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Abstract

Background: Anopheles innate immunity affects Plasmodium development and is a potential target
of innovative malaria control strategies. The extent and distribution of nucleotide diversity in
immunity genes might provide insights into the evolutionary forces that condition pathogen-vector
interactions. The discovery of polymorphisms is an essential step towards association studies of
susceptibility to infection.

Results: We sequenced coding fragments of 72 immune related genes in natural populations of
Anopheles gambiae and of 37 randomly chosen genes to provide a background measure of genetic
diversity across the genome. Mean nucleotide diversity (1) was 0.0092 in the A. gambiae S form,
0.0076 in the M form and 0.0064 in A. arabiensis. Within each species, no statistically significant
differences in mean nucleotide diversity were detected between immune related and non immune
related genes. Strong purifying selection was detected in genes of both categories, presumably
reflecting strong functional constraints.

Conclusion: Our results suggest similar patterns and rates of molecular evolution in immune and
non-immune genes in A. gambiae. The 3,214 Single Nucleotide Polymorphisms (SNPs) that we
identified are the first large set of Anopheles SNPs from fresh, field-collected material and are
relevant markers for future phenotype-association studies.

Background these two organisms are responsible annually for more
Anopheles gambiae, the main vector of the human malaria  than a million of deaths in Africa, mostly young children.
parasite Plasmodium falciparum in SubSaharan Africa, is  This epidemic is worsening [1], prompting the search for
the most medically relevant insect in the world. Together =~ innovative strategies towards effective and efficient
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malaria control. One approach aims to disrupt parasite
development in the mosquito vector and thus alleviate
malaria transmission intensity [2]. This strategy requires
clear understanding of the intimate interactions between
parasite and vector, and of the mechanisms that regulate
the interaction. Large scale gene expression profiling in A.
gambiae has revealed that the insect's innate immune sys-
tem is stimulated following infection by Plasmodium par-
asites [3-6], highlighting this system as a primary
candidate for interventions to control the infection.
Extensive studies identified potentially relevant mecha-
nisms of innate immune response, including a balance
between positive and negative mosquito factors towards
the parasite [7-10]. Genetic variation underlies the suscep-
tibility of A. gambiae to Plasmodium infection: refractory
mosquito strains have been selected [11,12] and QTLs
identified for susceptibility/refractoriness to the model
parasite, P. cynomolgi [13,14]. However, to date the mech-
anism(s) involved and the underlying genetic basis
remain unknown [15]. Some studies conducted in field
conditions with wild mosquito and parasite populations
further demonstrated genetic variability in the mosquito's
susceptibility to P. falciparum infection and identified
putatively involved genes [16-18]; their contribution to
the phenotype and relevance in natura still remain to be
assessed fully.

The availability of the A. gambiae genome sequence [19]
has opened new perspectives for exploratory genetic stud-
ies in this species. The activities and evolution of its
immune system are now being studied intensively, and
could provide insights into the past and present patterns
of interaction with the pathogen. Initial studies revealed
selective constraints of diverse nature acting on some
immunity genes [20-24]. The current pattern of malaria
transmission is relatively recent (less than 10,000 years),
but has exerted strong selective pressure on human popu-
lations that led to the selection of resistance alleles, some
of which are strongly deleterious [reviewed in [25]]. Sig-
natures of selection were found on most genes implicated
in P. falciparum resistance in humans [26] and conversely,
population studies on P. falciparum have detected selec-
tion sweeps on its genome [27]. It is rational to expect that
P. falciparum has also exerted selective pressure on A. gam-
biae. If so, evolutionary genetics of the immune system in
natural A. gambiae populations should pinpoint resistance
or susceptibility genes based on their peculiar molecular
makeup.

Single nucleotide polymorphisms (SNPs) are the com-
monest mode of genetic variation in vertebrates and
invertebrates [28-30]. As such, SNPs rapidly became the
preferred and most useful molecular markers for associa-
tion studies, high resolution linkage mapping and popu-
lation genetics studies [26,31,32]. In coding regions,
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synonymous SNPs (sSNPs) that do not result in amino-
acid change are likely neutral markers for population
genetic studies. In contrast, non synonymous SNPs (nsS-
NPs) alter protein structure and could be retained by nat-
ural selection. The search for SNPs in A. gambiae
immunity genes is an initial step towards genetic dissec-
tion of vector competence in the wild [21].

Here, we report coding region SNPs in a representative set
of genes from different families associated with putative
innate immune functions in A. gambiae [5]. Genes chosen
randomly across the genome were included for compari-
son with the immunity data, such that the genome-wide
effects of demographic history may be distinguished from
gene-specific effects of selection. The study was carried out
on natural populations of A. gambiae s.s. (both M and S
molecular forms) and its sibling species, A. arabiensis, col-
lected from field sites in Cameroon (Central Africa).

Results

We studied 72 immune related genes, representing innate
immunity gene families and functions throughout the
genome [5]. Additionally, 37 non-immune related genes
randomly chosen along the genome were included in the
study. The relative proportion of genes involved in the dif-
ferent stages of immune response [5] and their chromo-
somal location are shown in Figure 1. Target genes are
listed in tables [see Additional files 1 and 2], with their
Ensembl gene IDs, accession numbers in the EMBL data-
base, their putative role in the immune response (func-
tional class), primer sequences, gDNA or cDNA nature of
the template, chromosomal location, length of the frag-
ment analyzed, and the number of alleles sequenced.

Sequence Polymorphism

We analyzed a total of 2,608,472 nucleotides across 109
coding fragments of an average length of 524 base pairs.
Nucleotide diversity indices and results of the tests for
selection within populations are given in Additional files
3 and 4. A total of 3,214 SNPs were detected in our data-
set: 2,026 were observed in immune related genes and
1,188 in non immune related genes, respectively. Corre-
spondingly, 1,711 and 1,071 SNPs were newly identified
polymorphisms (not previously reported). We also
detected 54 indels, always as a multiple of 3 bases preserv-
ing the open reading frame (ORFs). In the populations we
studied, 432 (78%) of the 554 SNPs previously reported
in ENSEMBL were detected (data not shown). Nucleotide
diversity along the chromosomes is presented Figure 2,
including immune related genes and control genes. Mean
nucleotide diversity () across all genes varied signifi-
cantly between species and populations (Mann-Withney
U test, P < 0.05): it was higher in the A. gambiae S form (n
= 0.0092) than in either the M form ( = 0.0076) or in A.
arabiensis (t = 0.0064). Within each species, however, no
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statistically significant differences in mean nucleotide
diversity was detected between immune related and non
immune related genes, nor between different functional
class within immune related genes (P > 0.05). Similarly,
nucleotide diversity was evenly spread on the four auto-
somal arms in the three populations. However, even after

correction for lower effective population size on the X
chromosome by multiplying estimates by 4/3 (see Meth-
ods), significantly lower genetic diversity (P < 10-3) was
observed on the X chromosome in each population
(mean m: 0.00131 for A. arabiensis, 0.00319 for the M
form and 0.00358 for the S form). Noticeably however,
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Figure 2

Nucleotide diversity. Nucleotide diversity along the chromosomes for A. arabiensis (red line), A. gambiae M form (blue line)
and A. gambiae S form (black line). Data from immune related genes and control genes are included. Abscise represents posi-
tion of the genes along the genome. Chromosomes and centromeres are represented below. The asterisk shows the position

of TEPI gene.

the gene TEP1 on the third chromosome showed much
higher genetic diversity than all the other genes we inves-
tigated (Figure 2).

Species divergence and population differentiation
Pairwise estimates of genetic differentiation (Fst) between
all population pairs are given on Figure 3, together with
their statistical significance, for each of the 109 genes.
Similar levels of genetic differentiation were detected by
immune related and non immune related genes, as well as
between different functional classes within immune
related genes (Mann-Whitney U test on Fst estimates, P >
0.05). Hence, data from all categories of genes were
pooled for further analyses. Average Fst estimates between
the M and S molecular forms of A. gambiae was similar
across all 3 chromosomes (Mann-Whitney U test on Fst
estimates, P > 0.05), with an overall Fst = 0.1377 (P < 10
3). Allelic frequencies differed among the incipient species
but only one sSNP found in a non-immune related gene
in section 5D on the X  chromosome
(ENSANGGO00000016082) segregated between the M and
S forms. Mean genetic divergence between A. arabiensis
and either the M or S form were similar (Fst = 0.5268 and
Fst = 0.4729 respectively, Mann-Whitney U test P > 0.05),
and were significantly higher than between the two
molecular forms (P < 10-3). Between A. arabiensis and the
M or S form, 175 and 125 SNPs, respectively were fixed
and mean genetic differentiation estimates were signifi-
cantly higher on the X chromosome (P < 0.01).

Tests of selection in immune related and non-immune
related genes

The Tajima D statistic was computed for each gene in all
populations [see Additional files 1 and 4]. At equilibrium
between random genetic drift and mutation, the expected
value of D for neutral markers is close to zero. This statistic
detected only few genes with significant departure from
neutrality, reflecting locus-specific selection rather than
the effect of demographic instability. Noteworthy, TEP1
showed a highly significant positive value of D in A. ara-
biensis (P < 0.01). This departure from neutrality was due
to the coexistence, at high frequency in this population, of
two highly diverged alleles: the previously described and
widespread TEP1r and TEP1s [7] were observed at a rela-
tive frequency of 37.5% and 62.5%, respectively, in A. ara-
biensis. In A. gambiae, TEP1s was the most frequent allele
and TEP1r was found at low frequency (12.5% in the M
form).

The Z test of selection revealed a very high proportion of
genes that are under selection across populations: only 3
genes among the immune related genes (3/72 = 4.1%)
and one among the non immune related genes (1/37 =
2.7%) showed the ratio of sSNPs/nsSNPs expected under
the hypothesis of neutrality. All other genes are strongly
deficient in non-synonymous changes, suggesting preva-
lence of purifying selection. At the population level, the
test was less often significant, most likely reflecting the
lack of statistical power when sequences are not suffi-
ciently polymorphic [33].

Page 4 of 13

(page number not for citation purposes)



BMC Genomics 2008, 9:227

For each pair of populations, Ka/Ks ratios are shown in
Additional files 5 and 6 for immune and non immune
related genes, respectively. Ka/Ks ratios are expected to
equal 1 if the genes under scrutiny behave neutrally. In
most case, however, and for both immune and non
immune related genes, the Ka/Ks ratios were much lower
than 1. Such a pattern implies that a mutation changing
the encoded amino acid sequence is much less likely to be
different between two species than one which is silent.
This is consistent with the results of the Z test of selection
and suggests that purifying selection is a major force driv-
ing the evolution of both immune and non immune
related genes in all populations.

Lack of fixed mutations precluded the implementation of
the McDonald-Kreitman test between A. gambiae molecu-
lar forms. For the comparison of A. arabiensis with the two
A. gambiae molecular forms, the test was computed across
groups of genes in order to encompass a sufficient number
of fixed variations for building the contingency tables.
However, combining data from different genes for Mac-
Donald-Kreitman tests has established drawbacks which
can lead to spurious cases of positive selection [34], thus
significant tests need to be carefully interpreted. Table 1
shows the total numbers of replacement and silent poly-
morphisms that are shared or fixed between pairs of spe-
cies, across immunity and non immunity related genes.
For the latter group, the test revealed adequacy with neu-
tral expectations (Two tailed Fisher exact test: P = 0.426
and P = 0.622 for each pair of species, respectively). Devi-
ations from neutrality in immune related genes were at
the limit of the significance threshold for both species
pairs (Fisher exact test: P = 0.038 and P = 0.081, respec-
tively) leading to inconclusive results as a reflection of
limited statistical power in our dataset.

Discussion

This study provides the most extensive set of data on
molecular polymorphisms in immune and non immune
related genes in A. gambiae and A. arabiensis. We observed
a high level of nucleotide diversity (>0.006) in coding
regions within members of the A. gambiae complex. This
is approximately ten fold higher than the level of nucle-
otide diversity observed in coding regions of the human
genome [29] but is comparable to the estimates reported
from Drosophila or in previous studies on Anopheles
[20,21,24,35-38]. Nucleotide diversity is a product of
both mutation rate and effective population size. Muta-
tion rates were shown to be similar in humans and Dro-
sophila [39,40], so the ten fold difference in average

nucleotide diversity between species was attributed to the
approximately ten fold larger long term effective popula-
tion size in Drosophila than in humans (Ne = 300,000 ver-
sus 20,000 respectively) [41,42]. The effective population
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size of A. gambiae is estimated at several hundred thou-
sand [43], which falls within the range of Drosophila esti-
mates and might explain similarities in levels of genetic
diversity in both species. We also observed a slightly
reduced diversity in A. arabiensis compared to A. gambiae
and in the M form of A. gambiae compared to the S form.
Reduced genetic diversity in A. arabiensis was already
observed previously [20,44], but colonization and further
maintenance of A. arabiensis for several generations in an
insectary might have added to this trend through
increased genetic drift. Alternatively, long term effective
population sizes differences might be expected between
these species, in light of their distinct bionomics and dis-
tribution across Africa [45,46].

Patterns of genetic diversity can be influenced by differ-
ences in recombination rate across the genome, with a
higher genetic diversity and a faster evolution rate
expected in high recombination regions [47,48]. Our
results must therefore be interpreted taking into account
this potential heterogeneity along the A. gambiae genome.
The known factors influencing recombination rate in A.
gambiae are the chromosomal inversions and the proxim-
ity to centromeres and telomeres [44,49]. The distribution
of immune related genes on the genome did not show any
aggregation in particular regions (Figure 1), therefore we
did not expect that the diversity pattern observed in
immune related genes would be a consequence of hetero-
geneity of recombination rates along the genome. How-
ever, considering genes position on the genome sheds
light on some evolutionary processes in A. gambiae. Para-
centric chromosomal inversions are very abundant in the
A. gambiae complex. More than 120 polymorphic inver-
sions have been detected in natural populations [49,50].
Ten inversions are fixed in the different species of the
complex and can be used to differentiate individual spec-
imens. Several lines of evidence suggest that these chro-
mosomal arrangements are incidental to ecotypic
adaptation and may be directly involved in the past and
current speciation processes occurring within this species
complex, mainly because recombination suppression
between alternative chromosomal arrangements might
protect arrays of co-adapted genes [46,51-56]. Mathemat-
ical models for inversion-based local adaptation and/or
speciation predict lower genetic diversity within species in
the chromosomal region involved in speciation, and
higher divergence between species [57,58]. In agreement
with these models, we found evidence for reduced varia-
bility and higher genetic divergence between species on
the X-chromosome. Indeed, A. arabiensis and A. gambiae
are differentiated by a fixed chromosomal arrangement
(Xag) that inverts a large part of the X chromosome [49].
Reduced effective population size for the X chromosome
is not sufficient to explain the observed pattern which is
therefore in agreement with previous studies demonstrat-
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Genetic differentiation between populations. Genetic distance between pairs of populations on chromosomes X (A), 2
(B) and 3 (C). Fst estimates are shown in the top part of each graph and the corresponding P-values are shown below, in grey
for A. arabiensis/A. gambiae M form comparisons, white for A. arabiensis/A. gambiae S form and in black for A. gambiae M form/A.
gambiae S form. Data from immune related genes and control genes are included. Horizontal straight lines represent the signif-
icance threshold at P= 0.05, dashed lines: P = 0.05 after correction for multiple tests (Bonferroni sequential procedure). Miss-
ing data are indicated with a dot. Negative Fst values that are always not significant were represented as equal to zero. Highly
significant P values (<104) were represented as P = 0.0001 to be shown on a logarithmic scale.
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Table I: McDonald and Kreitman test results in immune and non immune related genes

A: Between A. arabiensis and M form for immune related genes

Non synonymous Synonymous Ratios
Interspecific fixed divergences 36 63 0.571
Intraspecific polymorphisms 344 905 0.380
Ratios 0.104 0.070 P =0.081
B: Between A. arabiensis and S form for immune related genes

Non synonymous Synonymous Ratios
Interspecific fixed divergences 24 37 0.649
Intraspecific polymorphisms 421 1171 0.360
Ratios 0.057 0.032 P=10.038
C: Between A. arabiensis and M form for non immune related genes

Non synonymous Synonymous Ratios
Interspecific fixed divergences 16 55 0.290
Intraspecific polymorphisms 151 675 0.224
Ratios 0.106 0.081 P =0.426
D: Between A. arabiensis and S form for non immune related genes

Non synonymous Synonymous Ratios
Interspecific fixed divergences 14 49 0.286
Intraspecific polymorphisms 192 798 0.241
Ratios 0.073 0.061 P=0.622

SNPs were counted for the groups of genes (immune related or non immune related genes) within species (Intraspecific polymorphisms) or
between species (Interspecific fixed divergences). The probability (P) is calculated using a 2-tailed Fisher's exact test.

ing a "large x effect" on differentiation between these sib-
ling species [44,59]. The "large x effect" hypothesis
assumes the existence of speciation genes on the X chro-
mosome responsible for ecological and/or behavioral
adaptations that affect interspecific mating and/or hybrid
fitness.

No X chromosome inversions, detectable at the cytoge-
netic level, distinguish the M and S forms of A. gambiae.
Moreover, our samples were collected from an area of
South Cameroon where A. gambiae M and S are known to
be homosequential for the standard karyotype on all
autosomes [60-62]. Accordingly, levels of genetic differen-
tiation (single gene Fst estimates) were generally much
lower between the M and S forms of A. gambiae than they
were between these populations and A. arabiensis, and
only occasionally did reach statistical significance. How-
ever, consistent with recent evidence for increased differ-
entiation due to reduced recombination in the
centromeric region of the X chromosome of A. gambiae
[44,62-64], the only fixed SNP we observed between M
and S maps to the proximal region of the X chromosome
(X5D), a region that is considered as a "speciation island"
between the M and S forms of A. gambiae [62]. Except for

the X chromosome, we observed comparable genetic
diversity across the entire genome. We did not detect any
centromere or telomere effect, but a higher density of
genetic markers would be necessary to draw firm conclu-
sions about reduced diversity in these regions. The con-
stant distribution of genetic diversity on autosomal
chromosomes observed in the present study is in contrast
with results of the A. gambiae genome project, where a
highly variable distribution was observed [19]. The
genome sequencing project utilized the PEST strain that
was established from a mix of several natural populations
of the M and S forms of A. gambige, maintained under
insectary conditions for several years and exposed to bot-
tlenecks and selections [65]. It is likely that the uneven
distribution of diversity in the PEST strain resulted from
maintenance in the insectary, and that diversity in natural
populations is more evenly distributed. It must be kept in
mind, however that the present study focuses on popula-
tions from only one location for each species and might
reflect only a portion of the natural genetic diversity of the
species. Moreover, Cameroon might be an area where the
M and S forms of A. gambiae have achieved one of the
highest level of genetic differentiation observable
throughout the species range, as was first described by
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Wondji et al. [61] using microsatellite data and further
expanded by Turner et al.[62,66], using sequence data.
Overall, our estimates of Fst between species/molecular
forms are in strong agreement with those of Wondji et al.
[61] and Turner et al. [62,66], who detected one of the
highest and most significant level of genetic differentia-
tion between the M and S forms of A. gambiae observable
throughout the species range.

Tests for departure from neutrality are based on the
assumption of mutation-migration-drift equilibrium.
However, evidence for recent population expansion and
radiation has been found in both A. gambiae and A. arabi-
ensis [67,68]. Unstable demographic history can produce
patterns of genetic variation indistinguishable from those
of selection [69,70]. However, demographic history
affects similarly the entire genome, while selection is
locus-specific. For example, rapid population expansion is
expected to result in highly negative Tajima D values, as a
consequence of the rapid increase in number of polymor-
phicsites (S), and excess of low frequency alleles that have
little effect on = [71]. This pattern was not observed in our
dataset, where most computed Tajima D values were neg-
ative but not statistically significant. The Z test of selection
and Ka/Ks ratios demonstrated a deficit of non synony-
mous mutations in most of the genes (immune related or
not). The influence of population size changes on tests
based on synonymous and non synonymous variations
appears to be weak, even if not fully understood [35].
Therefore, it is most likely that the deficit of non synony-
mous mutations is due to generalized purifying selection
acting on A. gambiae ORFs, probably reflecting functional
constraints on the encoded proteins.

In Drosophila, several immunity genes revealed directional
selection [22,72,73] and a broad comparison of immune
system and non immunity genes supported the hypothe-
sis that pathogens exert a selective pressure on the
immune system [74]. Evidence for directional selection
driving evolution of the immune system in Drosophila was
consistent with the "arms race" model of co-evolution
[75]. In this model, the pathogen constantly evolves to
escape the host's immune response and, in turn, the hosts'
immune system evolves to better control infections. Such
dynamic iterative interactions would promote rapid evo-
lution in the genes involved in pathogen-host interactions
with rapid rise in frequency of selectively advantageous
alleles and high turn-over between alleles leaving insuffi-
cient time for the accumulation of neutral polymorphism
[76,77]. In contrast with data in Drosophila, our results did
not detect a pattern of directional selection in innate
immunity genes of A. gambiae. Although it is likely that
different evolutionary forces are at play in these organ-
isms, our inconclusive results probably reflect the limited
statistical power of our dataset. Indeed, evidence for a
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higher rate of evolution in immune related genes com-
pared to housekeeping genes in Drosophila was generated
through a powerful sequence dataset and the results of the
tests of selection was right below the 5% statistical signif-
icance thresholds [74]. In our data, the statistical power
was limited by the small number of fixed mutations
detected between species, pointing towards the necessity
of using a more distant outgroup than A. arabiensis for
evolutionary studies in A. gambiae [24]. Suitable outgroup
species should diverge sufficiently to allow powerful selec-
tion tests without reaching mutation saturation. There is
evidence that members of the A. gambiae complex are so
closely related to each other that their low level of diver-
gence would limit the statistical power of any conven-
tional test of selection. Moreover, genetic introgression
between well established species within the complex fur-
ther overshadows their phylogenetic relationships and
reduces divergence time [78]. In contrast, species of the
Pyretophorus series other than A. gambiae complex mem-
bers appeared too divergent to represent appropriate out-
groups [24]. The identification of a suitable outgroup for
comprehensive and powerful evolutionary studies in the
An. gambiae complex is still pending but it is likely that
ongoing whole-genome sequencing efforts and increased
interest in this burgeoning field will soon provide appro-
priate candidate species and allow revision of previously
inconclusive inferences.

In A. gambiae as well as in Drosophila, the level of genetic
diversity appeared to be similar between immune related
genes and control genes and between functional catego-
ries of genes involved in immunity. Balancing selection
does not drive the evolution of the immune system (the
specific case of TEP1 in A. gambiae is discussed below).
This is contrasting with the pattern of selection observed
in vertebrates, in which genes involved in defense mecha-
nisms are under balancing selection in addition to direc-
tional selection. In vertebrates, the system of recognition
of acquired immunity requires a large diversity of major
histocompatibility complex genes to bind large diversity
of antigens [79]. As such, the pattern of variability in A.
gambiae and Drosophila immune systems is consistent with
the recognition of relatively few motifs conserved across
broad ranges of pathogens. However, the recent discovery
of hypervariable immunoglobulin domain-encoding
genes, Dscam, capable of producing pathogen-specific
splice [80,81] opens new insights into recognition system
in insects suggesting specific recognition of a spectrum of
pathogens. Future investigations of molecular evolution
will determine the selective forces at play on such genes
and will help understanding their role in pathogen recog-
nition.

One of the immune-related genes, TEP1, showed a unique

pattern of variation. It displayed the highest level of
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genetic diversity among the genes we investigated and a
significant positive value of the Tajima D statistic suggest-
ing maintenance of divergent alleles. A previous study [7]
revealed two highly differentiated TEP1 alleles that were
initially mistaken as distinct genes, in the first version of
the genome assembly. Crosses between laboratory strains
showed Mendelian inheritance of these allelic forms,
TEP1s and TEP1r, which are associated with two A. gam-
biae strains susceptible and refractory to P. berghei, respec-
tively [7]; it was hypothesized that the alternative alleles
are causally related to these phenotypes. The diversity we
observed in TEP1 can be the result of balancing selection
and would be reminiscent of selection for diversity in
acquired immunity. However, gene conversion between
different genes in the TEP family might result in similar
patterns of diversity and further investigation is needed to
disentangle these hypotheses. Nonetheless, our results
emphasize the importance of the TEP1s and TEP1r alleles,
and demonstrate these to segregate in natural popula-
tions. However, their role in determining the susceptibil-
ity of A. gambiae to Plasmodium infection remains to be
established, as their segregation in laboratory strains
could be due to increased genetic drift at the onset and
throughout the colonization process.

Conclusion

Through the sequencing of 109 fragments of genes in A.
gambiae, we identified 3,214 SNPs that are relevant mark-
ers for future phenotype-association studies. The pattern
of genetic variability showed little evidence for mainte-
nance of protein variation by balancing selection in A.
gambiae immune system. It revealed strong purifying
selection as the main force driving evolution of the A.
gambiae genome, probably as a result of functional con-
straints for protein integrity and activity. TEP1 showed a
unique pattern of genetic diversity that could be the con-
sequence of balancing selection or gene conversion.

Methods

Mosquito populations

A. gambiae s.s. larvae were collected in Simbock (03°51'N,
11°30'E), a South Cameroon village near Yaoundé, where
both molecular forms M and S are sympatric [82]. The fact
that the M and S populations were collected in a single vil-
lage allows measuring genetic differentiation without bias
due to geographical distance between collection sites. Lar-
vae were reared in an insectary until adult emergence. A.
arabiensis larvae were collected in Pitoa (09°24'N,
13°30'E), in North Cameroon [83] and the offspring were
maintained in the insectary for approximately 10 genera-
tions, in 26-27 degrees Celsius, relative humidity 70-
80% with 12 h/12 h light dark cycle. The number of A.
arabiensis at each generation was always more than 100
individuals, avoiding strong bottleneck and genetic drift
for the given number of generations. Anophelines were

http://www.biomedcentral.com/1471-2164/9/227

identified as members of the A. gambiae complex using
morphological keys [45,84]. Species were identified using
species-specific PCR [85] and the molecular forms of A.
gambiae were distinguished by the PCR assay of Favia et al.
[86]. Eight M molecular form females, 9 of the S molecu-
lar form and 8 A. arabiensis were used for sequence analy-
sis.

DNA/RNA isolation and sequencing

Coding regions are especially informative in evolutionary
genetics and allow tests of selection based on comparison
of synonymous (sSNPs) and non-synonymous (nsSNPs)
mutations. Depending on the distribution of introns and
exons, specific PCR assays for each gene were developed
from coding regions of genomic DNA (gDNA) or comple-
mentary DNA (cDNA).

DNA was isolated from legs of adult females as described
[21] and amplified with the Genomiphi kit (GE Health-
care, UK). This procedure conserves DNA polymorphism
and does not alter SNP detection [87]. RNA was isolated
from the same individuals (entire mosquitoes minus legs)
by Trizol reagent (Invitrogen). After DNase I treatment,
total RNA was reverse transcribed using the Superscript 11
kit (Life Technologies).

PCR assays were developed to amplify all or part of the
coding regions of studied genes. Data on DNA sequence,
genomic position and known polymorphism were
obtained from the ENSEMBL website [88]. PCR primers
were designed using Primer3 [89]. PCR reactions were
performed in 50 pl solution containing 20 pmol of each
primer, each dNTP at 0.2 mM, 2.5 mM MgCl,, 10 mM
Tris-HCI (pH 8.3), 50 mM potassium chloride (KCI), 2
units of Taq polymerase and approximately 10 ng of tem-
plate DNA. Amplification conditions included an initial 5
min 94°C denaturation, followed by 12 cycles at 94 °C for
30, 65°C for 30 s, with a decrease of one degree per cycle,
and finally 72°C for 1 min 30 s. They were followed by 25
cycles of 94°C for30s, 56°C for 30 s, and 72°C for 1 min
30s. A final 72°C extension step lasted 10 min. The excess
dNTPs were digested with Shrimp Alkaline Phopshatase
and primers with Exonucleasel (United State Biochemi-
cals). Both strands were sequenced using the Bigdye termi-
nator v3.1 cycle sequencing kit (Applied Biosystems) and
an Applied Biosystems 3730 sequencer. Sequences were
assembled and verified using SeqScape (Applied Biosys-
tems).

Data analysis

Sequence alignments were performed using the ClustalW
included in MEGA 3.1 [90]. Non-coding regions were
removed from analysis. Calculations were carried out after
elimination of alignment gaps. Polymorphism analyses
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and molecular population genetic test statistics were cal-
culated using DnaSP 4.10 [91] and MEGA 3.1.

For each population (hereafter A. arabiensis, A. gambiae M,
A. gambiae S), we calculated the numbers of segregating
sites (SS), informative segregating sites (ISS: polymor-
phisms found more than once in the dataset), and nsS-
NPs. Nucleotide diversity was estimated as the average
pairwise nucleotide difference per site, considering all
sites (), synomymous sites only (ms) or non-synony-
mous sites only (nns) [92] and from the proportion of
segregating sites Ow [93]. Genetic diversity estimates were
compared between groups of genes using the Mann-Whit-
ney U test. Estimates derived from X-linked genes were
adjusted for their lower effective population size by mul-
tiplying estimates by 4/3 because male mosquitoes carry
only one copy of the X chromosome [e.g. [29]].

Divergence between species and genetic differentiation
between A. gambiae molecular forms was assessed by
sequence-based F statistics (Fst) analogous to Wright F
statistics [94], calculated according to Hudson et al [95].
Levels of genetic divergence in groups of genes were com-
pared using the Mann-Whitney U test. P values of average
Fst across several loci were calculated by Fisher's method.

Molecular signatures of selection were searched using var-
ious statistical tests. The Tajima's D statistics [71] com-
pares two estimators of genetic diversity, one based on the
average number of differences between all pairs of
sequences sampled (0,) and the other based on the total
number of polymorphic sites observed (6s). If the popula-
tion is at mutation-drift equilibrium and polymorphism
is neutral, both estimators should be equal and the test
statistic is zero. However, under selection or non-equilib-
rium, the two estimators will differ, and this difference
reflects the mode of selection or the direction of change in
population size. While 64 is only influenced by the
number of segregating sites in the dataset, = is sensitive to
allele frequencies at segregating sites, such that alleles at
intermediate frequencies contribute more than alleles at
low frequencies. Consequently, if a sample has an excess
of rare variants (as a consequence of purifying selection or
of population growth), 6, would be less than 6g and the
statistic is negative. In contrast, if there is an excess of alle-
les at intermediate frequency (e.g. balancing selection or
population bottleneck), Tajima's D statistic will be posi-
tive [70,71]. Comparison of the pattern observed across
multiple independent genes allows distinguish locus-spe-
cific effects of selection from genome-wide patterns attrib-
utable to demographic changes. To avoid a possible bias
due to mildly deleterious alleles towards low frequency
variants, Tajima'D tests were computed using silent sites
only.

http://www.biomedcentral.com/1471-2164/9/227

To detect positive Darwinian selection (directional selec-
tion), we compared the number of synonymous substitu-
tions per synonymous site (dS) and the number of non-
synonymous substitutions per non-synonymous site (dN)
[76] using bootstrapping in MEGA 3.1 (Z-test of selec-
tion). We took alternatively as the null hypothesis dS = AN
(neutral hypothesis), dS<dN (positive selection) and
dS>dN (purifying selection).

The Ka/Ks ratio compares the number of replacement sub-
stitutions per site (nsSNPs) and silent substitutions per
site (sSNPs) among different populations [96,97]. This
ratio is higher for genes under selection for beneficial
amino acid changes. Ka/Ks ratios were calculated for each
gene and for each pair of populations.

Under neutral evolution, the ratio of replacement to silent
mutations that are fixed between species should equal the
ratio of replacement to silent polymorphisms within spe-
cies [98]. The MacDonald-Kreitman test uses a 2 x 2 con-
tingency table to test differences in these ratios. This test
could not be performed with each gene separately
because, in most cases, the number of fixed polymor-
phisms was too low for contingency table computation.
Therefore, the test was performed with the sum of fixed/
polymorphic sSNPs and nsSNPs across all genes for each
pair of populations, by using the 2 x 2 test of independ-
ence in DnaSP. Summing mutations across genes can lead
to spurious cases of positive selection [34] the results must
therefore be carefully interpreted
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