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Background and Objectives. Diabetic kidney disease is a leading cause of chronic kidney disease and end-stage renal disease across
the world. Early identification of DKD is vitally important for the effective prevention and control of it. However, the available
indicators are doubtful in the early diagnosis of DKD. This study is aimed at determining novel sensitive and specific
biomarkers to distinguish DKD from their counterparts effectively based on the widely targeted metabolomics approach.
Materials and Method. This case-control study involved 44 T2DM patients. Among them, 24 participants with DKD were
defined as the cases and another 20 without DKD were defined as the controls. The ultraperformance liquid chromatography-
electrospray ionization-tandem mass spectrometry system was applied for the assessment of the serum metabolic profiles.
Comprehensive analysis of metabolomics characteristics was conducted to detect the candidate metabolic biomarkers and assess
their capability and feasibility. Result. A total of 11 differential metabolites, including Hexadecanoic Acid (C16:0), Linolelaidic
Acid (C18:2N6T), Linoleic Acid (C18:2N6C), Trans-4-Hydroxy-L-Proline, 6-Aminocaproic Acid, L-Dihydroorotic Acid, 6-
Methylmercaptopurine, Piperidine, Azoxystrobin Acid, Lysopc 20:4, and Cuminaldehyde, were determined as the potential
biomarkers for the DKD early identification, based on the multivariable generalized linear regression model and receiver
operating characteristic analysis. Conclusion. Serum metabolites might act as sensitive and specific biomarkers for DKD early
detection. Further longitudinal studies are needed to confirm our findings.

1. Introduction

Type 2 diabetes mellitus (T2DM) affects over 366 million
people worldwide (6.4% of the adult population) and this
number is expected to rise to 552 million by 2030 [1]. As
the disease progresses, diabetes can be complicated by a
series of diseases, in which diabetic kidney disease (DKD) is
one of the most common microvascular complications [2].
DKD is also a major cause of chronic kidney disease and
end-stage renal disease (ESRD) across the world, accompa-
nied by an increased risk of mortality and cardiovascular
disease. With economic growth and lifestyle changes, there

are more and more T2DM patients at risk of progressive
renal function loss.

Renal disease in diabetic patients is characterized by func-
tional and structural abnormalities. Within the glomeruli,
there is thickening of basement membranes, mesangial
expansion, hypertrophy, and glomerular epithelial cell (podo-
cyte) loss. In conjunction, the disease progresses in the
tubulointerstitial compartment, leading to the expansion of
tubular basement membranes, tubular atrophy, interstitial
fibrosis, and arteriosclerosis [3, 4]. A large number of studies
confirmed that hyperglycemia is the most important risk
factor for DKD. Hyperglycemia promotes mitochondrial
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electron transport chain to generate excessive reactive oxygen
species (ROS) through the formation of advanced glycation
end products (AGEs) and the activation of the polyol path-
way, hexosamine pathway, protein kinase C (PKC), and
angiotensin II. Furthermore, the ROS initiates or enhances
the oxidative stress and eventually results in the inflammatory
response and formation of fibrosis. In addition, lipid metabo-
lism abnormality, renin-angiotensin-aldosterone system
(RAAS) activation, systemic and glomerular hypertension,
insulin signaling impairment, increased growth factors and
proinflammatory cytokines, and intracellular signaling
pathway activation are also involved in the occurrence and
progression of DKD [5].

The characterization of DKD develops silently in the
clinical stage. DKD is featured by the initial appearance of
microalbuminuria (MA) with a progressive increase in
proteinuria and a decline in estimated glomerular filtration
rate (eGFR). MA is often the first clinical sign of kidney
involvement to predict overt nephropathy [6]. However,
MA is suspected to result from such external factors as exer-
cise, urinary tract infections, acute illness, and heart failure.
eGFR, an indicator calculated from serum creatinine concen-
tration, is also limited by the changes in creatinine production
depending on age, gender, race, and body composition. In
addition to poor specificity, its sensitivity in the prediction
of DKD has also been questioned. Relevant studies have
revealed that DKD tissue lesions are possible to precede MA
significantly [6]. About only 35-45% of T2DM patients with
MAwill developDKD in the next 6-10 years, of whom around
1/3 patients will spontaneously return to the state with normal
albuminuria [7]. The early identification and treatment of
DKD are conducive to lowering the risk of kidney damage
by as much as 50%. Thus, it is essential to improve the ability
to detect asymptomatic renal dysfunction and find more sen-
sitive and specific biomarkers of DKD for early diagnose and
predict the risk of DKD progression.

Metabolomics, which refers to the systematic and
comprehensive analysis of metabolites (i.e., sugars, amino
acids, organic acids, nucleotides, bile acids, acylcarnitine,
and lipids) in a biologic sample, has been identified as a
powerful tool in the biomarker discovery field [8–10].
Currently, there are several approaches being applied in
metabolomics, such as nuclear magnetic resonance (NMR)
[11], gas chromatography-mass spectrometry (GC-MS)
[12], liquid chromatography-mass spectrometry (LC-MS)
[13], and capillary electrophoresis mass spectrometry (CE-
MS) [14]. Metabolomics approaches are especially promis-
ing in terms of nephrology research because that the
extensive impact on kidney function has manifested on
circulating metabolite levels, and metabolites possibly play
functional roles in DKD pathogenesis and its complica-
tions. Targeted profiling, which is the detection of only a
few sets of metabolites, has been used to identify bio-
markers for DKD. Xia et al. conducted an analysis of six
intermediate metabolites of the purine degradation path-
way in plasma among patients with and without DKD
using LC-MS [15]. It was discovered that adenosine,
inosine, uric acid, and xanthine were powerful biomarkers
to keep track of DM progression. Jiang et al. used high-

performance liquid chromatography–electrospray tandem
mass spectrometric (HPLC–ESI-MS/MS) for simultaneous
quantification of eight aminothiols in the homocysteine met-
abolic cycle in plasma and identified two sulfur-containing
metabolites, namely S-adenosylmethionine and S-adenosyl-
homocysteine, as the potential biomarkers for DM and DKD
[16]. However, there are still few comprehensive metabolome
profiles published of DKD. Therefore, the widely targeted
metabolomics approach using ion-pair reversed-phase ultra-
performance liquid chromatography-tandemmass spectrom-
etry (UPLC-MS/MS) was taken in our study to investigate the
variations of serummetabolites among DM patients with and
without DKD for its early recognition.

2. Material and Method

2.1. Study Subjects. In the current study, 44 T2DM patients
were recruited from the Second Affiliated Hospital of
Wenzhou Medical University (WMU) based on their urine
protein levels. The protocol has been carefully reviewed and
approved by institutional review boards at the hospital before
the study (LCKY2019-08). The procedures strictly followed
the tenets of the Declaration of Helsinki, and all participants
gave informed written consent before they participated in
this study.

2.2. Study Population. The study was set up as a case-
control study in the Diabetes Center and Department of
Endocrinology, the Second Affiliated Hospital and Yuying
Children’s Hospital of Wenzhou Medical University. The
diagnosis of T2DM in our study complied with the criteria
set out by the American Diabetes Association [17]. The
diagnostic criteria for CKD were renal structural impair-
ment and dysfunction caused by a variety of factors for at
least 3 months, including normal and abnormal glomerular
filtration rate (GFR), pathological damage, blood or urine
components, abnormalities, and imaging abnormalities, or
an unexplained GFR < 60mL/min/1:73m2 that persisted for
3 months. The patients with infections or kidney stones,
thyroid disease, current use of steroids, nephrotoxic drugs,
angiotensin-converting enzyme (ACE) inhibitors, or angio-
tensin receptor blockers (ARBs) were excluded. The inclusion
criteria are as follows: for all patients diagnosed with T2DM
complicated with CKD but not undergoing renal replacement
therapy (e.g., hemodialysis, peritoneal dialysis, and kidney
transplantation) [18]. Participants were recruited and then
divided into two groups: T2DM group without nephropathy
(non-DKD, UACR ðurinary albumin/creatinine ratioÞ < 3
mg/mmol, n = 20) and DKD group with microalbuminuria
and macroalbuminuria (DKD, UACR > 3mg/mmol, n = 24).

2.3. Sample Collection and Storage. After a minimum of 8
hours of fasting under complete aseptic precautions from
all the subjects in the morning, blood samples (6mL) were
collected into tubes. Once the collection was completed,
centrifugation took place at 716 × g for 10minutes within 3
hours to separate the serum. All of the serum samples were
frozen at -80°C before sample preparation.
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2.4. Sample Preparation and Extraction.All the samples were
thawed on ice for extraction of metabolites. 50μL of serum
was put into 150μL of ice-cold methanol. After being
stirred up sufficiently, the solutions were centrifuged at
25759 × g for 10minutes at 4°C. Subsequently, the superna-
tant was collected and centrifuged at 25759 × g at 4°C for 5
minutes. Finally, the supernatant was derived for UPLC-
MS/MS analysis.

2.5. UPLC Conditions. Combining ultraperformance liquid
chromatography (UPLC, Shim-pack UFLC SHIMADZU
CBM30A system, https://www.shimadzu.com/) and tandem
mass spectrometry MS (QTRAP® 6500+ System, https://
sciex.com/), an analysis was performed of the sample
extracts with the use of an LC-ESI-MS/MS system. The
conditions to facilitate the analysis were as follows: UPLC
column, Waters ACQUITY UPLC HSS T3 C18 (1.8μm,
2:1mm ∗ 100mm); column temperature, 40°C; flow rate,
0.4mL/minutes; injection volume, 2μL; solvent system,
water (0.04% acetic acid): acetonitrile (0.04% acetic acid);
gradient program, 95 : 5 V/V at 0 minutes, 5 : 95 V/V at
11.0 minutes, 5 : 95 V/V at 12.0 minutes, 95 : 5 V/V at
12.1 minutes, and 95 : 5 V/V at 14.0 minutes.

2.6. ESI-Q TRAP-MS/MS. By applying a triple quadrupole-
linear ion trap mass spectrometer (Q TRAP), QTRAP®
6500+ LC-MS/MS System, which is fitted with an ESI Turbo
Ion-Spray interface, operates in positive and negative ion
mode and is controlled by Analyst 1.6.3 software (AB Sciex);
LIT and triple quadrupole (QQQ) scans were obtained. The
ESI source operation parameters included the following:
source temperature 500°C; ion spray voltage (IS) 5500V
(positive), -4500V (negative); ion source gas I (GSI), gas II
(GSII), and curtain gas (CUR) were set at 55, 60, and
25.0 psi, respectively; the collision gas (CAD) was high. With
10 and 100μmol/L polypropylene glycol solutions in QQQ
and LITmodes, instrument tuning and mass calibration were
conducted. Based on the metabolites eluted within this
period, a specific set of MRM transitions were kept track of
for every single period.

2.7. Data Processing and Analysis. After the serum metabo-
lites assessment, the UPLC-ESI-MS/MS data were acquired
by Analyst® Software 1.6.3 (AB Sciex), preprocessed (conver-
sion, peak detection, retention time correction, and peak
alignment) by MultiQuant™ Software (AB Sciex), and proc-
essed using MetaboAnalyst 4.0 (https://www.metaboanalyst
.ca/) 25 and STATA MP 15.0 (Stata Corp, College Station,
Texas, USA). Normalization was carried out by using sum
and Pareto scaling (mean-centered and divided by the square
root of the standard deviation of each variable) to standardize
the data and make the features more comparable.

Differential metabolites between the 24 cases and 20
controls were detected using principal component analysis
(PCA), orthogonal partial least squares discriminant analysis
(OPLS-DA), fold change (FC) analysis, and Student’s t-test,
respectively. Furthermore, both a 10-fold crossvalidation
test and a 1000-times permutation test were also carried
out. The additional false discovery rate (FDR) method was

applied to make adjustment for the testing of multiple
hypothesis and the mitigation of false positives. The criteria
of differential metabolite determination are as follows: q
value ðFDR adjusted p valueÞ < 0:05 and FC value ðthe ratio of
case/controlÞ > 1:2 or <0.8, as well as variable importance in
the project ðVIPÞ > 1. Subsequently, multivariable generalized
linear regression models (GLMs) were applied to comprehen-
sively investigate the associations between each differential
metabolite and the odds of DKD. Besides, the receiver operat-
ing characteristic (ROC) analysis was conducted to assess the
value of the early detection on DKD with the detected
metabolites-based biomarkers. All statistical tests were two-
sided, and p ≤ 0:05 was treated as a significant level.

3. Result

3.1. Characteristics of the Study Participants. An analysis was
performed of serum metabolic profiles from 44 patients in
two groups. Table 1 shows the clinical characteristics. The
DKD group exhibited a lower level of high-density lipopro-
tein cholesterol (HDL-C) as compared to the non-DKD
group. The other clinical parameters did not differ signifi-
cantly between the two groups.

3.2. Serum Metabolome Profiles and Analysis with DKD.
UPLC-ESI-MS/MS was detected from each serum sample.
The complexity of the serum samples made the separation
very difficult, thus resulting in severe ion suppression. UPLC
employs the column with a smaller size of stationary phase
particle size column, to generate high efficiency for the separa-
tion, which concurrently increased resolution and sensitivity.
The ith redundant peaks were eliminated, such as noise,
fragments, and adductions, and 613 serum metabolites
remained. In this study, UPLC was applied to obtain the
metabolic profiles in the positive and negative modes. A typi-
cal total ion chromatogram (TIC) of the serum of DKD
patients for both ionizationmodes is shown in Figure 1. Based
on themetabolites, we performed PCA, but the resultant score
plots of the PCA showed no clear separation (Figure 2(a)).
Then, OPLS-DA was used to demonstrate the satisfactory
separation of DKD patients from non-DKD patients. One
predictive component and one orthogonal component
(R2Xcum = 70%, R2Ycum = 83%, Qcum2 = 56%) were
involved in the OPLS-DA model, which showed that the
model had a high stability (Figure 2(b)). In addition, the
OPLS-DAmodel was further validated by means of permuta-
tion test (Figure 2(c)). The 24 cases and 20 controls were
observed to be separated completely in the OPLS-DA score
scatter plot, suggesting that the serum metabolic signatures
can be effective in distinguishing between DKD patients from
non-DKD patients.

3.3. Screening of Differential Metabolites. Of the metabolites
in the OPLS-DA, according to the VIP values and p values
(VIP > 1 and p < 0:01), a total of 11 candidate metabolites
(Table 2) were discovered to be significantly different
between DKD and non-DKD groups, suggesting the highly
significant associations with DKD. They are Hexadecanoic
Acid (C16:0), Linolelaidic Acid (C18:2N6T), Linoleic Acid
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(C18:2N6C), Trans-4-Hydroxy-L-Proline, 6-Aminocaproic
Acid, L-Dihydroorotic Acid, 6-Methylmercaptopurine,
Piperidine, Azoxystrobin Acid, Lysopc 20:4, and Cuminalde-
hyde. Among these metabolites, the most significant effect
was observed for Linolelaidic Acid (C18:2N6T) (VIP = 6:25;
p < 0:001).

3.4. Heatmap and Pathway Analysis. Heatmap and pathway
analysis was also performed (Figure 3). The identification
of the pathway from the discovery of metabolomics profil-
ing showed that the occurrence and development of DKD
would be associated with the linoleic acid metabolism,

aminoacyl-tRNA biosynthesis, and arginine and proline
metabolism.

3.5. Association between Serum Metabolite Intensities and
the Presence of DKD. In respect to the associations between
DKD and baseline value of the 11 metabolites in the multivar-
iate analysis, all of them exhibited associations with an
increased risk of DKD (Table 2). The largest effect size was
observed for Piperidine (OR 49.3 per SD increment (5% CI:
4.1, 589.9); p < 0:001). It can be seen that the metabolites with
protective effects (OR < 1) are on the rise among the DKD

Table 1: Demographic and clinical characteristics of participants.

Variables DKD Non-DKD p value

N 24 20

Age (years) 58:00 ± 8:99 57:05 ± 9:16 0.731

Male, # (%) 12 (50) 10 (50) 1

HbA1C (%) 9:71 ± 1:78 9:28 ± 1:72 0.419

BMI (kg/m2) 24:33 ± 2:87 24:99 ± 3:73 0.51

Duration (years) 11:75 ± 5:62 8:92 ± 6:24 0.122

Systolic blood pressure (mmHg) 133:33 ± 15:43 126:35 ± 13:00 0.116

Diastolic blood pressure (mmHg) 77 (73, 80) 78 (74, 84) 0.369

Fasting plasma glucose (mmol/L) 8:22 ± 3:21 8:49 ± 3:00 0.776

Postprandial glucose (mmol/L) 16:80 ± 3:50 16:71 ± 4:52 0.947

C-peptide (ng/mL)

0minute 1:38 ± 1:35 1:45 ± 1:76 0.895

120minutes 3:21 ± 2:42 4:49 ± 3:38 0.207

Low-density lipoprotein cholesterol (mmol/L) 2:24 ± 0:88 2:62 ± 1:07 0.2

High-density lipoprotein cholesterol (mmol/L) 0:91 ± 0:23 1:15 ± 0:42 0.02

Triglyceride (mmol/L) 2:05 ± 2:11 2:06 ± 1:20 0.977

Total cholesterol (mmol/L) 4:37 ± 1:29 5:02 ± 1:03 0.075

Creatinine (μmol/L) 61.7 (51.9, 77.3) 58.8 (47.3, 70.0) 0.39

UACR (mg/mmol) 22.10 (6.47, 138.40) 2.04 (1.48, 2.61) <0.001
Estimated glomerular filtration rate 93:74 ± 24:18 100:16 ± 10:0 0.245

Uric acid (μmol/L) 334:26 ± 74:24 328:40 ± 89:24 0.815

24-hour urinary protein (g/24 h) 0.18 (0.78, 0.87) 0.04 (0.02, 0.068) <0.001
Free triiodothyronine (pg/mL) 3:19 ± 0:39 2:97 ± 0:31 0.061

Free thyroxine (ng/dL) 1:22 ± 0:15 1:22 ± 0:17 0.967

Thyroid stimulating hormone (μIU/mL) 2.0 (1.41, 2.29) 1.78 (1.0, 2.18) 0.443

β-CTX (pg/mL) 415:91 ± 201:04 334:55 ± 213:43 0.231

N-MID (ng/mL) 12:79 ± 5:47 11:09 ± 4:25 0.285

T-PINP (ng/mL) 39:6 ± 16:76 35:75 ± 14:9 0.453

Vitamin D (ng/mL) 17:78 ± 8:55 21:23 ± 6:75 0.184

Fatty liver, # (%) 14 (58.3) 14 (70) 0.07

Smoking, # (%) 5 (21) 4 (20) 0.946

Drinking, # (%) 7 (29) 3 (15) 0.264

Continuous data met normal or similar normal distribution were presented as mean ± standard deviation ðSDÞ and compared with independent t-test.
Otherwise, they were described as median (1st percentile, 3rd percentile) and Mann–Whitney U tests were performed for the comparisons between the
cases and controls. Categorical data were presented as frequency (percentage), and chi-square tests were applied to compare the differences between the
two groups.
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group. On the contrary, the risk factors (OR > 1) were
declined among the DKD group.

Spearman’s correlation analysis between metabolites and
UACR showed positive relationships between UACR and
Trans-4-Hydroxy-L-Proline, 6-Aminocaproic Acid, L-
Dihydroorotic Acid, 6-Methylmercaptopurine, Piperidine,

and Cuminaldehyde, whereas negative correlations between
UACR and Hexadecanoic Acid (C16:0), Linolelaidic Acid
(C18:2N6T), Linoleic Acid (C18:2N6C), Azoxystrobin Acid,
and Lysopc 20:4 (Table 3).

To examine the performance of metabolites in the pre-
diction of DKD, ROC curves were developed. They
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Figure 1: Typical TIC chromatograms obtained from the same serum sample of a DKD patient with (a) positive and (b) negative mode.
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separation of the DKD group and non-DKD group. (c) 1000-times permutation test of the model showed that the model had high stability.
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Figure 3: (a) Heatmap showed the differences of metabolics between the DKD group and non-DKD group. (b) The pathway analysis showed
that Linoleic Acid metabolism, aminoacyl-tRNA biosynthesis, and arginine and proline metabolism are associated with DKD.
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demonstrated excellent prediction capabilities of prediction
in respect to DKD (AUCvalues > 0:70). Metabolites and
associated AUC values are shown in Table 4, while the
comparison between different models of ROC analysis is
presented in Table 5. L-Dihydroorotic Acid, Linolelaidic Acid
(C18:2N6T), Azoxystrobin Acid, and Linoleic Acid
(C18:2N6C) exhibited remarkable capabilities of prediction
(AUC > 0:80) (Table 4). Furthermore, models were con-
structed to combine the three metabolites including
Linolelaidic Acid (C18:2N6T), L-Dihydroorotic Acid, and
Azoxystrobin Acid (AUC values 0.93) as shown in Figure 4.

4. Discussion

The major microvascular complications of diabetes include
DKD, diabetic encephalopathy, and cardiomyopathy. Being
classified as the most lethal diabetic complications, DKD
occurs in 20-40% of T2DM. Metabolomics, a novel approach
to the identification of the changes in metabolite profiles for

biological samples, is extensively used in the treatment of
kidney disease [19] and regarded as a valuable tool to study
the pathophysiology of chronic kidney disease.

This study is purposed to identify serum metabolic
biomarkers to facilitate the detection of DKD from patients’
serum samples. In line with the previous studies performed
on the association between metabolites with DKD risk, a
discovery was made that the extensive metabolic changes
were associated with a decline in renal function. In this study,
a case-control study was conducted on DKD using a UPLC-
ESI-MS/MS-based metabolome analysis to identify the
differences in the serum metabolites between non-DKD
and DKD samples. The results have demonstrated that
OPLS-DA was effective in assisting with this type of analysis.

Table 3: Correlation analysis between UACR and metabolites.

Metabolite
UACR

r p value

Hexadecanoic Acid (C16:0) -0.521 <0.001
Linolelaidic Acid (C18:2N6T) -0.55 <0.001
Linoleic Acid (C18:2N6C) -0.525 <0.001
Trans-4-Hydroxy-L-Proline 0.356 0.018

6-Aminocaproic Acid 0.446 0.002

L-Dihydroorotic Acid 0.597 <0.001
6-Methylmercaptopurine 0.356 0.018

Piperidine 0.399 0.007

Azoxystrobin Acid -0.564 <0.001
Lysopc 20:4 -0.363 0.015

Cuminaldehyde 0.385 0.01

UACR: urinary albumin/creatinine ratio.

Table 4: Capability and feasibility of each metabolite in
distinguishing DKD from non-DKD based on ROC analysis.

Models AUC 95% CI SE

Hexadecanoic Acid (C16:0) 0.8 0.66, 0.93 0.07

Linolelaidic Acid (C18:2N6T) 0.84 0.72, 0.95 0.06

Linoleic Acid (C18:2N6C) 0.81 0.68, 0.94 0.07

Trans-4-Hydroxy-L-Proline 0.74 0.58, 0.89 0.08

6-Aminocaproic Acid 0.79 0.65, 0.93 0.07

L-Dihydroorotic Acid 0.85 0.73, 0.98 0.06

6-Methylmercaptopurine 0.73 0.58, 0.88 0.08

Piperidine 0.75 0.60, 0.90 0.08

Azoxystrobin Acid 0.82 0.69, 0.95 0.07

Lysopc 20:4 0.75 0.60, 0.90 0.08

Cuminaldehyde 0.76 0.61, 0.90 0.07

Combine 0.93 0.85, 1.00 0.04

AUC: area under the curve.

Table 5: Comparison between different models of ROC analysis.

Models p values

Linolelaidic Acid (C18:2N6T)_Combine 0.0065

L-Dihydroorotic Acid_Combine 0.00194

Azoxystrobin Acid_Combine 0.0076

L-Dihydroorotic Acid_Linolelaidic Acid (C18:2N6T) 0.8192

Azoxystrobin Acid_Linolelaidic Acid (C18:2N6T) 0.8194

Azoxystrobin Acid_L-Dihydroorotic Acid 0.6862

Linolelaidic Acid (C18:2N6T)_combine1 0.0886

L-Dihydroorotic Acid_combine1 0.13

Azoxystrobin Acid_combine1 0.0502

The model of Combine 1 contains Linolelaidic Acid (C18:2N6T), L-
Dihydroorotic Acid, and Azoxystrobin Acid; the model of Combine
contains 11 metabolites. Chi-square test was utilized to compare the
differences.
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Figure 4: Capability and feasibility of single metabolite and
combination (Linolelaidic Acid (C18:2N6T), L-Dihydroorotic
Acid, and Azoxystrobin Acid) of three screened metabolites models.
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OPLS-DA identified 11 metabolites as major contributors to
distinguishing non-DKD from DKD, including lipid-free
fatty acid, amino acids, and their derivatives; organic acids
and their derivatives; nucleotides and their derivatives; and
lipid-fatty acid.

A variety of biological markers have been found to be
associated with diabetic kidney disease in recent years, which
is significant to predicting the occurrence and development
of the disease. Many studies have reported the biomarkers
of DKD. There were many studies focusing on the metabo-
lites of diabetic kidney disease, including blood and urine
metabolomics studies. Zhang et al. detected significant
changes in serum leucine, dihydrosphingosine, and phytic
acid sphingosine levels by UPLC coupled with orthogonal
acceleration TOFMS (UPLC oa TOF-MS) [20]. Zhu et al.
performed metabolic profiling based on normal phase liquid
chromatography coupled with TOFMS (NPLC-TOF/MS).
Finally, 2 novel biomarkers, PI C18:0/22:6 and SM
dC18:0/20:2, were identified to discriminate between healthy
individuals, T2DM cases and DKD cases [21]. Van der et al.
analyzed the urine profiles of T1DM patients who were
clinically defined as having a normal albumin excretion rate
using gas chromatography-mass spectrometry (GC-MS)
and LC-MS. The discriminating metabolites mainly included
acylcarnitines, acylglycines, and metabolites related to tryp-
tophan metabolism [22]. However, few studies have classified
the metabolites as measured. Therefore, the measured
metabolites were classified by this study.

This study led to a discovery that lipid-free fatty acid
metabolite had a close association with DKD (VIP > 6,
p < 0:001). Hexadecanoic Acid (C16:0), Linolelaidic Acid
(C18:2N6T), and Linoleic Acid (C18:2N6C) are invariably
classed into lipid-free fatty acid. They all increased among
the DKD group and showed protection factor (OR < 1).
Moreover, they exhibited excellent capability of prediction
for DKD (AUC > 0:80). Linoleic acid is one of the polyunsat-
urated fatty acids (PUFA) that mediates various metabolic
effects, and their effects on metabolism are mainly reliant
on inflammation and oxidative stress, which has been well-
illustrated in previous reports. Studies have demonstrated
that docosahexaenoic acid (DHA) may suppress the expres-
sion and secretion of fractalkine through inhibition of the
tumor necrosis factor-α signaling pathway in DKD patients,
which improves inflammation and reduces oxidative stress
[23]. Over the years, experiments have indicated that lipids
and lipid-derived metabolites were not only involved in
inflammatory processes and oxidative stress but also played
an important role in the physiological and pathological pro-
cesses of the kidney. Arachidonic acid (AA) is a component
of cell membrane phospholipids, which makes us believe that
its connection to the kidney is also related to the improve-
ment of inflammation and reduction of oxidative stress
[24]. Studies have found out that low linolenic and linoleic
acid consumption are associated with the chronic kidney
disease in patients with type 2 diabetes. Moreover, the direct
relationship between linoleic acid and diabetic nephropathy
remains unclear, which leads to the speculation that it may
also play a role in improving inflammation and reducing
oxidative stress.

In addition to fat-free fatty acid metabolites, this study
revealed that organic acids and their derivatives are also
related to DKD. 6-Aminocaproic Acid and L-Dihydroorotic
Acid are organic acids; they also bear association with DKD
(VIP > 3, p ≤ 0:001, AUC > 0:70). Among the 11 metabolites,
L-Dihydroorotic Acid exhibited the highest AUC value (0.85,
95% CI: 0.73, 0.98). It has been reported that dihydroorotate
dehydrogenase (DHODH) was closely associated with the
occurrence and development of various tumors [25]. The
inhibition or downregulation of DHODH could help contain
tumor cell proliferation [26], induce apoptosis, or enhance
the antitumor effect of other target drugs. Diabetes has a close
relation to nucleic acid metabolism. DHODH is present in
the human mitochondrial inner membrane, which is an
iron-containing flavin-dependent enzyme that plays a signif-
icant role in the de novo synthesis of pyrimidine. As revealed
by previous studies, diabetes was associated with nucleic acid
metabolism enzymes [27]. In our view, DHODH has the
potential to be a crucial enzyme for L-Dihydroorotic Acid,
which is closely associated with the occurrence and develop-
ment of DKD. A significant increase in Azoxystrobin Acid
was observed among DKD patients (p < 0:001), indicating
the strongest protection in the 11 metabolites. Besides, it also
created high AUC values (0.82, 95% CI: 0.69, 0.95). Despite
this, it is an unknown species as we know no more than that
it is a metabolite of the fungicidal azoxystrobin.

Liu et al. found out that aminoacyl-tRNA biosynthesis,
arginine and proline metabolism, phenylalanine, tyrosine,
and chromosome metabolomics in plasma of apoA-I knock-
out mice fed high-fat diet amino acid biosynthesis were
affected. This finding suggested that the effects of these
metabolic pathways on diabetes are relevant through lipids,
which is also consistent with our results [28].

Metabolomics can provide information about how
disease processes and what gene function is performed [29].
Plenty of the original works related to diabetes metabolomics
were performed using NMR spectroscopy [30, 31]. However,
very few studies have been published about the diagnosis and
discrimination between serum profiles of DKD and T2DM
patients using LC-MS. Compared with human urine com-
monly used in metabolomics, the blood sample is relatively
simpler and showed a smaller variability under normal phys-
iological conditions, which makes it a better choice for the
LC-MS metabolite screening. In this work, we employed a
metabolomics strategy based on UPLC-ESI-MS/MS to
discriminate the serum profiles of DKD patients and T2DM
patients. As for the metabolites with low volatility and ther-
mal stability, LC-MS is a powerful alternative that offers high
selectivity and sensitivity and has a good potential in diabetes
research [32, 33]. This potential has been further enhanced
following the introduction of UPLC-MS, with its higher
resolution separations [34]. The molecular masses of various
compounds can be determined with great accuracy using
ESI-MS. Relatively pure samples can be analyzed by direct
infusion into ESI-MS after simple dilution and the analytes
with interference.

Aside from revealing the potential mechanisms for
DKD development, our study also identified 11 metabolic
signatures for the prediction of DKD. The combination of
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Linolelaidic Acid (C18:2N6T), L-Dihydroorotic Acid, and
Azoxystrobin Acid contributed to a powerful capability to
make a distinction between high-risk group and control.
In addition, our results demonstrated that the combination
of Linolelaidic Acid (C18:2N6T), L-Dihydroorotic Acid,
and Azoxystrobin Acid might serve as a potential indicator
of DKD.

4.1. Strengths and Limitations. In this study, the 11 metabo-
lites we measured not only have a high statistical significance
but also show high predictive values. In addition, the
measurement of a wide range of biomarkers in samples was
combined to identify the biomarkers with better prediction.
It has been demonstrated that there is a possibility to
improve the prediction of DKD significantly using three
biomarkers in combination. From a technical point of view,
this study included an increasing number of studies using
MS as a tool to identify biomarkers. However, this study
was primarily conducted using LC-ESI-MS/MS to achieve
more metabolites. There are also several limitations in this
study. Our findings were observed in a single cohort with
only small samples of cases and controls. The candidate
metabolites from this study ought to be validated in an inde-
pendent and larger replication sample of Chinese adults.
Moreover, the mechanism for the influence of metabolites
on DKD needs to be further researched and verified.

5. Conclusions

To conclude, an investigation was conducted on the relations
between metabolic signatures and the risk of DKD with the
application of highly sensitive and complementary MS-based
untargeted metabolomics techniques. The present study indi-
cated multiple early metabolic signs for DKD, which were
conducive to advancing prediction and prevention of DKD
among the Chinese populations. A total of 11 new metabolites
bearing close association with DKD were identified. The com-
bination of Linolelaidic Acid (C18:2N6T), L-Dihydroorotic
Acid, and Azoxystrobin Acid especially represented a poten-
tial indicator of diabetes progress. Further studies, especially
large-scale independent validation, may be necessary.
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