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Background. Gene Regulatory Networks (GRNs) have become a major focus of interest in recent years. A number of reverse
engineering approaches have been developed to help uncover the regulatory networks giving rise to the observed gene
expression profiles. However, this is an overspecified problem due to the fact that more than one genotype (network wiring)
can give rise to the same phenotype. We refer to this phenomenon as ‘‘gene elasticity.’’ In this work, we study the effect of this
particular problem on the pure, data-driven inference of gene regulatory networks. Methodology. We simulated a four-gene
network in order to produce ‘‘data’’ (protein levels) that we use in lieu of real experimental data. We then optimized the
network connections between the four genes with a view to obtain the original network that gave rise to the data. We did this
for two different cases: one in which only the network connections were optimized and the other in which both the network
connections as well as the kinetic parameters (given as reaction probabilities in our case) were estimated. We observed that
multiple genotypes gave rise to very similar protein levels. Statistical experimentation indicates that it is impossible to
differentiate between the different networks on the basis of both equilibrium as well as dynamic data. Conclusions. We show
explicitly that reverse engineering of GRNs from pure expression data is an indeterminate problem. Our results suggest the
unsuitability of an inferential, purely data-driven approach for the reverse engineering transcriptional networks in the case of
gene regulatory networks displaying a certain level of complexity.
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INTRODUCTION
Gene Regulatory Networks (GRNs) have become a major focus of

interest in recent years due to the rapid improvement in high-

throughput sequencing technologies and advances in computa-

tional modeling and information technology. The basic unit of

gene regulation consists of a transcription factor, its DNA binding

site and the target gene or transcription unit that it regulates [1].

In GRN, transcription factors (TFs) receive inputs from upstream

signal transduction processes and in response, bind directly or

indirectly, via other TFs or co-factors to target sequences in the

promoter or cis-regulatory regions of target genes. These bound

TFs can then promote or repress transcription by stimulating or

repressing the assembly of preinitiation complexes. The activity of

genes is regulated by a host of biological molecules including

proteins, peptides and metabolites.

The resulting network is a complex, multilayered system that

can be examined at multiple levels of details [2]. The modeling of

GRNs has utilized two key approximations [3]. These are: a)

control is exercised at the transcriptional level and b) The

production of protein product is a continuous process with the rate

determined by the balance of gene activation vs. repression. The

first constraint, even though it is known to not be tenable in many

cases, is considered as a prerequisite while dealing with GRNs. In

our approach we relaxed the strict transcriptional character of

control by inserting a posttranslational modification (PTM)

mechanism into the simulation.

Recent approaches have got rid of the second approximation by

including the stochastic nature of production of individual protein

molecules. Methods used to model and reverse engineer tran-

scriptional control within gene regulatory systems include the

‘‘Boolean’’ method [4–9], the continuous approach using differ-

ential equations [10–17] that has been well studied and in use

for decades and a hybrid Boolean-continuous approach [18,19].

The interested reader is referred to papers by Smolen et al. [3] and

de Jong [20] for a more exhaustive review of the existing

approaches.

All the above mentioned reverse engineering approaches have

principally focused on decoding the mechanisms of transcriptional

control; primarily in order to take advantage of the large amounts

of data about RNA transcripts being generated by current

genomic technologies. However, measuring peptide, protein and

metabolite regulators of gene expression is generally more difficult

and not often available [21]. Regardless, in all the techniques

mentioned above, one tries to ascertain the genotypic landscape

from knowledge of limited phenotypic data. The sense in which

genotypes and phenotypes are used in this case is slightly different

from their original meaning: genotype points to the underlying

functional connectivity between the different gene activities

whereas phenotype points to their visible effect (such as mRNA

or protein levels). This would have been straightforward if there

was a strict one-to-one mapping between genotype and phenotype.

However, this is not really the case.

Theoretically, in a given environment, the mapping between

any particular genotype and a set of phenotypes is determined by

a probability function, which represents a collection of possible

phenotypes around the most-likely phenotype for any given

genotype [22]. In effect, the genotype to phenotype mapping is
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bounded by 1:1 mapping (total gene plasticity), 1:all mapping (total

gene elasticity) and all:1 mapping (total constraint) with most of the

actual cases falling in between these three bounds leading to some

degree of what we refer to as ‘‘gene elasticity’’. This could be due

to either decreased environmental canalization or developmental

polymorphism or both. Regardless, the fact that multiple

genotypes can give rise to a very similar set of phenotypes causes

potentially huge problems for the reverse engineering of

transcriptional networks.

In this work we study the effect of this particular problem on the

inference of gene regulatory networks. We assume that in future

(as is already the case with the possibility of the use of large scale

protein chips), it would be possible to obtain large-scale

information about not just RNA transcripts in a cell but also

various protein counts. With that in mind, we simulated a four-

gene network in order to produce ‘‘data’’ that we use in lieu of real

experimental data. This data was then sampled at a few sampling

instants . We then optimized the network connections between the

four genes with a view to obtain the original network that gave rise

to the data. We did this for two different cases: one in which only

the network connections were optimized and the other in which

both the network connections as well as the kinetic parameters

(given as reaction probabilities in our case) were estimated. We

observed that multiple genotypes gave rise to very similar protein

levels. Statistical tests indicate that it is impossible to identify

different network architectures on the basis of both equilibrium as

well as dynamic data. This suggests that a purely data-driven

inferential approach for reverse engineering transcriptional net-

works is improbable if not impossible in practice.

MATERIALS AND METHODS
Our approach towards the simulation of GRNs is a mix of the

finite-state model pioneered by Brazma et al. [23] and stochastic

simulation. The model is based on the following assumptions:

N Each gene has a number of TF binding sites in its promoter

region

N Each protein has a number of binding domains, with each

binding domain being able to bind to a specific gene.

N The binding of a single activating protein to a binding site

creates a complex that can in turn be recognized by RNA

Polymerase (RNAP) molecules.

N The binding of a single repressive protein molecule to a binding

site creates a complex that can no longer be bound to by RNAP

molecules

N An ‘‘active’’ gene is thus denoted by the presence of the

corresponding complexes that can be bound to by RNAP

molecules.

N Each protein has the possibility of undergoing PTM.

N The PTM can activate or deactivate a protein.

At the basic level, the model can be considered as a finite-state

one since the state of the network depends on the binding/

unbinding of proteins to the different binding sites in the promoter

regions of the different genes. Figure 1(b) shows the abstraction of

the network shown in Figure 1(a). The gene corresponding to each

protein is colored differently. Each protein has binding domains

for none or more genes. As an example, protein P1, has binding

Figure 1. The abstract representation in our model of the network shown in Figure 1(a) is shown in Figure 1(b). The gene corresponding to each
protein is represented by different colors. Each protein (colored gray) has a certain number of binding domains. For eg., protein P1 can bind to genes
G1, G3 and G4 (showed by the colored bars). The red and green boxes refer to the effect of binding while the red and green circles refer to PTMs.: red
represents repression and green, activation
doi:10.1371/journal.pone.0000562.g001
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domains for genes G1, G3 and G4. The red and green boxes

attached to the binding domains indicate the effect of binding: red

represents repression while green denotes activation.

A similar abstraction can also be made for the RNAP-cofactor

complexes. Each RNAP-cofactor complex can bind to none or

more genes in order to transcribe them. The RNAP-cofactor

complexes also evolve by either gaining or losing the ability to bind

to and transcribe specific genes.

While the genes in Brazma et al.’s model have binary (ON/

OFF) states, gene activity in our model is governed by the number

of molecules of the ‘‘active’’ gene (that is one with promoter

proteins bound to their promoter regions). As a result, the model

stays closer to reality where a basal level of gene activity is present

and genes are seldom seen to exhibit purely binary state behavior.

Additionally, in contrast to the work by Brazma et al. [23], time, in

our case is discrete. Moreover, the state affects the number of

molecules of each species in the system. Additionally, we also

model the effect of reversible PTMs. We describe the model in

more detail in the following section.

Model
Our model of the gene regulatory network involves proteins and

DNA molecules interacting in the classical promoter/TF para-

digm. This is by no means the unique or the most relevant

mechanism of regulatory systems; nevertheless it is endowed with

sufficient complexity to be an interesting case study.

Following the work of Hayot et al. [24] and Ingram et al. [25],

our model of the gene regulatory network attempts to describe the

process of gene regulation from transcription binding to protein

production in a physically reasonable way. As mentioned in [25],

each gene (i) is represented as having a section of DNA (Di), which

codes for the corresponding mRNA (Mi). This is preceded by the

binding of transcription factors to the promoter region to form

a complex Qj. The transcription factors are one among the

different protein species that are present in the system. The

number of proteins in the system usually consists of the inputs to

the system as well as of the products of the structural genes in the

system. However the protein species can outnumber the genes.

This is in order to cater for all types of transcriptional regulators

and will be discussed in greater detail below.

RNAP molecules (in combination with other co-factors) can

then bind to Qi as they read the DNA forming a second complex

Qi
*. This complex then breaks down on completion of the reading,

thereby releasing Qi, Ri and the newly formed Mi. The mRNA

molecules are then translated to produce copies of the protein Pi.

Both positive and negative regulations have been included in the

model. In case of negative regulation, protein Pi binding to the

promoter region of gene j will result in the formation of a complex

Q̄i. These molecules cannot be bound to by RNAP-cofactor

complex molecules and hence repress the particular gene by

inhibiting transcription. The inhibition however is not indepen-

dent of the binding order. Thus a regulator that inhibits the

expression of a gene can only bind a promoter region that has not

been already bound by any other transcriptional regulator.

Proteins can also undergo Post Translational Modifications

(PTMs). PTMs are of two types: activating and inhibiting. An

activating PTM promotes the activity of the protein while an

inhibiting PTM deactivates the protein. It must be mentioned that

PTMs in our model are reversible. The species R can be viewed as

either RNAP by itself or as an RNAP-cofactor complex. Typically,

in our case, while simulating only the RNAP molecule, a single R

species was utilized whereas multiple R species implied that

different RNAP-cofactor complexes were part of the system.

There are 11 species types present in our model as shown in

Table 1 while the allowed reactions between these species types

are given in Table 2.

The reactions between a particular section of DNA, D, and

a protein P, or between the complex Q and the RNAP-cofactor

complex R can only take place under certain conditions

determined by the type of protein or RNAP-cofactor complex.

We model each protein as having potentially up to g DNA-binding

domains (one for each gene where g is the number of genes).

Similarly, the different types of RNAP-cofactor complex can bind

1, 2, 3, ? ? ?, g DNA-transcription factor complexes Q.

There are two different types of transcription factors in the

system: Those that influence the expression of other transcrip-

tional regulators but are themselves not transcriptionally regulated

and those that do not regulate the expression of other

transcriptional regulators. A note must be made here of the

fundamental difference between the input proteins (I in Table 1)

and the normal protein molecules (P in Table 1). While both are

protein molecules, input proteins act as signaling molecules to the

network under study. The input proteins affect the respective P

molecules in an activating manner. For example, for a 4-node

network, if the number of inputs is 2, then I1 will activate P1 and I2

will activate P2. Moreover, in our simulations, the input proteins

Table 1. Species present in our model
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Species Description

I Input Proteins (activating signals)

D DNA molecules

Q Transcription factor-DNA complexes (active)

Q* RNAP-cofactor-Q complexes

Q̄ Transcription factor-DNA complexes (inactive)

R RNAP-cofactor complexes

M mRNA molecules

P Protein molecules

P* Active/Inactive protein molecules for proteins requiring

T PTM agents

NULL NULL molecules for mono-nuclear reactions

doi:10.1371/journal.pone.0000562.t001..
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Table 2. The reactions taking place in our system
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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are stepped together at time t = 0 and their levels reduced to 0 at

time t = 200. Thus these protein levels act as signaling switches.

There are a finite number of PTM-agents (T) and null

molecules (NULL) in the system (see Simulation section).

Simulation
In order to better represent the low copy numbers of all these

molecules in the actual cell, we simulate the reactions using

a stochastic algorithm. At each time instant, we pick two species at

random. We check the compatibility of the species using the

reactions given in Table 2. If the two molecules cannot take part in

a reaction, say for example D and M, then no reaction takes place

in that time interval. If however, the species can potentially

interact, the subtypes of both the species are again chosen at

random. If one of the two species is a P or an R the bits for the

corresponding subtype are checked to see that the respective

protein or RNAP-cofactor complex can bind to the second species.

Additionally, the action of the selected protein species (positive or

negative regulatory) is checked to ascertain its effect on the other

species. Also, the protein is checked to see if it can undergo PTM and

if so whether the PTM is activating or inhibiting. Once all the

conditions have been satisfied, a further random number r is

generated and only if r#ki where ki is the probability of occurrence of

reaction i and the appropriate counts incremented and decreased

according to the stoichiometric coefficients given in Table 2. This

process is then repeated at the next time interval till the end of the

simulation time. Our simulation approach is closest in ethos to that

of the StochSim [26] stochastic simulator. We also make use of null

molecules in order to simulate monomolecular reactions.

We simulate the model for a total of T time intervals of dt

seconds each (with dt = 0.001 for our simulations). A stochastic

simulation can give different results depending on the random

numbers used. However, in order to obtain ‘‘deterministic’’ results

since the goal of this exercise is to ascertain whether the original

network can be recovered, we fix the random number seed so that

given a particular representation of the proteins and RNAP-

cofactor complexes, we will obtain the same, reproducible results.

The idea behind using a ‘‘deterministic’’ simulation is to find out

whether keeping all other conditions a constant, we are able to get

back the original network purely by searching through the space of

all possible networks.

Data
Figure 2(a) shows the template network that was used to obtain the

data that were used in lieu of experimental data. There are four

genes in the network with the product of gene 1 requiring an

activating PTM in order to regulate the downstream genes. Three

of the four genes also auto-regulate themselves; proteins 2 and 3

promote the transcription of their respective genes while protein 1

represses the transcription of its gene. Figure 2(b) show the protein

levels for proteins 3 and 4 (with proteins 1 and 2 being almost near

zero). The simulation of the template network was carried out for

300 seconds. The data (protein levels of proteins 3 and 4) was

sampled at 10-second intervals for a total of 30 data points.

Network Inference
In order to identify the network that replicates the data, we used

a genetic algorithm (GA) that finds the optimum connectivity

between the genes and RNAP-cofactor complexes in the system

under study. In this case, this equates to finding the best

combination of domains in the g proteins and r RNAP-cofactor

complexes that results in the minimization of the fitness function.

The number of genes, RNAP-cofactor complexes and proteins are

denoted by g, r and p respectively. Each protein is represented

using 2g+2 bits (also called alleles) while each RNAP-cofactor

complex is represented using g bits (alleles), one for each gene. The

first g bits of each protein represent the binding domains to each of

the g promoter regions (1 for presence and 0 for absence of the

domains), while the next g bits indicate the type of regulatory

action directed towards the respective proteins (1 for promotion

and 0 for inhibition. The last 2 bits represent the effect of PTM,

with bit 2g+1 representing the presence or absence of PTM and bit

Figure 2. The template network (a) and the protein levels (b) that mimic ‘‘experimental data’’ values.
doi:10.1371/journal.pone.0000562.g002
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2g+2 representing the nature of the PTM (1 for activating or 0 for

inhibiting). For example a protein with a representation 1001 2

0001 2 11 (separated by a hyphen for ease of understanding)

implies that it can bind to the promoter regions for genes 1 and 4

and that while the regulatory action is negative for gene 1, it is

positive for gene 4 (since the first and fourth bits for the second half

of the bitstring are 0 and 1 respectively. The protein also requires

PTM for activation as suggested by the last two bits (11 implies that

PTM is required and it is an activating modification). A similar

representation is made for the RNAP-cofactor complex using one

bit for each gene. The p proteins are encoded using a (2g+2)p-long

bit string (2g+2 bits for each protein) and we do the same for the

RNAP-cofactor complexes using an rg-long bit string. The two

encodings are then concatenated to give a chromosome of length

(2g+2)p+rg bits (alleles). The fitness function to be minimized, D(m,

ê) is given by the root mean squared deviation (RMSD) of the model

values m, from the ‘‘pseudo’’ experimental values, é as:

D m,êeð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i~1

êei{mi½ �2
 !vuut

where the number of samples is given by n.

Thus in our case, the fitness function itself is more like

a ‘‘distance’’ function and will be referred to as such in the rest of

the manuscript. As mentioned earlier, a GA was used to find the

optimal network acting on the above-described representation.

The GA is a stochastic global search method representing

a metaphor of natural biological evolution. GAs operate on the

population of potential solutions applying the principle of survival

of the fittest to produce hopefully, better and better solutions [27].

In each generation, a new set of approximations to the solution is

created by a process of selecting individuals according to their level

of fitness in the problem domain and breeding them together with

operators borrowed from genetics such as crossover, mutations

and selections. This process leads to the evolution of populations of

individuals (solutions) that are better fitted to the problem domain

than their predecessors thereby approaching an optimal solution.

In this case, a population of 500 individuals was seeded. In each

generation, two individuals in the population are chosen at

random to mate in order to produce offspring. The crossover

points in the chromosomes for the mating individuals are based on

a certain crossover probability. Mutations can affect chromosomes

that are not mating in a given generation with a certain mutation

probability (0.8 in our case). Since the GA is a stochastic

algorithm, the optimization needs to be done a number of times

in order to obtain a ‘near-optimal’ solution. In our case, 25

Figure 3. The original (template) network that gave rise to the data and the two best networks obtained from minimizing the error. Only the
network connections were optimized in this case, with the kinetic parameters taking on the same values as those that generated the ‘‘data’’. Both
Optimized Network-1 (Figure 3(b)) and Optimized Network-2 (Figure 3(c)) had a value of 0 for the minimization function which was the RMSD of the
model and the ‘‘data’’ values.
doi:10.1371/journal.pone.0000562.g003

GRN: Curse of Gene Elasticity

PLoS ONE | www.plosone.org 5 June 2007 | Issue 6 | e562



different runs of the algorithm were carried out and the 6 runs

with the smallest distance function values were selected.

The optimization was carried out for two different cases:

N In the first case, the kinetic parameters, represented here by the

reaction probabilities, were kept the same as those for the run

that generated the data. As a result only the network

connections were optimized in order to obtain the network

that has the smallest RMSD value.

N In the second case, the search space included the 10 kinetic

parameters as well as the network connections.

RESULTS AND DISCUSSION

Network Inference
Figure 3 shows the template network (Figure 3(a)) along with two

other networks (Figures 3(b) and 3(c)) that had the smallest distance

function values. Interestingly, both the optimized networks had

a distance function value of 0; that is, the protein levels at the

sampling points were identical to those produced by the template

network. While a comparison of the two networks with the

template shows some points of similarity, there are also significant

differences in the wiring pattern. For example, in both the

optimized networks, protein 2 requires an activating PTM in

addition to that required by protein 1 whereas it is not so in the

original network in which only protein 1 requires an activating

PTM. In addition the network in

Figure 3(c) has more repressive interactions than either the

template network or the other optimized network in Figure 3(b).

As mentioned earlier, the second experiment consisted of

identifying the optimal combination of both network connectivities

and kinetic parameters that would approximate the data. This is

a much tougher optimization problem and hence, despite

a number of runs, it was not possible to obtain a solution with

an RMSD of 0. Despite this, there were a number of networks that

had very similar phenotypes with respect to those produced by the

template network. Three of the networks with the smallest RMSD

values are shown in Figures 4(b), 4(c) and 4(d). Once again, we

Figure 4. The original (template) network that gave rise to the data and the two best networks obtained from minimizing the error. The network
connectivities as well as the reaction probabilities were optimized in order to obtain the minimal deviation between the model and ‘‘data’’ values.
doi:10.1371/journal.pone.0000562.g004
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witness a wide range of interactions among the elements of the

optimized networks, which can be very different from those of the

template network. Figures 5(a) and 5(b) show the protein levels

obtained by the simulation of six optimized networks with the

lowest RMSD values from the two different experiments,

respectively.

Despite the wide range of wiring patterns and interaction types

(PTM, auto regulation, activation and repression), the protein

profiles for all these different networks are remarkably similar to that

of the template network shown in Figure 2(b). This is consistent with

the fact that there is never total gene-plasticity (a1:1 mapping

between genotype and phenotype) but rather, what we call gene

‘‘elasticity’’ with multiple genotypes giving rise to a similar set of

phenotypes. This is mainly due to the fact that natural selection acts

on variation among phenotypes rather than genotypes [28]. Hence,

there is a system of genetic buffering that allows for the buildup and

storage of genetic variation in phenotypically normal populations

[29–31]. Theory suggests that this variation in genotype can change

the underlying genetic architecture in spite of the phenotype being

maintained due to strong stabilizing selection [32]. This behavior is

remarkably similar to what we observe in protein sequence/structure

relations (with the sequence playing the role of genotype and the

structure of phenotype) where a huge sequence space maps into

a much smaller fold space.

Optimal Networks
Although the results in the previous section show that different

networks give rise to very similar, even identical expression

profiles, a question can be raised as to whether the observed

behavior is a result of the fact that the networks might be

suboptimal in some sense and hence, the network space

surrounding the template network could well be very dense with

different networks giving rise to similar expression profiles. This is

a valid point and needs to be addressed. However, the notion of

optimality itself is difficult to define in this case. What would an

‘‘optimal’’ network look like? We defined an optimal network as

one that evolves towards a particular goal from an initial random

state. The goal in our case was a maximization of the levels of

certain proteins. We evolved a population of networks starting

with an initial random assignment towards the goal of maximizing

the distance function. Such a network is optimal in terms of the

particular distance function. We then performed the same

experiment for this ‘‘optimal’’ network by generating data from

this network and then using this data to infer back the original

Figure 5. Protein Levels for both experiments: (5(a)): The case where only the network connections are optimized. (5(b)): Case were network
connections and reaction probabilities are optimized. Notice that in both cases, the protein expression patterns are very similar despite the
differences in network connectivities as seen from Figures 3 and 4.
doi:10.1371/journal.pone.0000562.g005
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network. Figure 6 shows the template and inferred ‘‘optimal’’

networks. As can be observed, the template and optimized

networks, although having an RMSD value of 0 (implying perfect

alignment of the respective protein expression patterns) do differ

slightly in their wiring. Obviously, this is dependent on the

particular kinetic parameters used as well as the algorithm being

used. However, we would expect to see similar behavior for any

stochastic algorithm that models the behavior of gene regulatory

Figure 6. The optimal (template) network and the best network inferred from minimizing the RMSD between the two expression levels. Only
the network connectivities were optimized. All other parameters including the kinetic parameters were kept constant. Although the two networks are
very similar, there is a slight difference in the activation of P1 and P2.
doi:10.1371/journal.pone.0000562.g006

Figure 7. ‘‘Equilibrium’’ phase space for proteins 1, 3 and 4. The reaching of equilibrium was assessed by the stabilization of the protein levels on
almost invariant values. In our case, the protein levels at a time corresponding to 300 seconds were assumed to indicate equilibrium levels. There is
a lack of a clear separation of the protein levels from the three different networks.
doi:10.1371/journal.pone.0000562.g007
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networks. Although this is not a conclusive proof of the fact that

the behavior observed in the previous section is not completely due

to the suboptimality of the template network, it does show that

regardless of the type of network, the many-to-one phenotype-

genotype mapping can lead to an indeterminacy of the reverse

engineering problem.

Principal Component Analysis
Having demonstrated the equivalence of different network

architectures to get rid of a given phenotype and the substantial

indeterminacy of reverse engineering problem in the presence of

a complex feedback network, we must approach the other horn of

the problem. Basically we need to demonstrate that the outputs

coming from networks endowed with different architectures

cannot be traced back to their respective sources. This step is

crucial as proof-of-concept of the basic indeterminacy of the

reverse engineering procedure, given that a discrimination of the

source networks on the pure basis of their outputs should imply the

(at least theoretical) possibility to establish a 1:1 mapping between

genotype and phenotype in the presence of sufficient data. For this

goal use was made of two different settings correspondent

respectively to ‘‘equilibrium’’ and ‘‘dynamic’’ discrimination tasks.

In the first task (equilibrium discrimination) the three networks

(R2, R3, template) were run starting from different initial

conditions and their occupancy in the different regions of the

phase space defined by the ‘‘equilibrium’’ positions of Protein1,

Protein3 and Protein4 were examined. As mentioned earlier, the

reaching of ‘‘equilibrium’’ was assessed by the stabilization of the

protein levels on almost invariant values and in this case was

assumed to occur at a time of 300 seconds. Hence from here on,

all mention of ‘‘equilibrium protein levels’’ will imply protein levels

after a time of 300 seconds.

Figure 8. Correlation coefficient of the individual runs for the three different networks against one another. The correlation coefficients are
computed as the correlation of the three protein levels for each run and plotted as a matrix with the different runs making up the abscissa and
ordinate. Runs 1–25 pertain to the template network, 26–50 to the first optimized network (R2) and runs 51–75 to the second optimized network (R3).
The colors range from blue (very low correlation) to dark brown (high correlation). The fact that there is no clear discrimination between the networks
implies that the protein levels obtained from the three networks occupy similar regions in phase-space.
doi:10.1371/journal.pone.0000562.g008

Table 3. Eigenvalues and the percent of explained variance
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Eigenvalue Difference Proportion Cumulative

1 4.2960 2.6220 0.4773 0.4773

2 1.6739 0.6827 0.1860 0.6633

3 0.9913 0.2042 0.1101 0.7735

4 0.7871 0.2297 0.0875 0.8609

5 0.5574 0.2060 0.0619 0.9228

6 0.3514 0.1514 0.0390 0.9619

7 0.1999 0.0911 0.0222 0.9841

8 0.1089 0.0749 0.0121 0.9962

9 0.0341 0.0000 0.0038 1.0000

doi:10.1371/journal.pone.0000562.t003..
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The different initial conditions were simulated by using different

seeds for the random number generator for the different runs.

Each network was run for 25 different simulations, each starting

from a different initial condition for a total of 300 seconds. Only

the protein levels at t = 300 were utilized in this analysis. The

reaching of equilibrium was assessed by the stabilization of the

protein levels on almost invariant values.

The dynamic discrimination task involved the recording of the

different values of Protein1, Protein3 and Protein4 in time during

the transient, going from the initial to the stable final position at

the end of 300 seconds. The networks were run for 10 different

simulations and sampled once every second for a total of 3000

time points. These two tasks correspond to two possible reverse

engineering experiments:

1. Discrimination of different mechanisms in space (e.g. different

mutations and/or drug treatments)

2. Discrimination of different mechanisms in time (e.g. recording

of a time course after a perturbation).

The results of the first task are reported in Figure 7. As is evident

from the figure, the networks are completely superimposable in the

phase space with no discrimination for the phase-space localiza-

tion. Figure 8 shows the correlation coefficients of the protein

levels of each of the 75 different runs (25 runs each for the three

different networks) against each other. The first 25 runs are for the

template network, followed by those for the R2 and R3 networks

respectively. If the networks were indeed separable, then one

would expect the correlation coefficient values between runs of the

same network to have significantly higher values than between

runs from different networks. However, the near uniformity of the

high correlation values across networks shows that they do inhabit

very similar regions of the phase space.

Table 4. Factor Loadings–Correlation coefficients between
original variables and components

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Factor 1 Factor 2 Factor 3 Factor 4

R2protein1 0.4308 0.6333 20.0941 0.3570

R2protein2 0.9217 20.0551 20.0525 20.0239

R2protein3 0.7750 20.5515 20.0320 20.1416

R3protein1 0.5076 20.6289 0.1555 0.4313

R3protein3 0.5807 0.4311 0.1304 0.4699

R3protein4 0.8781 0.1226 20.0756 20.3210

TEMprotein1 0.2231 0.3758 0.8390 20.2718

TEMprotein3 0.6274 0.4318 20.4576 20.2335

TEMprotein44 0.9226 20.2040 0.1359 20.0269

doi:10.1371/journal.pone.0000562.t004..
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Figure 9. Factor scores for the first four principal components. The different colored lines are the natural separation of the results into the different
simulation runs.
doi:10.1371/journal.pone.0000562.g009
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The dynamic simulation, corresponding to the study of the

transient behavior going from an initial (perturbed) state to the

attractor (equilibrium protein levels) was analyzed by means of

principal component analysis (PCA). The goal of PCA is to project

an initial n-dimensional space into a p-dimensional one (with p,,n)

saving the major portion of initial information; the new p dimensions

are called principal components and correspond to linear combina-

tions of the original variables (dimensions) that are orthogonal to

each other. The dimensionality reduction is obtained by means of

correlations linking the original variables and the components, and

correspond to the eigenvectors of the correlation matrix. The portion

of the original variance explained by each variable is proportional to

the eigenvalue of the corresponding eigenvector [33].

The components correspond to the ‘‘order parameters’’ shaping

the data, i.e. to the driving forces generating the observed

correlations [34]. A completely random set is expected to give rise

to a principal component solution with a flat distribution of

eigenvalues. Thus the essential non-random components in a given

distribution can be identified as the ones having eigenvalues higher

than that expected from pure chance, i.e. above the so called

‘‘noise floor’’ [34].

In our case each original dimension (variable) had 3000 points

corresponding to the 10 time series of 300 points each for the different

runs. We had 9 of these variables each corresponding to a specific

protein for a specific network (3 protein levels and 3 networks) and the

PCA gave rise to a 4-component solution well above the noise floor

with a leading first component (factor1) explaining 47.7% of total

variance (Table 3). If the networks could be discriminated, one or

more of the significant components should be able to separate the

statistical units corresponding to the different networks. Looking at

the factor-loading matrix reported in Table 4 (the loadings are the

correlation coefficients between original variables and components) it

is evident that the first factor (component) corresponds to a common

‘‘size’’ component [35] in which all the variables enter with a positive

correlation. The presence of such a leading component points to

a common behavior relative to both the different networks and

different proteins and corresponds to the shape of the curve

describing the reach of the attractor (Figure 9, panel a).

The shape components (2 to 4) display both positive and

negative loadings and could be responsible for the differences

between networks. It is evident from both the loading pattern

(Table 4) and component plots (Figure 9 panels b–e) that no

component is able to discriminate among the different networks.

From the perspective of the reverse engineering of networks,

what this suggests is the improbability, if not the impossibility of

inferring GRNs by means of a pure data driven strategy based on

the measurement of mRNA or protein levels. The networks

obtained from the optimization procedure do show some

similarities with the template network. Almost all the networks

obtained (with one exception) require protein 1 to have an

activating PTM as well as a repressive autoregulatory loop. In

addition, all the optimized networks show that protein 1 promotes

the transcription of genes 3 and 4. In the first case, where only the

network wiring was optimized, it is also discernible that protein 1

inhibits the transcription of gene 2.

However, when both the network and the kinetic parameters

were included in the search space, there was no other feature that

was as discernible as the ones mentioned above. Given that kinetic

parameters are typically unknown and need to be estimated, there

is a strong case to be made for the fact that no single network that

can be obtained from a completely automated reverse engineering

approach can identify the template network that gave rise to the

observed phenotype in the first place. Rather, an ensemble of

networks can be derived from such approaches. However, even

this might not enable us to uniquely determine the underlying

network wiring without the additional aid of other data such as

those indicating the presence or absence of binding domains for

the different proteins, metabolites and other molecules that define

the network and so constraining the solution space.

Conclusions
Bar-Joseph et al. [36] incorporated DNA-protein binding results

along with expression profiles in order to describe a genome-wide

regulatory network. Since protein-DNA binding data provides

direct physical evidence of regulatory interactions, combining

genome-wide protein-DNA binding data with gene expression

data improves the detection of transcriptional modules over using

a single source [37]. The reasoning is that the low data quality and

coverage of high-throughput datasets imposes limitations on

inferring accurate networks and that technological innovations in

data generation and improvements in computational methods will

lead to a removal of this roadblock on the path to inferring the

underlying network structure accurately. However, we have shown

here that even in the presence of completely noise-free data and

detailed qualitative models, inferring network connectivities purely

from high throughput expression data is almost impossible due to

the indeterminacy of the reverse engineering problem. This

indeterminacy comes about as a result of gene elasticity with

multiple genotypes or network wirings giving rise to very similar,

indistinguishable phenotypes.

The impossibility of recovering the exact structure of the

network in the presence of feedback loops from input/output

relations (definition of a complex machine) was recognized by

Heinz von Foerster [38] in the middle of the last century. Thus,

the only recourse to accurately uncovering the underlying GRN

seems to be to use a combination of data of different origins and

scope such as in the work by Bar-Joseph and coworkers.
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