
materials

Article

Mechanical Properties of Different Nanopatterned
TiO2 Substrates and Their Effect on Hydrothermally
Synthesized Bioactive Hydroxyapatite Coatings

Amanda Bartkowiak 1,* , Arkadiusz Zarzycki 1 , Slawomir Kac 2, Marcin Perzanowski 1 and
Marta Marszalek 1

1 Institute of Nuclear Physics PAN, Radzikowskiego 152, PL-31342 Krakow, Poland;
arkadiusz.zarzycki@ifj.edu.pl (A.Z.); marcin.perzanowski@ifj.edu.pl (M.P.);
marta.marszalek@ifj.edu.pl (M.M.)

2 Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology,
Mickiewicza 30, PL-30059 Krakow, Poland; slawomir.kac@agh.edu.pl

* Correspondence: amanda.bartkowiak@ifj.edu.pl

Received: 15 October 2020; Accepted: 18 November 2020; Published: 23 November 2020 ����������
�������

Abstract: Nanotechnology is a very attractive tool for tailoring the surface of an orthopedic implant
to optimize its interaction with the biological environment. Nanostructured interfaces are promising,
especially for orthopedic applications. They can not only improve osseointegration between the
implant and the living bone but also may be used as drug delivery platforms. The nanoporous
structure can be used as a drug carrier to the surrounding tissue, with the intention to accelerate
tissue–implant integration as well as to reduce and treat bacterial infections occurring after
implantation. Titanium oxide nanotubes are promising for such applications; however, their brittle
nature could be a significantly limiting factor. In this work, we modified the topography of
commercially used titanium foil by the anodization process and hydrothermal treatment. As a
result, we obtained a crystalline nanoporous u-shaped structure (US) of anodized titanium oxide
with improved resistance to scratch compared to TiO2 nanotubes. The US titanium substrate was
successfully modified with hydroxyapatite coating and investigated for bioactivity. Results showed
high bioactivity in simulated body fluid (SBF) after two weeks of incubation.

Keywords: hydroxyapatite coating; nanotubes; scratch test; bioactive coatings; anodized titanium

1. Introduction

The search for a suitable material that can replace or repair bone defects and at the same time
prevent postoperative infections has been of great interest in the field of biomaterials and tissue
engineering. New materials should follow strict biological and mechanical requirements in order
to be applied as medical devices. Lately, the improvement of orthopedic implants has spurred the
research toward surface design, especially in relation to the synergic effects of the following features:
bioactivity, osteoconductivity, and antibacterial properties [1,2]. Among different approaches to tailor
and functionalize surfaces, nanotechnology offers promising methods to optimize the surface of
biomaterials on a nanoscale level.

Titanium and its alloys are widely used as intra-osseous implants [3]. Titanium implants drive
their resistance to corrosion and the ability to integrate with bone from a stable oxide film that is
formed on their surface [4,5]. Clinical tests show that not only surface chemistry exerts an influence on
osseointegration mechanisms but also surface roughness. The smooth and untreated titanium surface
exhibits poor fixation with bone tissue. After implantation, even highly biocompatible metals are
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separated from bone by a thin layer of soft tissue, called fibrosis, that prevents the implant surface from
being in direct contact with bone [6–8]. Nevertheless, fibrotic encapsulation is a natural outcome of the
healing process; it walls off the implant from bone tissue. Desirable healing response to a bioactive
surface just after the inflammation stage leads to the vascularization and formation of fibrocartilage and
osteoid, which is subsequently followed by bone maturation [9]. This type of body response is highly
recommended for orthopedic applications, as it provides rigid fixation at the bone–implant interface.

Nanoscale structures offer surface energy larger than other texture scales, which can improve the
adhesion of proteins present in the extracellular matrix (fibronectin, vinculin). The immobilization
of biomolecules, such as enzymes or matrix proteins, can be used to stimulate cellular adhesion and
migration, which is known as a substantial step in osseointegration processes [10,11]. Functionalizing
a surface with other bioactive molecule, such as lectins, can exert different effects on the cellular level,
such as the immunomodulatory effect (stimulating the proliferation of lymphocytes and splenocytes)
or the inhibition of bacterial and fungal growth [12,13].

The electrochemical anodization of titanium gives the opportunity to produce nanotubular or
nanoporous surface structures, yielding bioactive and osteoconductive properties [14,15]. Studies show
that such a specific crystalline nanotubular structure of TiO2 significantly increases new bone formation
in vivo and gene expression associated with osteogenesis, and it also enhances osteoblasts proliferation
and adhesion, as well as generates a high activity of alkaline phosphatase. In comparison, smooth or
micro-rough surfaces were shown to have an insignificant effect on osteogenesis mechanisms [16,17].

Another important aspect of nanotubes or nanopores is their promising application as smart drug
delivery platforms [18,19]. The localized controlled release of therapeutics is a forward-looking strategy
for inflammatory and antibacterial treatment after implantation. TiO2 nanotubes (NT) have been shown
to exhibit great potential for such applications [20]. Despite these attractive physicochemical and
biological properties of TiO2 NT, their main limitation is poor mechanical performance. Subjected to
compression loads, NT were shown to experience brittle fracture with fragmentation [21].

In this work, we demonstrate a crystalline nanoporous u-shaped structure (US) of anodized
titanium that revealed twice higher resistance to scratch compared to NT. The TiO2 US substrate could
be used as a drug carrier to the surrounding tissue or as a surface with nanoroughness suitable for
the immobilization of biomolecules. Moreover, the US substrate was successfully functionalized with
hydroxyapatite coating (HApUS) and investigated for bioactivity. The combination of such specific
nanotopography and bioactivity of HAp was previously reported to have a positive synergic effect
on osseointegration in vivo [22]. Specifically, it was shown to upregulate the gene expressions of
cell adhesion and osteogenic differentiation markers. We are convinced that the HApUS composite
could be an upgrade of the implant surface-stimulating osteogenesis mechanisms while maintaining
mechanical stability during surgery.

2. Materials and Methods

2.1. Preparation of Titanium Substrates

The preparation of anodized titanium substrates was carried out according to the study of
Suchanek et al. [23]. Prior to the anodization process, pure titanium foil (BIMO Metals, Wroclaw,
Poland) with a thickness of 3 mm was cut into square pieces of 14 × 14 mm2 and subsequently polished
to mirror quality with CeO2 paste for noble metals (Surex, Poland). Afterwards, samples were cleaned
chemically by immersion in an aqueous acid mixture of 5.6 M HNO3 and 3.3 M HF (POCH, Poland)
for 2 min. This treatment was followed by washing with distilled water and ultrasonic cleaning in
ethanol for 5 min.

Fabrication of the TiO2 layer in the form of nanotubes and u-shaped nanopits was carried out on
a Teflon holder by standard two-electrode anodization in potentiostatic mode at room temperature.
During this process, voltage was kept constant at 50 V, Ti substrate was used as an anode, and a platinum
plate was used as a cathode. The electrolyte used in the anodization process of both NT and US
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contained 0.5 wt % NH4F (POCH, Poland) and 1 wt % H2O dissolved in ethylene glycol. Samples were
prepared with a two-step anodization process, where after the first anodization performed for 120 min,
the oxidized layer was removed ultrasonically. This step was followed up by a second anodization
process, when nanotubes were anodized for another 120 min, and specimens with u-shapes were
anodized for 15 s. In order to wash out the remains of the electrolyte, samples were cleaned for 10 min
in an ultrasonic bath with ethanol. Afterwards, both kinds of nanostructured samples, NT and US,
were annealed in an oxidizing atmosphere at 600 ◦C for 1 h. Taking into account that US are produced
as a result of NT removal, followed by a short anodization process, the US can be considered as an
initial stage of NT formation. The schematic overview of sample preparation is demonstrated in
Figure 1.
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Figure 1. Schematic overview of sample preparation, including the formation of TiO2 layers by an
anodization process (u-shaped structure (US) and nanotubes (NT)) and a hydrothermal synthesis of
hydroxyapatite (Hap) coating on thermally treated nanopatterned substrates (HApNT and HApUS).

2.2. Hydrothermal Synthesis of Hydroxyapatite Coatings

The synthesis of hydroxyapatite (HAp) coatings on substrates with a nanopatterned TiO2

intermediate layer (NT and US) was carried out under hydrothermal conditions according to the
method described in our previous study [24]. An overview of the reactions occurring during the
hydrothermal synthesis of HAp coatings is demonstrated in Figure 2. Firstly, an aqueous solution was
prepared with a Ca/P ratio of 1.67 from the following ingredients: Ca(NO3)2·4H2O (0.2 M) (POCH,
Gliwice, Poland), (NH4)2HPO4 (0.12 M) (POCH, Gliwice, Poland), and Na2EDTA·2H2O (0.2 M) (POCH,
Gliwice, Poland). The pH of the calcium–phosphate solution was adjusted to 9.0 with a dropwise
addition of ammonium hydroxide. Secondly, the nanopatterned substrates, one at a time, were fixed
on a titanium holder and placed in a 200 mL glass container inside the autoclave. The holder was
set at the angle of 45◦ to the bottom. Finally, the calcium–phosphate solution was poured into the
glass vessel, allowing the samples to be completely immersed. The synthesis was carried out for 7 h at
200 ◦C in a sealed autoclave. After the hydrothermal process, samples were rinsed with distilled water
and dried in air at room temperature.
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2.3. Morphology, Structure, and Adhesion Characterization

The surface morphology and chemical characterization of samples was done using scanning
electron microscopy (SEM, Tescan Vega 3, Fuveau, France), equipped with an energy-dispersive X-ray
spectrometer (QUANTAX EDS, Bruker, Billerica, MA, USA). The chemical composition was examined
using a Raman spectrometer (Almega XR of Thermo Electron Corp., Winsford, UK) equipped with an
optical microscope. The Raman signal was excited at the wavelength of 532 nm. Data were collected
in the spectral range from 100 to 4000 cm−1 with resolution of 2 cm−1. The XRD measurements
were carried out with a PANalytical X’Pert Pro diffractometer (Almelo, Netherlands) in the standard
θ–2θ geometry. The operating voltage and current were kept at 40 kV and 30 mA, respectively.
The acquisition of XRD diffraction patterns was performed with a step size of 0.05◦ in the 2θ range
from 20◦ to 100◦ using Cu Kα (λ = 1.54 Å) radiation. The angular resolution of the instrument was
calibrated using an LaB6 line profile standard (SRM660a - NIST certificate [25]). We evaluated the
adhesion strength of the nanopatterned samples using a combination of SEM, EDS, and a Nano-Scratch
Test System (CSM Instruments, Needham, MA, USA). Scratch measurements were performed with
normal load ranging from 0.1 to 100 mN and loading speed of 2 mN/s using a diamond Rockwell-tip
with a top radius of 2 µm. On each type of the nanostructured titanium oxide film, we performed
10–15 scratches in different places of the samples.

2.4. Bioactivity Test in SBF

A bioactivity assessment of US and NT samples, with and without HAp coating (HApUS, HApNT),
was investigated by immersion in acellular simulated body fluid (SBF) according to ISO standard
23317:2014(E) [26]. The ionic concentration of SBF was nearly equal to that of human blood plasma at
36.5 ◦C (Na+ 142.0, K+ 5.0, Mg2+ 1.5, Ca2+ 2.5, Cl− 147.8, HCO3− 4.2, HPO4

2− 1.0, and SO4
2− 0.5 mM),

and pH was adjusted to the value of 7.40 using TRIS and HCl (1 mol dm−3). Each of the samples was
incubated for two weeks at 37 ◦C in plastic sterile containers with 7 mL of SBF. The fluid was refreshed
every three days. After two weeks, samples were removed from SBF, rinsed with distilled water,
and left to dry in air. SEM study was performed on as-prepared samples before and after immersion in
SBF. The time of incubation was adjusted to observe full biomineralization in vitro.

3. Results

3.1. Morphology and Structure of Nanopatterned Crystalline TiO2 Layers before and after
Hydrothermal Synthesis

SEM images presenting the morphology of annealed TiO2 u-shaped nanopits and aligned
nanotubes are shown in Figure 3. Both forms of anodized TiO2 nanopatterns exhibit similar inner
diameters of 106 ± 8 nm for US and 104 ± 10 nm for NT, which were determined directly from SEM
pictures with the assumption of a circular shape of the structures. The height of the US is approximately
1
2 of its diameter, while in the case of NT, the 2 h long anodization process produces a micrometer
long tubular structure. Moreover, we observed distinguishable small pores within the US arrays,
with diameters of approximately 30 ± 4 nm.

Figure 4 demonstrates an XRD and Raman study on hydrothermally treated U shapes and
nanotubes (HApUS and HApNT, respectively). From the structural and chemical point of view,
the fabricated US can be considered as a similar product to NT composed of two crystalline
forms of titanium oxide: anatase and rutile. The XRD patterns for HApUS and HApNT samples
(Figure 4) showed Bragg peaks characteristic for anatase (according to the ICSD card No. 00-004-0477),
rutile (according to the ICSD card No. 00-034-0180), and α-titanium (according to the ICSD card
No. 01-089-5009). The XRD patterns of hydrothermally treated US and NT confirmed also the synthesis
of the HAp phase with hexagonal symmetry and space group P63/m [24,27,28]. The lattice parameters
calculated for the HAp coating on US (HApUS) were a = 9.43(1) Å and c = 6.89(1) Å, whereas for the
HAp coating on NT (HApNT), they were a = 9.44(1) Å and c = 6.90(1) Å. These values agree with
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data established for the HAp phase [29,30]. Comparing the relative intensities of reflections for the
HAp structure at 2θ of 31.7◦, 32.1◦ and 32.8◦, corresponding to (211), (112), and (300) crystallographic
planes, we can notice some slight differences between samples HApUS and HApNT. We associate these
discrepancies with the crystallographic texture or some structural defects. Preferred crystallographic
orientation might also cause an absence of XRD reflection assigned to anatase at 2θ of 37.7◦, 53.7◦ in
case of the HApUS sample. The TiO2 coating that is not produced by an electrochemical anodization
process, but for instance by chemical and thermal treatment is found in rutile but not the anatase
structure [24,31,32]. In our previous study concerning the synthesis of HAp coating on a nanotubular
surface of TiO2 [23], we observed the tendency for crystal growth along the (001) crystallographic
direction. It is noteworthy that no other forms of crystalline calcium phosphates were observed in the
XRD analysis.
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after the hydrothermal process (HApUS and HApNT, respectively).

Analysis on the structural and chemical nature of the produced samples complementary to XRD
with the use of Raman spectroscopy is shown in Figure 4. The Raman vibrational spectra of both
specimens HApUS and HApNT exhibit characteristic bands for hydroxyapatite structure, including a
band originating from the hydroxyl group (OH−) and four internal modes associated with the presence
of the phosphate group PO4

3− (v1, v2, v3, v4) [27,33,34]. In both cases, we also observe five characteristic
bands for anatase, which are localized at 395, 513, 143, 200, and 639 cm−1 [35]. In this study, the only
characteristic Raman-active band for rutile observed in spectra of anodized and annealed titanium is at
the position of 238 cm−1. The other molecule vibrations of rutile phase at 610 and 446 cm−1 overlap
with the stronger intensity vibration modes assigned to the phosphate group (v2 and v4) [36].

3.2. Resistance against Scratch of Crystalline TiO2 Layers in the Form of NT and US

A combination of three methods was applied—a nano-scratch test combined with EDS and SEM
measurements—to provide a comparative study on the resistance against scratch for US and NT.
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The conventional method for assessing adhesion of a film to the substrate requires determining the
critical normal load at which the film starts to delaminate from the substrate. This estimation is based
on precise measurements of friction force (with constant increase of normal load) and micrographs
of the scratched surfaces from optical microscope. Due to the nano-scaled size of the nanostructures,
it was difficult to determine the critical normal loads directly from optical micrographs or changes in
the acoustic emission sensor output. For that reason, additional morphological and elemental analysis
was required to determine the moment of coating delamination and exposition of the metallic substrate.

Figure 5 presents SEM images of sample surfaces after the scratch test performed on different
areas: the beginning of the scratch (left image); the intermediate area showing a deformed but still
continuous (according to EDS measurement) layer of the crystalline TiO2 (middle image), and the
area of layer delamination with substrate exposition (right image). From the SEM study, we observe
that there is a significant difference in the deformation mechanism under increasing load applied
on the moving tip between the US and sample with NT. Just after initial indentation at the minimal
load force of 0.1 mN, nanotubes began to collapse, and many large debris along the scratch’s edges
can be recognized. Further analysis along the groove confirmed nanotubes’ brittleness and ability
to easily break and detach from the substrate. At the initial stage of the scratch test, we observe
for the US sample superior mechanical properties, i.e., a shallow penetration of the Rockwell stylus
and more plastic deformation compared to the NT layer. Further SEM analysis of the intermediate
part of scratches on the US reveals substrate-like inner cracks within the groove caused by plastic
deformation mechanisms. The presence of perpendicular cracks implies that the material underwent
compaction and abrasion by the microploughing or microcutting mechanisms under the tip movement,
although the US layer maintained its continuity and good adhesion. However, after reaching a certain
depth of tip penetration, some debris can be recognized close to the groove’s edges presented in the
delamination area (end part of the scratch), which may indicate the predominance of brittle deformation
over plastic. In the failure point, also the morphology of the scratched US surface changed during tip
sliding, and there was no evidence of nanopatterned features within the groove.
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Figure 5. SEM images showing the evolution of grooves after a scratch test on samples with crystalline
TiO2 layers in the form of US and NT.

SEM images of selected areas where delamination of the TiO2 coating was identified after the
scratch test, with their elemental mapping using EDS spectroscopy, are shown in Figure 6a,b for US
and NT, respectively. Several profiles of EDS scans were made perpendicularly to the tip movement
across all of the three grooves. Two representative profile spectra were selected to demonstrate data
with titanium and oxygen signals, one showing the presence of a continuous coating within the
grooves (Scan 1), and a second where delamination and exposure of the metallic substrate was found
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(marked with black arrows, Scan 2). The critical load was determined according to the distance at
which EDS analysis showed a significant increase in signal for titanium and simultaneous decrease in
signal for oxygen (Scan 2) at least for one of the grooves. In this work, the critical normal load at which
we observed delamination of TiO2 film for the US sample was about twice higher than that for NT,
i.e., the critical normal load was 22.0(3) mN for US and 11.0(3) mN for NT. The visible lines placed
perpendicularly to the grooves on the SEM image of the US in Figure 6a are apparently caused by
surface charging or superficial destruction of the TiO2 layer by electron beam during each EDS scan.
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Figure 6. SEM and energy-dispersive X-ray spectrometer (EDS) analysis after a scratch test for (a) US
and (b) NT: (on the right) SEM image of scratches where the numerical scale corresponds to the length
of scratches (3 mm); (in the middle) high-magnification SEM image of a selected area marked as a green
square; (on the left) EDS study of the selected area; (Scan 1 and 2) line profile EDS analysis across the
scratches. Image (c) demonstrates dependence of the normal force on distance and estimated values of
the critical normal force at which delamination of the thorough oxide film was observed for both the
US and NT.

Scratches that are demonstrated in Figures 5 and 6 are representative for each kind of TiO2 film.
Figure 5 shows three sections (beginning/intermediate/end), where we demonstrate sequential changes
in surface morphology along one scratch and differences in deformation mechanisms that correlate
with results from SEM-EDS study in Figure 6. The beginning is the starting point of each scratch,
the intermediate images were taken at a similar distance from the starting point, but the end images
were made at different locations from the beginning of the scratch due to a significant difference in
distance between the two samples NT and US where the delamination was observed.

The reason for the better mechanical performance of the US layer is strongly related to the aspect
ratio between the walls height and diameter. As we outlined earlier, the height of the US array was
approximately 1

2 of its diameter, while NT showed a micrometer-long tubular structure. Due to the
ratio between the wall height and tube diameter, NT are prone to easily brake and collapse, which have
been reported by other authors on the basis of nanoindentation studies [21,37]. When the penetration
of an indenter proceeds in depth, NT fracture and interact with neighboring nanotubes, causing them
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to bend and fracture. In the last stage of this brittle deformation, we observe a densification of NT
fragments (Figure 5).

3.3. Bioactivity Analysis

One of the most important requirements for modern biomaterials used in orthopedics is the
formation of chemical bonding between the material’s surface and the living bone (osseointegration).
This specific implant–tissue interaction should guarantee the proper stabilization of an implant inside
the body and its long-term functionality. A common method for anticipating bone-bonding ability
in vitro is by soaking a sample in SBF solution. After a certain period of immersion, the formation of
bone-like apatite on the material’s surface should be observed [38].

In this work, we present an EDS (Figure 7) and SEM (Figure 8) comparison study on the bioactivity
of US and NT, with and without a hydrothermally synthesized HAp coating after two weeks of
immersion in SBF solution. After nearly two weeks of incubation in SBF, we observed the formation of
a thick layer of bone-like apatite with characteristic flower-like crystal assembly on both substrates with
hydrothermally synthesized HAp coating, i.e., HApUS and HApNT (Figure 8). The main constituents
that build the structure of fabricated crystalline HAp coatings are the following elements: phosphorous
(P), calcium (Ca), and oxygen (O) [39]. After treatment in SBF, in addition to elements characteristic
for the synthetic HAp structure, we observe in EDS spectra for HApUS and HApNT elements that
are associated with a bone-like apatite structure: carbon (C), magnesium (Mg), and sodium (Na) [40].
The NT sample without HAp coating also induced the deposition of biomimetic apatite from SBF,
which is in agreement with other reports on the enhancement of bioactivity in the case of crystalline TiO2

nanotubes [41,42]. In case of the US sample, which was not covered with HAp, there was no change in
the surface morphology before and after soaking in SBF for 13 days (Figure 8), and its EDS spectrum
after the bioactivity test did not show elements characteristic for the apatite structure (Figure 7).
Some reports suggest that the certain crystallographic structure of titanium dioxide may affect the
bioactivity of its surface in SBF [15,43]. Our XRD study (Figure 4) revealed that there is a difference
in the relative intensity ratios of anatase to rutile between the US and NT substrates (the diffraction
signal assigned to anatase and rutile is only attributed to titanium substrate), which might have had
an influence on their bioactive behavior. On the other hand, it has been reported that the length of
nanotubes could be a crucial factor in the ability to promote in vitro apatite formation in body fluids [41].
The study showed that 2 µm-long nanotubes were significantly more effective in forming bone-like
apatite compared to 500 nm-short nanotubes. This observation could be another explanation why US
with the height of their walls approximately 1

2 of their diameter were insufficient to promote bioactivity
during the test. The possible mechanism for this could be attributed to small surface charge [31],
insufficient mass transfer within the US structure, or surface roughness [44]. However, when US were
coated with synthetic HAp under hydrothermal conditions, the US sample was competitive to NT
high bioactivity after 2 weeks of incubation in SBF (Figure 8).
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4. Discussion

From the clinical point of view, at the time of implantation, orthopedic implants are subjected
to considerable mechanical stress. Most of the studies focus on the biological aspect of nanotextured
implants [45,46]; however, only few scientific reports consider investigating the mechanical properties
of TiO2 nanotubes [21,47], especially regarding resistance to scratch [48]. According to our study,
nanoscale surface topography requires a more sophisticated approach than determining the adhesion
strength of an NT layer only from acoustic emission examination, friction measurements, or optical
microscopy assessment. A deeper insight into evaluating the resistance against scratch of nanotextured
surfaces can be achieved by combining the nano-scratch test with SEM imaging [49]. During the
electrochemical growth of TiO2 NT beneath the nanotubular layer, a barrier layer of continuous oxide
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film is formed at the oxide/metal substrate interface [50,51]. To date, none of the adhesion studies
considered the importance of this barrier layer, thus determining the critical load at which delamination
of the thorough oxide layer occurs (NT layer along with barrier layer). Using SEM imaging, it is possible
to evaluate with good precision the surface damage of the nanotubular structure from normal-load
lateral scratches; however, it is difficult to identify when the continuous oxide barrier layer starts to
delaminate. For this reason, we performed simultaneous SEM and EDS measurements to investigate
when the metallic titanium substrate started to be exposed. This allowed us to determine the critical
loads necessary for a complete delamination of the titanium oxide layer (NT/US layer along with
barrier layer).

5. Conclusions

In this study, we present a crystalline nanoporous u-shaped structure of anodized titanium
with a twice higher resistance to scratch in comparison to brittle nanotubes. We consider that this
substrate could be an alternative material to nanotubes and suitable as a smart drug delivery platform.
Furthermore, the US titanium substrate was successfully functionalized with hydroxyapatite coating
(HApUS) under hydrothermal conditions and showed high bioactivity after 2 weeks of immersion in
SBF. We reported in our previous studies [30,33] the positive effect of hydrothermally synthesized HAp
coatings on titanium substrates on osteoblast-like and preosteoblast cell proliferation and adhesion.
Taking into consideration the combination of superior mechanical performance of the US substrate
and high bioactivity of HAp coating, we are convinced, that this surface modification may improve the
performance of currently used titanium-based implants for orthopedic applications.
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