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Abstract
The ataxia telangiectasia-mutated (ATM) protein is a major coordinator of the DNA damage response pathway. ATM
loss-of-function variants are associated with 2-fold increased breast cancer risk. We aimed at identifying and clas-
sifying spliceogenic ATM variants detected in subjects of the large-scale sequencing project BRIDGES. A total of
381 variants at the intron–exon boundaries were identified, 128 of which were predicted to be spliceogenic. After
further filtering, we ended up selecting 56 variants for splicing analysis. Four functional minigenes (mgATM) span-
ning exons 4–9, 11–17, 25–29, and 49–52 were constructed in the splicing plasmid pSAD. Selected variants were
genetically engineered into the four constructs and assayed in MCF-7/HeLa cells. Forty-eight variants (85.7%)
impaired splicing, 32 of which did not show any trace of the full-length (FL) transcript. A total of 43 transcripts were
identified where the most prevalent event was exon/multi-exon skipping. Twenty-seven transcripts were predicted to
truncate the ATM protein. A tentative ACMG/AMP (American College of Medical Genetics and Genomics/Association
for Molecular Pathology)-based classification scheme that integrates mgATM data allowed us to classify 29 ATM
variants as pathogenic/likely pathogenic and seven variants as likely benign. Interestingly, the likely pathogenic
variant c.1898+2T>G generated 13% of the minigene FL-transcript due to the use of a noncanonical GG-5’-
splice-site (0.014% of human donor sites). Circumstantial evidence in three ATM variants (leakiness uncovered by
our mgATM analysis together with clinical data) provides some support for a dosage-sensitive expression model in
which variants producing ≥30% of FL-transcripts would be predicted benign, while variants producing ≤13% of
FL-transcripts might be pathogenic.
© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great
Britain and Ireland.
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Introduction

The ataxia telangiectasia-mutated (ATM) gene
(MIM#607585), located on chromosome 11q22–23, is
composed of 62 coding exons and encodes a large ser-
ine/threonine kinase of 3,056 amino acids [1,2]. This
protein plays an essential role in cellular homeostasis,
being responsible for global orchestration of the cellular
response to double-strand breaks. Biallelic germline

mutations in ATM result in the autosomal recessive
A-T (ataxia–telangiectasia) syndrome, characterized by
neurodegeneration, progressive ataxia, immunodefi-
ciency, ocular telangiectasia, regular respiratory infec-
tions, gonadal atrophy, and infertility [3], as well as
increased cancer susceptibility, mostly lymphoid cancer
[4,5].
Two recent large-scale studies of breast cancer

(BC) patients have estimated that at least eight genes
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are significantly associated with BC susceptibility,
including ATM [6–8]. ATM is widely tested on commer-
cial gene panels; heterozygous protein-truncating vari-
ants have been associated with a BC risk of around
2-fold [6,7], and a pancreatic cancer risk of 6.5-fold
[9]. Possible increased risks of melanoma, stomach,
and prostate cancers have also been reported [10].
Splicing is an essential and highly regulated RNA

processing mechanism that is carried out by the
spliceosome, an ensemble of ribonucleoproteins and
other splicing factors that identify the cis-acting
sequences needed for exon recognition, which include,
among others, the basic donor or 5’ splice-site (5’ss)
and the acceptor or 3’ splice-sites (3’ss) [11]. Histori-
cally, the role of splicing disruptions has been
underestimated in genetic diseases, because often only
variants in the “canonical” � 1,2 positions have been
considered potentially disease-causing. However, most
potential spliceogenic variants are classified as variants
of uncertain significance (VUS) because splicing out-
comes cannot be accurately predicted. In this regard,
RNA assays provide information that might become crit-
ical for accurate clinical classification. In principle, RNA
analysis of variant carriers can be used to classify vari-
ants as likely spliceogenic but, unfortunately, these sam-
ples cannot always be collected, and analysis in patient
RNA is hampered by the presence of the wildtype allele.
Certainly, the latter can be somehow overcome by RNA-
seq approaches that detect allele-specific expression and
calculate percent splicing index [12]. Alternatively,
minigene assays provide a valuable approach to perform
functional analysis of variants [13,14].
The BRIDGES project (Breast Cancer Risk after

Diagnostic Gene Sequencing; https://bridges-research.
eu/) is an international initiative that has sequenced
34 known or suspected BC genes in more than 113,000
women. Previously, we performed comprehensive stud-
ies of BRIDGES’ splice-site variants in RAD51C,
RAD51D, and PALB2 by the splicing reporter minigene
technology [15–17]. Here we selected and functionally
analyzed 56 potential spliceogenic variants in ATM iden-
tified in BRIDGES subjects, using four different ATM
splicing reporter minigenes. Further, we integrated
minigene data into an ACMG/AMP-based classification
scheme that allows us to propose a tentative classifica-
tion of all 56 tested variants.

Materials and methods

Ethical statement
Ethical approval for this study was obtained from the
Ethics Committee of the Spanish National Research
Council-CSIC (28/05/2018).

Annotation
All splicing events and predicted protein products were
described according to the Human Genome Variation

Society (HGVS) guidelines, using the Ensembl refer-
ence transcript ID ENST00000278616.8 (Genbank
NM_000051.4). For clarity, we also used abbreviated
notations using any of the following symbols [18,19]:
▼ (incorporation of intronic sequences not present in
the reference transcript), Δ (deletion of exonic
sequences present in the reference transcript), E (exon),
p (alternative 3’ splice-site, new acceptor site), q (alter-
native 5’ splice-site, new donor site), and a number
representing the exact number of nucleotides incorpo-
rated or skipped. For example, transcript ▼(E8q5)
denotes the use of an alternative donor site 5 nucleotides
downstream of exon 8, causing the incorporation of 5-nt
into the mature mRNA.

Selection of candidate ATM variants
A total of 381 unique variants at the ATM exon/intron
boundaries were identified in the BRIDGES consortium
sequencing data [6]. In silico splicing predictions were
performed in all 381 variants using MaxEntScan
(MES) [20] (supplementary material, Table S1). We
selected likely spliceogenic variants based on: (i) ≥20%
decrease of MES scores [21,22], (ii) creation of putative
de novo sites (MES cutoff ≥3.0), or (iii) changes at con-
served positions (�3, �2, �1, exon 5’-3’-ends, +3,-
+4, +5, and +6) of the consensus splice-site,
regardless of MES predictions [17]. The latter included
eight variants with scores above the �20% threshold
(c.3994-3C>T, c.902G>A, c.3577G>C, c.3746+4A>C,
c.4436+4A>G, c.3993+5G>T, c.4109+6T>G, and
c.7788+6T>G).

Based on these criteria, we ended up selecting 136
likely spliceogenic variants spread all over the gene
(supplementary material, Table S1). Since cloning all
63 ATM exons into minigenes was not feasible, we
focused our attention on four exon clusters (4–9,
11–22, 25–29, and 49–52) in which a substantial propor-
tion of candidate variants (61%) occur. After discarding
candidate variants located in exons 17 to 22 (the dedi-
cated minigene did not perform well, see Results), and
filtering-out several candidate variants located at the
same splice-site positions with similar MES impact
(e.g. c.1898+3A>G and c.1898+3A>T), we ended up
with a list of 56 variants to be tested in minigenes
(Table 1 and supplementary material, Table S1).

Minigene construction and site-directed
mutagenesis
Given that RNA from BRIDGES carriers had not been
collected, we envisioned a minigene-based strategy sim-
ilar to that we adopted in other BC susceptibility genes
[15–17]. Minigenes mgATM_ex4–9, mgATM_ex11–
17, mgATM_ex17–22, mgATM_ex25–29, and mgATM_
ex49–52 were designed to include ATM exons 4 to
9, 11 to 17, 17 to 22, 25 to 29, and 49 to 52, respectively,
and 200 nucleotides of flanking intronic sequences
upstream and downstream from each exon (supplemen-
tary material, Figure S1). Subsequently, each insert was
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synthesized (Genewiz, South Plainfield, Waltham, MA,
USA) and subcloned into the splicing plasmid pSAD
(Patent P201231427-CSIC) (Figure 1; supplementary
material, Figure S1, Supplementarymaterials andmethods)
[23,24]. The mgATM_ex4–9 minigene was obtained by
inserting exon 9 into mgATM_ex4_8 minigene using
HindIII/SalI restrictions enzymes. Thefinalminigeneswere
confirmed by sequencing (Macrogen, Madrid, Spain) and
functionally checked (i.e. expressing the expected tran-
scripts) in MCF-7 cells. All DNA variants were introduced
into the wildtype minigenes by site-directed mutagenesis
using the QuikChange Lightning kit (Agilent, Santa Clara,
CA, USA) (supplementary material, Table S2). All mutant
constructs were confirmed by sequencing (Macrogen).

Transfection
Approximately 2 �105 MCF-7 cells (human breast ade-
nocarcinoma cell line) were grown to 90% confluence in
4-well plates (Nunc, Roskilde, Denmark) in 0.5 ml of
medium (MEME, 10% fetal bovine serum, 2 mM gluta-
mine, 1% nonessential amino acids, and 1% penicillin/
streptomycin stock solution). The reproducibility of the
minigene outcomes was tested in MDA-MB-231 (tri-
ple-negative BC cell line) cells that were transfected
with the wildtype and mutant minigenes with variants
c.901+2T>C, c.2377–2A>G, c.3746+5G>A, and
c.7629+2T>G. Cells were transiently transfected with
1 μg of each minigene and 2 μl of lipofectamine LTX
(Life Technologies, Carlsbad, CA, USA). Nonsense
mediated decay (NMD) was inhibited by incubating
cells with cycloheximide 300 μg/ml (Sigma-Aldrich,
St. Louis, MO, USA) for 4 h. RNA was purified using
the Genematrix Universal RNA Purification Kit
(EURx, Gdansk, Poland) with on-column DNAse I
digestion following the manufacturer’s instructions.

Reverse transcription polymerase chain reaction
(RT-PCR) and cDNA amplification
The specific minigene-exon V2 primer RTPSPL3-RV
(5’-TGAGGAGTGAATTGGTCGAA-3’) was used to
carry out a reverse transcription using 400 ng of RNA
with the RevertAid First-Strand cDNA Synthesis Kit
(Life Technologies). Two microliters of the resultant
cDNA were used for amplification of the regions of inter-
est using Platinum Taq DNA polymerase (Life
Technologies). For all variants, the amplification was
performed using the primers SD6-PSPL3_RTFW (5’-
TCACCTGGACAACCTCAAAG-3’) and RTpSAD-
RV (Patent P201231427, CSIC). Samples were denatured
at 94 �C for 2 min, followed by 35 cycles of 94 �C for
30 s, 59 �C for 30 s, and 72 �C (1 min/kb), and a final
extension step at 72 �C for 5 min. RT-PCR products
were sequenced by Macrogen. The expected minigene
full-length (mgFL) transcripts were the following:
mgATM_ex4–9 (mgFL4-9: 1231 nt); mgATM_ex11–17
(mgFL11-17: 1212 nt); mgATM_ex17–22 (mgFL17-22:
999 nt); mgATM_ex25–29 (mgFL25-29: 1041 nt);
mgATM_ex49–52 (mgFL49-52: 880 nt).Ta
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In order to assess the relative contribution of each
transcript to the overall mgATM expression, semiquan-
titative fluorescent RT-PCRs (26 amplification cycles)
were performed in triplicate (in the case of
c.1898+2T>G, experiments were replicated six times)
using Platinum Taq DNA polymerase (Life Technolo-
gies) and the primers PSPL3_RTFW and RTpSAD-RV
(both FAM-labeled) under standard conditions [24].
FAM-labeled products were run with a LIZ-1200 Size
Standard at the Macrogen facility (Seoul, Korea) and
analyzed using the Peak Scanner software V1.0 (Life
Technologies). Only peak heights ≥50 RFU (relative
fluorescence units) were considered. The protocol is
summarized in the supplementary material, Figure S2.

ACMG/AMP-based tentative classification of ATM
genetic variants
We classified 56 ATM genetic variants according to a
recently proposed ACMG/AMP point system, a Bayes-
ian framework that outperforms the original classifica-
tion guidelines, and allows for increased flexibility and
accuracy in combining different ACMG/AMP criteria
and strengths of evidence [25,26]. In this framework,
point-based variant classification categories are defined
as follows: Pathogenic (P) ≥ +10; Likely Pathogenic
(LP) + 6 to +9; Variant of Uncertain Significance

(VUS) 0 to +5; Likely Benign (LB) –1 to �6; and
Benign (B) ≤ �7.

To assign ACMG/AMP scores [27] to individual var-
iants, we based our analysis primarily on recently
released (19 January 2022) ATM specifications
defined by the ClinGen Hereditary Breast, Ovarian and
Pancreatic Cancer Variant Curation Expert Panel
(clinicalgenome.org/affiliation/50039/). For some spe-
cific variants, we also used ATM specifications elabo-
rated by the Spanish ATM Cancer Susceptibility
Variant Interpretation Working Group [28]. Finally, we
introduced some ad-hoc rules, in particular to incorpo-
rate mgATM complex readouts (≥2 transcripts) into the
classification scheme as PVS1_O/BP7_O codes of vari-
able strength depending on the actual outcome. As a
result, we do not intend to provide an ACMG/AMP or
ClinGen endorsed final classification of any ATM variant
ready to be used in the clinical setting, but rather to high-
light the complexity of incorporating complex minigene
readouts into an ACMG/AMP-based classification
scheme. A comprehensive description of the classifica-
tion scheme is provided in Supplementary materials
and methods, and supplementary material, Table S3.1–
S3.3, and Figure S3A–C. For comparative purposes
only, we performed an alternative classification incorpo-
rating predictive splicing codes PVS1/PP3/BP4 rather
than experimental splicing codes PVS1_O/BP7_O (see
supplementary material, Table S3.4).

Figure 1. Structure and functional validation of the WT ATM minigenes used in this work. Schematic representation of the ATM minigenes
with (A) exons 4 to 9 (mgATM_ex4–9), (B) 11 to 17 (mgATM_ex11–17), (C) 25 to 29 (mgATM_ex25–29), (D) 49 to 52 (mgATM_ex49–52).
Exons are boxed; black arrows locate specific vector RT-PCR primers. Functional assays of the WT minigene are shown below. Fluorescent
RT-PCR products were analyzed by capillary electrophoresis, where the full-length and alternative transcripts are shown as blue peaks
and the Liz1200 size standard is shown as orange/faint peaks. The x-axis indicates size in bp (electropherograms on the top) and the y-axis
represents relative fluorescence units (RFU).
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Results

A total of 381 unique variants at the ATM exon/intron
boundaries were identified in the BRIDGES cohort.
After filtering, we selected for minigene analysis up to
56 likely pathogenic variants clustering in a subset of
ATM exons (exon 4–9, 11–17, 25–29, and 49–52) (see
Materials and methods for further details).

ATM minigenes
We constructed five ATM minigenes (mgATM_ex4_9,
mgATM_ex11_17, mgATM_17-22, mgATM_ex25_29,
and mgATM_ex49_52) that we tested in MCF-7 cells.
Four minigenes mimic the reference transcript
NM_000051.3, producing asmain outcomes the expected
FL-transcripts: V1-ATM exons 4 to 9-V2, 1,231-nt
(65.7%); V1-ATM exons 11 to 17-V2, 1,212 nt (84.1%);

Figure 2. Splicing functional assays of selected ATM variants in mgATM_ex4–9minigene. (A) Location of tested variants. (B) Fluorescent frag-
ment analysis of transcripts generated by the wildtype and mutant minigenes. FAM-labeled products (blue peaks) were run with LIZ1200
(orange peaks) as size standard. FL, full-length transcript. The x-axis indicates size in bp (electropherograms on the top) and the y-axis rep-
resents relative fluorescence units (RFU).
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V1-ATM exons 25 to 29-V2, 1,041-nt (100%); V1-ATM
exons 49 to 52-V2, 880-nt (75.8%). Likewise, the alter-
native isoforms Δ(E7) (34.2%; mgATM_ex4_9), Δ
(E11) (15,9%; mgATM_ex11_17), Δ(E52) (24.2%;
mgATM_ex49_52), and other uncharacterized tran-
scripts were also detected (Figure 1 B,D,F,H, and
Table 1). On the other hand, we discarded for variant test-
ing minigenes mgATM_17–22 and mgATM_ex49–54
(insertion of exons 53–54 into mgATM_ex49–52),
because they did not produce clean splicing profiles (see
Supplementary materials and methods).

Splicing assays of ATM variants
Fifty-six variants were genetically engineered into the
four minigenes: 14 in mgATM_ex4_9, 11 in
mgATM_ex11–17, 20 in mgATM_ex25_29, and 11 in
mgATM_ex49–52. For the purpose of the present analy-
sis, splicing was considered “impaired” if the proportion
of the corresponding mgFL-transcript was at least 10%
lower than in the WT construct. After RNA isolation, a
semiquantitative cDNA-amplification was performed to
analyze the impact of each variant. Forty-eight out of
56 (86%)variants disrupted splicing (Table 1; Figures 2–5).
–5). Twenty variants affected the ±1,2 positions and
28 targeted other splice-site positions: the polypyrimidine
tract (three variants), �3 (one variant), +3 (four
variants), +4 (four variants), +5 (five variants), +6
(four variants), as well as the first (one variant), and
the two last exonic nt (six variants).

Up to 32 spliceogenic variants (underlined in Table 1)
demonstrated strong impact on splicing (i.e. mgFL-
transcripts not detected, or representing <5% of the overall
signal), including one variant predicted missense
[c.7787A>T (p.Glu2596Val)], and three variants predicted
synonymous [c.3993G>A (p.Gln1331=), c.7515G>A
(p.Lys2505=) and c.7788G>A (p.Glu2596=)] that did
not produce any trace of the mgFL-transcript. The
remaining 16 spliceogenic variants demonstrated weak to
moderate splicing impacts, producing a nonnegligible pro-
portion of mgFL-transcripts (13–71.4% of the overall sig-
nal). Curiously, four out of eight nonspliceogenic variants
(c.2377-6T>A, c.2467-3A>G, c.2638+3A>G, and
3994-3C>T) improved the inclusion efficiency of the
corresponding exons (i.e. the proportion of mgFL-
transcripts were increased relative to their wildtype
counterpart). Unexpectedly, variant c.1898+2T>G
produced mgFL-transcripts (up to 13%; average of six
replicas) that might be explained by the use of the atyp-
ical GG-5’ss (0.01% of human exons) [29] created by
this variant (Figure 3C). Finally, to check splicing

reproducibility, one variant of each minigene
(c.901+2T>C, c.2377-2A>G, c.3746+5G>A, and
c.7629+2T>G) was tested in MDA-MB-231 cells,
showing identical outcomes (supplementary material,
Figure S4).

Transcript analysis
Fluorescent-fragment analysis of minigene readouts
allowed us to characterize the mgFL-transcripts pro-
duced by the four WT minigenes, and up to 43 other
transcripts (Table 1 and supplementary material,
Table S4). The latter includes three alternative splicing
isoforms, Δ(E7), Δ(E11), and Δ(E52), produced by the
corresponding WT minigenes. Twenty-seven tran-
scripts, including Δ(E7), introduced a premature termi-
nation codon (PTC), while 15, including Δ(E11) and Δ
(E52), kept the reading frame (Table 1, supplementary
material, Table S4). One transcript of 970 nucleotides
could not be characterized.
It is important to highlight the distinction between

variant-induced transcripts (i.e. transcripts not produced
by WT minigenes) and variant-induced splicing events
(i.e. splicing events not detected in WT minigenes).
For instance, the ATM variant c.332-1G>A (targeting
exon five acceptor site) produces up to three variant-
induced transcripts [Δ(E5) + [Δ(E5),Δ(E7)] + Δ(E5p1)],
but only two variant-induced splicing events [Δ
(E5) and Δ(E5p1)]. The Δ[(E5)(E7)] transcript com-
bines variant-induced exon five skipping with exon
seven skipping, a splicing event already observed in
WT minigenes (see Figure 2B, and supplementary
material, Tables S3 and S4).
A significant proportion of variants (N = 32) induced

two or more splicing events, and/or demonstrated a partial
effect on splicing, producing a nonnegligible amount of
mgFL-transcripts (leaky variants). These complex read-
outs represented a challenge for variant interpretation
(see below). Exon (or multi-exon) skipping, observed in
48 variants, was the most frequent variant-induced event.
Alternative site-usage was observed in 15 variants. Five
leaky variants produced FL-transcripts that harbor mis-
sense (r.496G>A, r.902G>A, r.1898G>U, r.3557G>C)
or synonymous (r.903U>G) changes (Figures 2–4, sup-
plementary material, Table S3.2).

ACMG/AMP-based tentative classification of 56 ATM
variants
Once mgATM data were available, we decided to clas-
sify all 56 ATM variants according to ACMG/AMP

Figure 3. Splicing functional assays of selected ATM variants in mgATM_ex11–17 minigene. (A) Location of tested variants. (B) Fluorescent
fragment analysis of transcripts generated by the wildtype and mutant minigenes. FAM-labeled products (blue peaks) were run with LIZ1200
(orange peaks) as size standard. FL, full-length transcript. The x-axis indicates size in bp (electropherograms on the top) and the y-axis rep-
resents relative fluorescence units (RFU). (C) Consensus sequence of exon–intron boundaries of 101 noncanonical human GG-splice junctions
[29] (top panel) versus the sequence of the atypical GG-splicing donor used in 13% of transcripts induced by variant c.1898+2T>G (middle
panel) and the consensus sequence of canonical GT-donors (bottom panel). The size of each letter represents the nucleotide frequency at each
position. Pictograms were obtained using WebLogo (https://weblogo.berkeley.edu/logo.cgi).
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variant classification guidelines [27], integrating
mgATM data as PVS1_O/BP7_O evidence codes. We
classified 29 variants as P/LP (six of them as patho-
genic) and seven non-GT-AG intronic variants as LB.
Up to 20 variants (36%) were classified as VUS
(Table 2 and supplementary material, Table S3.1).

Overall, 37 of the 56 ATM variants here analyzed have
been reported previously in ClinVar (last accessed 09/
02/2022, see supplementary material, Table S3.4), but
only 21 of them by multiple submitters with no conflicts
(two-star review status). Focusing our analysis on the
subgroup of 21 ClinVar no conflicting-variants, we

conclude that our classification scheme (integrating
mgATM data) does not reduce the number of VUSs,
but rather reclassifies variants (seven variants, 33%) in
both directions. Specifically, three variants reported in
ClinVar asVUSs are upgraded to P/LP, while three var-
iants reported as P/LP are downgraded toVUSs, and one
variant reported as LB/B is upgraded to VUS. Supple-
mentary material, Table S5 shows a comparative analy-
sis in this subgroup of variants.
To evaluate the contribution of mgATM data to vari-

ant classification, we compared our final classification
(Table 2, supplementary material, Table S3.1) with an

Figure 4. Splicing functional assays of selected ATM variants in mgATM_ex25–29 minigene. (A) Location of tested variants. (B) Fluorescent
fragment analysis of transcripts generated by the wildtype and mutant minigenes. FAM-labeled products (blue peaks) were run with LIZ1200
(orange peaks) as size standard. FL, full-length transcript. The x-axis indicates size in bp (electropherograms on the top) and the y-axis rep-
resents relative fluorescence units (RFU).

Figure 5. Splicing functional assays of selected ATM variants in mgATM_ex49–52 minigene. (A) Location of tested variants. (B) Fluorescent
fragment analysis of transcripts generated by the wildtype and mutant minigenes. FAM-labeled products (blue peaks) were run with LIZ1200
(orange peaks) as size standard. FL, full-length transcript. The x-axis indicates size in bp (electropherograms on the top) and the y-axis rep-
resents relative fluorescence units (RFU).
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alternative classification in which we simply replaced
PVS1_O/BP7_O evidence with PVS1/PP3/BP4 predic-
tive splicing evidence (supplementary material,
Table S3.5). Supplementary material, Table S6 summa-
rizes the comparative analysis. Experimental splicing
data have an impact on the final classification of
16 ATM variants (29% of the tested variants). Overall,
experimental splicing data have a positive effect on var-
iant classification, reducing uncertainty (reducing the
number of VUSs from 29 to 20).

Discussion

Next-Generation Sequencing (NGS) technology is an
efficient screening approach to detect variants associated
with cancer risk with high sensitivity, cost effectiveness,
and speed. Genetic testing has become available for
larger groups of patients, allowing more variant carriers
to be identified, better management of risk and, in some
cases, better treatment [30]. However, NGS also pre-
sents some challenges. One of them is the high rate of
VUSs, for which the association with cancer risk in
unclear, and genetic counselling of carriers is difficult
[31]. A recent large-scale sequencing study reported that
the prevalence of VUSs in 12 BC genes was 18.9% [7].
Classification of VUS may be improved through large-
scale splicing or functional assays.
The ATM gene is one of the eight “core” genes that

displayed a significant association with BC in the two
large-scale studies already mentioned [6,7]. ATM patho-
genic variants are associated with a moderate risk of BC
(1.8–2.1) and an overall lifetime female BC risk above
20%. Protein truncating variants in ATM accounts for
0.63% of all BC cases [6,7]. We performed a compre-
hensive evaluation of potential spliceogenic variants to
aid their interpretation. Here we analyzed in silico
381 ATM splice-site variants identified in BRIDGES
patients and controls, through which 128 candidate var-
iants were predicted to impair splicing.
NGS-based RNA-seq provides high-quality qualita-

tive and quantitative data for the characterization of
splicing variants in hereditary cancer genes [32]. How-
ever, lacking RNA from carriers, we designed five
minigenes covering 27 out of the 62 ATM coding exons
in which most of the preselected variants were located,
although, unfortunately, minigenes mgATM_17-22
and mgATM_49-54 did not show the correct transcript
profiles and variants at exons 18 to 22; 53 and 54 were
excluded from the analysis. It is conceivable that smaller
constructs, such as those with exons 19–20 or 21–22
(both with short introns), may be functional. Indeed,
we introduced deletions of exons 17–18 and 17–20 into
the WT mgATM_ex17–22 that generated the
corresponding full-length transcripts without any other
isoform (see Supplementary materials and methods).
Hybrid minigene technology has proven to be effi-

cient for the description of the splicing outcomes of var-
iants in the absence of patient RNA [33,34], as is the case

in the present study. There are many examples verifying
the reproducibility of this strategy, including previous
minigene studies of our group [19,35]. In this regard,
the present study included 10 ATM variants for which
previous experimental RNA data in carriers have been
published: c.496+5G>A [36]; c.901+3A>T [37];
c.902-1G>T [38]; c.1066-6T>G [39]; c.1898+2T>G
[40]; c.1898+3_+4del [37]; c.3993+1G>A [37,41];
c.4110-9C>G [42], c.7630-2A>C [37,38,41,43], and
c.7788G>A [44]. Supplementary material Table S7
shows a comparative analysis with mgATM data. Over-
all, the concordance was high and did not affect
PVS1_O/BP7_O code strengths (supplementary mate-
rial, Table S3.2). The only possible exception are three
variants (c.496+5G>A, c.1066-6T>G, c.1898+2T>G)
in which mgATM data have uncovered leaky effects
not reported by previous RNA studies in carriers. In
brief, the present study further supports the notion that
hybrid minigenes are very good proxies for splicing
assays in carriers.

Splice AI is a neural network that predicts splicing
from a pre-mRNA sequence [45]. Recent evaluations
have identified SpliceAI as the best predictor of variants
that impact splicing, here termed spliceogenic variants
[46–49]. To further evaluate our analysis, we compared
mgATM data with SpliceAI predictions (note that
SpliceAI was not used for the initial bioinformatics
selection of ATM likely spliceogenic variants). The com-
parative analysis is shown supplementary material,
Table S7. Taken together, the data further supports the
robustness of the mgATM assay and, equally relevant,
the accuracy of SpliceAI in predicting the actual out-
come of spliceogenic variants. In relation to the latter,
it is worth highlighting that:

i. Four ATM variants targeting consensus positions of
the splice-sites (c.2377-6T>A, c.2467-3A>G,
c.2638+3A>G, and c.3994-3C>T) do not disturb
splicing (a remarkable finding correctly predicted
by SpliceAI).

ii. Eight ATM variants (c.1065+1G>T, c.1065+3A>G,
c.3577G>C, c.3993G>A, c.3993+1G>A, c.3993+
5G>T, c.7307+1G>A, and c.7307+4A>G) contrib-
uted to the incorrect recognition of natural donor sites
and to the use of cryptic 5’ss. SpliceAI predicted
these variant impacts correctly, except for
c.1065+3A>G.

The vast majority of human introns (�99%) are of the
GT-AG type, while the most frequent atypical 5’ss is a
GC-donor [29]. It is known that GC donor splice-sites
are related to alternative splicing events [50,51]. How-
ever, the mechanisms underlying the GC-5’ss recogni-
tion are not completely understood yet, so variants
disrupting GC donor sites are particularly interesting.
We have focused our attention on the normal splicing
of GC-exons of BC genes (e.g. BRCA2 exon 17 or
PALB2 exon 12) as well as the anomalous GC usage
induced by variants [17,19,34]. Here we analyzed two
variants, c.7515G>A and c.7515+6T>C, affecting
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ATM exon 50 GC-5’ss. Given the intrinsic weakness of
these 5’ss, it is expected that any sequence change may
disrupt splicing. Indeed, both variants impaired exon
recognition and provoked exon skipping, especially
c.7515G>A (last exon nt), where the mgFL49-52-
transcript could not be detected. Taking into account
the predicted effect on protein translation
(p.Lys2505=), this should be a priori reclassified as a
spliceogenic variant that produces two likely deleterious
transcripts (discussed below). On the other hand, variant
c.1898+2T>G induced the use of an extremely rare GG
5’ss, which functions as a donor site in 0.01% of human
introns [29], so that it partially restored the canonical
splicing, generating 13% of the expected mgFL11-17-
transcript (V1-ATM exons 11 to 17-V2; Figure 3B,C).

Our classification schema integrates mgATM data
(PVS1_O/BP7_O evidence) and provides an informa-
tive classification (P/LP or LB) for 36 variants, but
20 (36%) remained as VUS, including 14 intronic and
2 synonymous variants (the type of variants in which
splicing data are expected to be a major contributor to
classification). The relatively high proportion of VUSs
in our study is (partly) explained by the high proportion
of mgATM readouts for which inferring a pathogenic or
benign evidence (i.e. deciding the appropriate PVS1_O
or BP7_O code strength) is far from obvious, a complex-
ity that we summarize as follows:

i. For several variants, mgATM readouts produced two
or more altered transcripts with different coding
potential and a different contribution to the overall
expression.

ii. mgATM analysis identified 24 variants that produced
altered transcripts, but also a significant proportion of
full-length transcripts (”leaky variants”).

To deal with these issues, we have been very conser-
vative (as per ACMG/AMP recommendations), assum-
ing that mgATM readouts are noninformative (i.e. not
adding points to the classification scheme) if both tran-
scripts supporting a pathogenic call and transcripts
supporting a benign call represent >10% of the overall
expression (see supplementary material, Figure S3A).
Further, if a variant produces only transcripts supporting
a pathogenic call (different strength), we selected the
most conservative option for overall PVS1_O code
strength, even if representing only 10% of the overall
expression (see supplementary material, Figure S3C).

This conservative approach is reflected in the poor
contribution of mgATM readouts to the final point-based
classification: adding only ≥(�1) and ≤(+2) points to the
final classification of 22 variants, including 16 variants
for which no points were added (i.e. PVS1_O not appli-
cable and BP7_O not applicable). In brief, many
mgATM readouts are noninformative, reflecting the
complexity of integrating mgATM readouts into an
ACMG/AMP-based classification scheme.

In this regard, “leaky variants” are particularly chal-
lenging, as we do not know the precise relationship
between ATM allele-specific expression levels of full-

length transcripts and phenotype. It is conceivable to
postulate a dosage-sensitive expression model in which
some leaky variants producing full-length transcripts
above a certain threshold are benign, leaky variants pro-
ducing full-length transcripts below a certain threshold
are pathogenic, and leaky variants in between associate
with an intermediate phenotype. Yet, as far as we know,
there are no clinical and/or functional data in the scien-
tific literature supporting (or addressing) this issue.
That said, we noticed that evidence of leakiness

uncovered by our mgATM analysis in three variants
(c.1898+2T>G, c.496+5G>A, and c.1066-6T>G)
together with clinical data available in the scientific liter-
ature [36,52] provides some support for an ATM dosage-
sensitive expression model (see supplementary material,
Figure S5 for further details). According to this tentative
model, leaky variants producing ≥30% of full-length
transcripts are predicted benign, leaky variants produc-
ing ≤13% are predicted pathogenic, and leaky variants
in between might be associated with an intermediate
phenotype. At present, this is just a tentative model
based on circumstantial evidence. If confirmed by clini-
cal evidence for a sufficient number of leaky variants
and/or by functional studies, the dosage-sensitive
expression model might be relevant to refine future iter-
ations of the ACMG/AMP specifications for ATM.
In summary, here we carried out an exhaustive study

of ATM, in which 56 preselected variants were tested
using minigene assays (85.7% spliceogenic). Once
again, minigenes have proven to be a robust and useful
tool to assess potential spliceogenic variants. These
splicing assays provide key data for the interpretation
of variants, so, despite the complexity of the ATM gene
(63 exons), efforts should be made to test additional var-
iants identified in the clinical setting (minigene
approach, or NGS based RNA-seq analysis of patient
RNA whenever possible). According to our ACMG/
AMP-based tentative classification scheme, 29 variants
end up as pathogenic/likely pathogenic and seven vari-
ants as likely benign. Finally, we provide circumstantial
evidence supporting a dosage-sensitive model that might
be relevant to classify leaky variants.
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