behavioural and psychological traits,
distance from the provider’s office, as well as social
support, economical, and economical and insurance
statuses, among others [62–65]. The studied indicators
do not evaluate these aspects. Our findings highlight
the need for more accurate tools to predict outpatient
healthcare use.
Finally, our findings show a general trend of lower pre-

dictive accuracy for mortality when the indicators were
applied to younger persons. It is likely that a higher
functional resilience among younger individuals might
explain the inability of currently used indicators to ac-
curately predict poor outcomes among this subset of in-
dividuals. These results strengthen the need for a
reliable tool, able to capture vulnerability to poor out-
comes even among younger old individuals.
The results of the present study should be read in

light of some limitations. All indicators were assessed
at baseline: change of status during the follow-up
might have affected the estimation of the predictive
accuracy. Furthermore, minor differences with the ori-
ginal operationalization of some indicators exist and
are related to data availability in SNAC-K. In addition,
as previously described [11], the SNAC-K population
is highly educated and wealthy: this might limit the
generalizability of our findings. Anyhow, this issue
might play a minor role because our main aim was to
investigate the accuracy of different health indicators,
which are based on participants’ clinical and func-
tional characteristics. Furthermore, we found the
prevalence of MM, WS, and FP to be similar to those
described in previous studies [55, 66, 67]. Our study
has also several major strengths. Firstly, we developed
all indicators using variables derived from an in-depth
and comprehensive assessment, conducted by physi-
cians and nurses [24]. Furthermore, outcomes were re-
trieved from national registers, minimizing the risk of
loss of information. Lastly, all indicators were built
using the same data, allowing therefore a direct com-
parison of their predictive accuracy. Indeed, to the
best of our knowledge, this is the first study directly
comparing the accuracy of several indicators

Zucchelli et al. BMC Medicine          (2019) 17:185 Page 7 of 10



commonly used in geriatric research and practice for
the prediction of different clinical outcomes.

Implications
Physicians might employ indicators exhibiting a high
prognostic value to better tailor diagnostic and
therapeutic decisions. For example, older persons
with low life expectancy benefit from therapeutic re-
visions aimed to control symptoms and improve
quality of life [68, 69] and from the avoidance of
screening tests that might lead to overdiagnosis [70].
Furthermore, high accuracy indicators might also
help to prompt discussion between physicians and
patients about preferences in late life [71]. The iden-
tification of older persons at increased risk of un-
planned hospitalizations might be used in the clinic
to plan interventions proven to lower such risk, such
as more strict follow-ups [72, 73].
Healthcare policy makers could employ information re-

garding patients’ risk of poor health-related outcomes
(such as death and hospitalizations) to better allocate re-
sources. For example, accurately identifying individuals
with decreased life expectancy is important for the inte-
gration of palliative care in modern healthcare systems
[74]. Moreover, several interventions have been shown to
decrease the number of hospitalizations [75, 76]: better
defining the share of the population at risk of such events
might enhance the effectiveness of these strategies. Fur-
thermore, our findings showed that the count of chronic
diseases could be used to predict an increased number of
outpatient visits.
The indicators considered in our study might be

employed according to data availability. For example,
WS has already been proposed as a simple measure to
be evaluated in clinical practice [77, 78], while the FI
might be easily calculated from electronic clinical re-
cords [79]. HAT is based on measures easily available in
clinical settings [30].

Conclusions
Despite their different theoretical background and
practical construction, HAT, WS, and FI were the
most accurate predictors of mortality and unplanned
hospitalizations in a population of older adults. On the
other hand, multimorbidity was the most accurate pre-
dictor of contact with multiple providers. The accur-
acy of the considered indicators was generally lower
among younger old persons compared to older ones.
Different assessment tools can be used in different cir-
cumstances to support physicians during their deci-
sion-making process. Some of these tools may also be
used to forecast future use of healthcare resources, in-
cluding both hospital-based and outpatient services.
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