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Background: Transcriptome profiling has helped characterise nodal spread. The interpretation of these data, however, is not
without ambiguities.

Methods: We profiled the transcriptomes of papillary thyroid cancer nodal metastases, associated primary tumours and primary
tumours from N0 patients. We also included patient-matched non-cancerous thyroid and lymph node samples as controls to
address some limits of previous studies.

Results: The transcriptomes of patient-matched primary tumours and metastases were more similar than those of unrelated
metastases/primary pairs, as previously reported in other organ systems. This similarity partly reflected patient background.
Lymphoid tissues in the metastases confounded the comparison of patient-matched primary tumours and metastases.
We circumvented this with an original data adjustment, revealing a differential expression of stroma-related gene signatures
also regulated in other organs. The comparison of N0 vs Nþ primary tumours uncovered a signal irreproducible
across independent data sets. This signal was also detectable when comparing the non-cancerous thyroid tissues adjacent to
N0 and Nþ tumours, suggesting a cohort-specific bias also likely present in previous similarly sized studies. Classification of
N0 vs Nþ yielded an accuracy of 63%, but additional statistical controls absent in previous studies revealed that this is
explainable by chance alone. We used large data sets from The Cancer Genome Atlas: N0 vs Nþ classification was not better
than random for most cancers. Yet, it was significant, but of limited accuracy (o70%) for thyroid, breast and head and neck
cancers.

Conclusions: The clinical potential of gene expression to predict nodal metastases seems limited for most cancers.
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Thyroid cancers are the most frequent endocrine malignancies.
Eighty per cent of them are of the papillary subtype (PTC). In these
cancers, regional lymph node metastasis is correlated with poorer
survival (Lundgren et al, 2006). Therapeutic dissection of lymph
nodes within the central neck area improves disease outcome
(Nixon and Shaha, 2013; Venkat and Guerrero, 2013) and is
recommended by current international guidelines (Pacini et al,
2006; American Thyroid Association (ATA) Guidelines Taskforce
on Thyroid Nodules and Differentiated Thyroid Cancer et al,
2009), whereas the benefit of prophylactic dissection remains a
matter of heated debate (Nixon and Shaha, 2013; Venkat and
Guerrero, 2013). The biology underlying the nodal dissemination
of PTC is poorly understood.

A number of cancer studies in other organ systems have
explored with transcriptome profiling the relationship between
primary tumours and their associated nodal metastases and the
characteristics of those primary tumours producing nodal
metastases (Huang et al, 2003; Kikuchi et al, 2003; Nagata et al,
2003; Hao et al, 2004; Takada et al, 2004; Tamoto et al, 2004;
Croner et al, 2005; Hoang et al, 2005; O’Donnell et al, 2005;
Weigelt et al, 2005; Xi et al, 2005; Bidus et al, 2006; Roepman et al,
2006a; Wang et al, 2006a; Feng et al, 2007; Inamura et al, 2007;
Méndez et al, 2007, 2011; Nguyen et al, 2007; Pei et al, 2007; Suzuki
and Tarin, 2007; Kashiwazaki et al, 2008; Kroon et al, 2008; Vecchi
et al, 2008; Ellsworth et al, 2009; Wong et al, 2009; Xie et al, 2010;
Edfeldt et al, 2011; Smeets et al, 2011). A recurrent finding was that
molecular phenotypes of nodal metastases are similar to those of
the primary tumours they originate from (Perou et al, 2000; Hao
et al, 2004; Hoang et al, 2005; O’Donnell et al, 2005; Weigelt et al,
2005; Roepman et al, 2006a; Feng et al, 2007; Inamura et al, 2007;
Vecchi et al, 2008; Ellsworth et al, 2009). This has been interpreted
as evidence that most cells in the primary tumour have the
potential to seed metastases (Hao et al, 2004; Hoang et al, 2005;
Inamura et al, 2007; Ellsworth et al, 2009), in contrast with the
classical view that a few cells acquire metastatic capacity within the
primary tumour (Fidler and Kripke, 1977). Furthermore, several
studies defined the biological context of nodal spread by pointing
out transcription of genes related to the immune response (Weigelt
et al, 2005; Wang et al, 2006a; Vecchi et al, 2008; Ellsworth et al,
2009; Xie et al, 2010) and the stroma (Hao et al, 2004; O’Donnell
et al, 2005; Weigelt et al, 2005; Roepman et al, 2006a; Feng et al,
2007; Suzuki and Tarin, 2007; Vecchi et al, 2008; Ellsworth et al,
2009) differing between primary and metastatic samples. Finally,
the prediction of nodal spread from primary tumour yielded
conflicting results ranging from no classification (Xi et al, 2005;
Kroon et al, 2008) to perfect classification of N0 (without apparent
nodal spread) and Nþ (with nodal spread) diseases (Kikuchi et al,
2003; Tamoto et al, 2004; O’Donnell et al, 2005; Roepman et al,
2005; Inamura et al, 2007; Pei et al, 2007; Kashiwazaki et al, 2008;
Méndez et al, 2011). Whether these discrepancies reflect technical
issues or a cancer type-specific classification potential remains
unclear.

Data presented in these studies are not without ambiguities.
Patient’s genetic and physiological background could both
contribute to the transcriptional similarity between primary
tumours and patient-matched nodal metastases. The immune-
related signals reported in nodal metastasis could, as noted by
several authors, reflect the presence of lymphoid tissues alongside
the metastasis. Laser capture microdissection has been proposed to
address this ambiguity in some studies (Hoang et al, 2005; Wang
et al, 2006a; Inamura et al, 2007; Nguyen et al, 2007; Ellsworth
et al, 2009), whereas others have advocated the analysis of bulk
tissues because they better reflect the wider context of metastasis
(Hoang et al, 2005; O’Donnell et al, 2005; Méndez et al, 2007). The
N0 vs Nþ classification problem has been approached with a very
wide range of statistical methods and validation procedures in
addition to differences in lymph node screening protocols.

This study applies the transcriptomic approach to the analysis of
nodal metastatic spread in PTCs. Numerous biological and
computational controls have been included to address the
ambiguities of previous studies.

MATERIALS AND METHODS

Samples and patients. Samples derived from 31 patients diag-
nosed for PTC were obtained from the Jules Bordet Institute
(Brussels, Belgium) and La Pitié-Salpêtrière Hospital (Paris,
France). They were selected on the basis of RNA quality rather
than clinicopathologic parameters. Protocols were approved by the
ethics committees of the institutions.

Extraction and quality assessment. RNA was extracted
with RNeasy Mini Kit columns (Qiagen, Hilden, Germany).
The histology of each sample was verified using haematoxylin-
and eosin-stained sections. Percentages of tumour cells were
estimated and, when present, the percentages of adjacent
non-tumour cells or lymphocyte infiltration were quantified.
Tumours with o70% cancer cells were discarded. RNA
concentrations were measured using NanoDrop ND-1000
spectrophotometer (Life Technologies, Grand Island, NY,
USA). RNA integrity was assessed using an automated gel
electrophoresis system (Experion; Bio-Rad, Hercules, CA, USA),
yielding a score from 1 (fully degraded) to 10 (intact RNA): the
RNA Quality Index. Only samples with a score of 7 or above
were considered.

Microarrays hybridisation. Genome-wide mRNA profiles were
obtained through the hybridisation of samples onto Affymetrix
GeneChip Human Genome U133 Plus 2.0 Arrays (Affymetrix,
Santa Clara, CA, USA). RNA amplification, hybridisation and
image scanning were performed according to standard Affymetrix
protocols.

Mutational status. We assessed the mutational status of BRAF,
RET/PTC1, RET/PTC3, NRAS, HRAS and KRAS in the PTC
samples. After a DNase treatment with DNaseI Amplification
Grade Kit (Invitrogen, Carlsbad, CA, USA), 1 mg of total RNA was
used for reverse transcription using hexamers (3.6 mg ml� 1; Roche,
Basel, Switzerland) and reverse transcriptase (SuperscriptII RNase
H ReverseTranscriptase Kit; Invitrogen). Polymerase chain reac-
tions were performed on 2ml of cDNA using the recombinant Taq
DNA Polymerase Kit (Invitrogen) and appropriate primer pairs
(primer sequences and PCR conditions provided in a previous
study; Saiselet et al, 2012). Polymerase chain reaction products
were purified with the QIAquick PCR Purification Kit (Qiagen)
according to the manufacturer’s instructions. Sequencing was
performed with the BigDye Terminator V3.1 Cycle Sequencing Kit
(Applied Biosystems, Foster City, CA, USA) with the sequencer
ABI PRISM 3130 (Applied Biosystems) and the genetic analysis
program 3130-XI.

Microarray analysis. All analyses and images were performed in
R v.3.1.0 (R Core Team, 2013).

CEL files were normalized with fRMA (McCall et al, 2010)
v.1.6.0 with default parameters and hgu133plus2frmavecs
v.1.1.8 annotation. The arrays used contain 54 613 probe sets
(probes) representing 20 027 genes, annotated with R packages
annotate v.1.32.3 (Gentleman, 2014) and hgu133plus2.db v2.6.3
(Carlson et al, 2014).

Hierarchical clustering was performed using the function hclust
with ‘method¼ward’. The distance between samples was defined
as 1� |rS|, where rS is Spearman’s correlation coefficient. Principal
component analysis was computed with prcomp.
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Differential expression was assessed with Rank Product
(Breitling et al, 2004), a nonparametric method related to the
fold-change method (Hong and Breitling, 2008).

The four normal lymph node (NLN) profiles were used to assess
the contaminant fraction in nodal metastasis profiles (LNM) as
follows:

geðLNMÞ ¼ ð1�xÞ:geðPTCÞþx:geðNLNÞþd

where ge(tissue) is the expression profile of a tissue; x is the fraction
of NLN contaminant and d is an unknown signal associated with
metastasis and measurement errors. Taking the ratios of expres-
sion:

geðLNMÞ
geðPTCÞ ¼ ð1�xÞþx:

geðNLNÞ
geðPTCÞ þ

d
geðPTCÞ

Thus, the fraction of contaminant x can be estimated from the
slope between LNM/PTC and NLN/PTC ratios. This method was
assessed with a data set of tissue mixtures of known contaminant
fraction (Supplementary Figure S3). Estimated and real contami-
nant fractions were similar and highly correlated (Spearman’s
r¼ 0.94; P¼ 1.16� 10� 78). To deconvolute the contaminant
signal, for each log2-transformed LNM-PTC ratio, a loess
normalization was performed with regard to their NLN-PTC ratio.

Gene set enrichment analysis was run with 1000 label
permutations to derive a P-value and its associated false discovery
rate for each gene set (Subramanian et al, 2005).

After balancing the number of N0 and Nþ samples, nested
cross-validation was performed using support vector machine as
the classification method (Chang and Lin, 2011) and top scoring
pairs (Leek, 2009) for the feature selection. The data sets were
divided randomly into five parts of equal size and equal number of
samples from each class. One part was set aside as the test set,
whereas the training set consisted of the four remaining parts. The
training set was used in the inner fivefold cross-validation to select
the best number of probes N A {8, 16, 32, 64}, that is, the number
of probes maximising the average accuracy of the predictors.

False discovery rates, a confidence measure that accounts for
multiple testing, o0.05 were considered significant for differential
expression and o0.25 for gene set analysis, as recommended by
Subramanian et al (2005).

This microarray data set is available from the Gene Expression
Omnibus (Edgar et al, 2002) under accession number GSE60542.

RESULTS

No strong global transcriptional difference between N0 primary
tumours, Nþ primary tumours and nodal metastases. We
profiled the transcriptomes of 11 primary PTCs with no detectable
nodal invasion, 17 primary PTCs with nodal invasion and 17
patient-matched nodal metastases. We also profiled a number of
control samples. These included 24 patient-matched non-cancer-
ous thyroid tissues (11 from N0, 13 from Nþ patients), and 4
normal lymph nodes, and technical and biological replicates
including additional nodal metastasis for 3 patients, adjacent
blocks for 5 primary tumours, 4 non-cancerous thyroid tissues and
1 nodal metastasis. The non-cancerous thyroid tissues were taken
from the thyroid tissues adjacent to the tumor, and in the
contralateral thyroid lobe whenever possible.

To compare the global molecular phenotypes of these samples,
we projected them on the two first principal components,
representing together 46% of the total variance of the data set
(Figure 1). Samples were grouped into three clusters: tumour
tissues, non-cancerous thyroid tissues and normal lymph nodes.
We eliminated from further analysis five presumably mislabelled
‘tumour’ samples with global phenotypes akin to non-cancerous

tissues (Figure 1, red labels). The tumour cluster included N0, Nþ
primary tumours and nodal metastases demonstrating the absence
of a strong global transcriptional difference between these tissues.

The transcriptomes of primary tumours and patient-matched
lymph node metastases are highly correlated owing to both
patient and tumour common backgrounds. Several publications
reported that the global transcriptomes of primary tumours are
more related to those of their associated metastasis than to the
metastasis of other primary tumours from other patients (Perou
et al, 2000; Hao et al, 2004; O’Donnell et al, 2005; Weigelt et al,
2005; Roepman et al, 2006a; Feng et al, 2007; Inamura et al, 2007;
Vecchi et al, 2008; Ellsworth et al, 2009). To verify if this applied to
our data, we ran a hierarchical clustering on all pairs of nodal
metastases and matched primary tumours (Figure 2A). Samples
clustered by patient for 11 in 13 pairs, confirming earlier studies.

The present and previous analyses provided little quantitative
insight and did not investigate the contribution of patient and
tumour backgrounds in determining sample similarities. Nodal
samples were significantly more correlated with primary tumours
from the same patients than with unrelated primary tumours
(Figure 2B). The correlations between matched primary/nodal
samples and between primary tumour replicates were not
significantly different.

Patient-matched non-cancerous and primary tumour samples
were significantly more correlated than unmatched primary and
non-cancerous samples. Thus, part of the primary tumour
phenotype is related to patient background. The former correla-
tion, however, was significantly lower than the correlations
between tumour replicates and between non-cancerous tissue
replicates. Patient-matched nodal metastasis and non-cancerous
thyroid tissues were not more correlated than equivalent
unmatched samples. We concluded that the observed pairing of
the patient-matched primary and nodal transcriptomes was owing
to both tumour- and patient-specific backgrounds.

Normal lymphoid and non-cancerous thyroid tissues likely
confounded the expression differences between primary
tumours and nodal metastases. The transcriptomes of primary
tumours and nodal metastases were undistinguishable on a global
scale, yet defined gene expression signature may set them apart and
provide insights into the metastatic process. We performed a
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supervised search for genes differentially expressed between
Nþ primary tumours and their matched metastases (details in
Material and Methods) – an approach widely used in previous
studies (Huang et al, 2003; Kikuchi et al, 2003; Nagata et al, 2003;
Tamoto et al, 2004; Croner et al, 2005; O’Donnell et al, 2005;
Roepman et al, 2005; Xi et al, 2005; Bidus et al, 2006; Inamura et al,
2007; Méndez et al, 2007, 2011; Nguyen et al, 2007; Pei et al, 2007;
Kashiwazaki et al, 2008; Kroon et al, 2008; Wong et al, 2009;
Smeets et al, 2011).

We detected 1074 probes more expressed in metastases than in
primary tumours (Supplementary Table S3). To gain functional
insight, we ran a gene set enrichment analysis (GSEA)
(Subramanian et al, 2005) using a gene set database composed of
the Gene Ontology biological processes based on categories,
signatures of primary tumour vs nodal metastasis from previous
studies (Nagata et al, 2003; Hao et al, 2004; Hoang et al, 2005;
Roepman et al, 2005; Xi et al, 2005; Bidus et al, 2006; Finak et al,
2006; Wang et al, 2006b; Feng et al, 2007; Inamura et al, 2007;
Nguyen et al, 2007; Suzuki and Tarin, 2007; Casey et al, 2009;
Ellsworth et al, 2009; Edfeldt et al, 2011) and a signature of normal
thyroid differentiation (Tomás et al, 2012). Gene sets from
previous studies and gene sets associated with the immune system
were upregulated in nodal metastasis (Figure 3A). This signal could
have resulted from the trivial fact that we compared tissues with
two different backgrounds, that is, thyroid and lymphoid. To
address this confounding variable problem, we compared the fold
changes of probes obtained when comparing nodal metastases vs
primary tumours with the fold changes obtained when comparing
normal lymph nodes vs non-cancerous thyroid (Figure 3B). The
two variables were highly correlated, rS¼ 0.39 (Po2� 10� 16),
demonstrating that the 1074 upregulated probes and the gene sets
were not informative about the metastatic process, but were due to
the confounding effect of normal lymphoid cells.

A lower number of probes, 27, were downregulated in
metastases compared with primary tumours (Supplementary
Table S3). Gene set enrichment analysis detected the thyroid
differentiation signature as the unique downregulated gene set
(Figure 3A). This raised the possibility that expression negatively
associated with nodal metastases was confounded by the absence of
normal, differentiated, thyroid cells in lymph nodes.

Correcting for contaminant reveals an increased stromal signal
in nodal metastases compared with matched primary. The
normal lymph node transcriptomes enabled estimating lymphoid
cell fraction in the nodal metastasis (Material and Methods and
Supplementary Figure S1). It was below the 30% limit as
determined by the pathologic examination in all but two samples
(Figure 4A). These two samples were precisely those not clustering
with their matched primary tumour in Figure 2A, strongly
suggesting that these two exceptions to the general clustering
pattern were caused by low tumour content.

Expression data were adjusted for lymphoid cell fraction
(Materials and Methods and Supplementary Figure S1) and gene
set enrichment was investigated as described in the previous
section (Figure 4B; see Supplementary Table S3 for the list of
differentially expressed genes). Two signatures of nodal metastasis
from breast cancer studies (Suzuki and Tarin, 2007; Ellsworth et al,
2009), and one from gastric cancer using laser capture micro-
dissection (Wang et al, 2006b), were upregulated in PTC nodal
metastases. Two signatures obtained by comparing stroma with
other cell types (Finak et al, 2006; Casey et al, 2009) were also
upregulated in the PTC metastases.

Surprisingly, the three cancer-derived signatures were down-
regulated in nodal metastases in the original publications (Wang
et al, 2006b; Suzuki and Tarin, 2007; Ellsworth et al, 2009). To
further investigate why the same signatures had an opposite
regulation in PTC metastases, we estimated their expression in
primary tumour RNA-seq data from The Cancer Genome Atlas
(TCGA). All three signatures had a significantly higher median
expression in breast than thyroid tumours (Supplementary Figure S2).
Thus, the referential defining of ‘up-’ and ‘nodal up-’ and
‘downregulation’ is different in these two types of cancer. An
equal expression of stroma-related genes in nodal metastases could
lead to opposite senses of differential expression when comparing
with related primary tumours. We noted, however, that this
tentative explanation could not apply to gastric cancer because it
had the lowest stroma-related expression among all TCGA cancers.

Differential expression between N0 and Nþ tumours is
reproducible in patient-matched non-cancerous tissues, but
not in independent PTC data sets. The unsupervised analysis
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(Figure 1) revealed no global difference between the transcriptomes
of N0 and Nþ primary tumours. Again, we searched for specific
signatures of nodal status with a supervised analysis.

A preliminary analysis determined that nodal status was not
confounded with any other recorded clinical variables in our samples
(variables listed in Supplementary Table S1). Mutational status was
not associated with nodal status: 16 out of 26, that is B60% of PTC

were BRAF mutated (8 N0 and 8 Nþ ). We detected 129 probes
more expressed in Nþ primary tumours compared with N0 and 11
less expressed (Supplementary Table S3). Gene set enrichment
analysis uncovered a single significant gene set, a signature
upregulated in nodal metastases in a previous breast cancer study
(Suzuki and Tarin, 2007), but downregulated in Nþ samples in
our data set. As we will see below, such discrepancy is typical.
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The same analysis was performed with the non-cancerous
tissues adjacent to the Nþ and N0 tumours. Eight hundred and
forty-seven probes were detected as upregulated and 8 as
downregulated in non-cancerous tissues adjacent to Nþ tumours
(Supplementary Table S3). Three gene sets reached significance
with GSEA: calcium-independent cell–cell adhesion was upregu-
lated; two signatures of upregulated genes in nodal metastases
elsewhere (Feng et al, 2007; Suzuki and Tarin, 2007) were
downregulated. Hence, the categories associated with nodal
infiltration seemed similar in the tumour and matched non-
cancerous tissues. To confirm this impression, we estimated with
GSEA the expression of the tumour-derived Nþ signature in the
non-cancerous tissues (Figure 5A and B), and conversely, of the
non-cancerous tissue-derived Nþ signature in the tumours
(Figure 5C and D). Both had a consistent expression in the
alternate patient-matched tissue. In other words, there was high
similarity in transcriptional signals associated with nodal status in
the non-cancerous and tumour tissues. This is a straightforward
consequence of the established fact (Figure 2) that transcriptomes
of a tumour and its matched non-cancerous tissues were correlated
on a global scale.

To validate these results, we considered the 129 and 11 genes
sets as signatures and evaluated their expression in three published
PTC data sets with nodal status information. These signatures were
not consistently regulated. To assess comprehensively the dis-
crepancies between data sets, we selected the 200 top genes ordered
by their fold change of expression and associated with nodal status
in each one of the three data sets and in our data set. We then
tested all these signatures in all data sets (Figure 5C). No signature
showed consistent expression across data sets.

Taken together, these results suggest that the signals associated
with nodal status are cohort-specific – all the PTC cohorts are
relatively small, except TCGA – and are associated with patient
rather than tumour background.

Nodal invasion can be predicted from primary tumour
transcriptomes for some, but not all cancer types. A number
of studies present predictors of nodal status from primary tumour
gene expression (Kikuchi et al, 2003; Tamoto et al, 2004;
O’Donnell et al, 2005; Roepman et al, 2005; Inamura et al, 2007;
Méndez et al, 2007; Pei et al, 2007; Kashiwazaki et al, 2008).
Although the previous section ruins any hopes to find a relevant
signal in our data, we conducted a comparable analysis to illustrate
a widely overlooked statistical point. Using state-of-the-art
machine learning methods and a nested cross-validation protocol
immune to feature and model selection biases (Material and
Methods), nodal status could be predicted with accuracy of 63%.

However, error estimation is variable depending on the specific
split of the data into training and validation samples (Ambroise and
McLachlan, 2002) – an issue rarely controlled for. We reran the above
analysis 100 times on our data, but each time the N0/Nþ labels were
shuffled randomly among the samples. Twelve per cent of the runs
produced accuracy estimates 463% (Figure 6A) in our data set, that
is, a 63% accuracy has a high probability to occur by chance. We
extended this analysis to other published PTC data sets and obtained
similar results (Figure 6A), except for the TCGA thyroid data set.

This problem is more likely with small data sets. With 340 PTC
samples, the TCGA made it possible to overcome the small size of
our data set. We ran the classification analysis, including the
random shuffling control, on the TCGA PTC data set and all other
TCGA data sets with nodal status information (Figure 6B). The N0
vs Nþ classification accuracy was significant in thyroid, breast and
head and neck, but not high (o70%). No evidence for N0 vs Nþ
classification accuracy better than random was found in 11 other
cancers. Note that significant classification accuracies were
obtained for large data sets. Thus, data set size and cancer type
influenced the classification potential of expression data.
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Figure 5. Coherence of N0 vs Nþ differential expression across
tumour and non-cancerous tissues and across data sets. (A–D) The
same N0 vs Nþ differential expression is present in tumour and patient-
matched non-cancerous tissues. We use the procedure and standard
graphical representation of GSEA (Subramanian et al, 2005). Genes are
ranked from the most upregulated in Nþ to the most downregulated.
Genes belonging to the investigated signature are denoted with black
bars at the bottom of each panel. The green curve denotes the
enrichment score. The more biased on the left, resp. right, the more the
signature is upregulated in Nþ , resp. N0. (A) A signature comprising the
200 most upregulated genes in Nþ primary tumours compared with
N0 tumours, which was evaluated in non-cancerous thyroid tissues: it is
upregulated as well. (B) Same as in (A) with the 200 most downregulated
genes. (C and D) Same as in (A and B), except that the signatures were
extracted from non-cancerous tissue data and then evaluated in primary
tumours. (E) The N0 vs Nþ differential expression is irreproducible across
independent data sets (Delys et al, 2007; Detours et al, 2007; Dom et al,
2012). Rows depict data set and column N0 vs Nþ signatures extracted
from specific data sets. Signatures up- and downregulated in Nþ are
shown in different panels. Colours represent statistical significance, with
black denoting P40.05, red denoting significant downregulation and
green significant upregulation. For example, the third column, Delys et al
(2007), Down corresponds to the genes downregulated in Nþ in the
data set of Delys et al (2007). Hence, the colour of diagonal elements was
set to grey. Delys et al (2007) signature, however, is not associated with
nodal status in the present study nor in the study of Dom et al (2012), yet
is significantly upregulated in Nþ tumours in the TCGA thyroid
data set. Thus, this signature is not corroborated in two data sets
and is expressed in the opposite direction in a third data set. Similarly,
discordant results were obtained in a negative control obtained by
running the exact same calculations on the same data, but in which
N0 and Nþ class labels were permuted randomly across the samples
of each study.
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DISCUSSION

Nodal metastases tended to be more similar to their patient-
matched primary tumours than to unrelated primary tumours
(Figure 2). This trend, also present in previous studies (Perou et al,
2000; Hao et al, 2004; O’Donnell et al, 2005; Weigelt et al, 2005;
Roepman et al, 2006a; Feng et al, 2007; Inamura et al, 2007; Vecchi
et al, 2008; Ellsworth et al, 2009), has been interpreted in the
context of the stepwise and the ab initio models of metastatic
progression. In contrast to the stepwise model, the ab initio model
posits that metastatic potential is acquired early during tumour
expansion and is detectable in bulk samples. It is also compatible
with a small or no difference between primary and nodal tumours
(Inamura et al, 2007; Ellsworth et al, 2009). However, the evidence
provided by the expression profile comparison is limited, as it may
depend on the cell types present in the samples (Roepman et al,
2006b). Here, we found that all the mismatched nodal samples
were highly contaminated by lymphoid tissues. Another potential
confounder is the presence of multiple primary foci (Weigelt et al,
2005). The interpretation of similarity results is further compli-
cated by our findings that primary tumours are more similar to
their contralateral non-cancerous thyroid tissues than to unrelated
non-cancerous thyroid tissues. Thus, the stronger similarity
between primary and nodal tumours is owing to both acquired
tumour-specific features and patient-specific genetics and biology.

The global transcriptional profiles of primary PTCs and nodal
metastases were very similar (Figure 1). Yet, a supervised analysis
revealed hundreds of differentially expressed genes, most of them
suggesting an important immune component in the metastases
(Figure 3). Again, this result echoes studies conducted in other
cancer types (Weigelt et al, 2005; Wang et al, 2006b; Vecchi et al,
2008; Ellsworth et al, 2009; Xie et al, 2010). A number of these
studies have addressed or discussed the contamination of nodal
samples by lymphoid tissues (Hoang et al, 2005; O’Donnell et al,
2005; Weigelt et al, 2005; Suzuki and Tarin, 2007; Vecchi et al,
2008; Ellsworth et al, 2009; Méndez et al, 2011). We proposed an
original approach to the problem. We demonstrated that in our
data fold changes were correlated to those obtained from the
comparison of normal lymph nodes and non-cancerous thyroids
(Figure 3), suggesting an overwhelming confounding effect of
lymphoid tissues. Adjusting for lymphoid tissue content revealed
the upregulation of five published stroma-related signatures in

other tissues (Finak et al, 2006; Wang et al, 2006b; Suzuki and
Tarin, 2007; Casey et al, 2009; Ellsworth et al, 2009). Four of
five of these signatures were derived from the transcriptional
profiles of laser capture microdissected primary and nodal tumours
(Wang et al, 2006b; Ellsworth et al, 2009), or epithelium and
stroma (Finak et al, 2006; Casey et al, 2009), suggesting that our
statistical adjustment removed lymphoid contamination, but not
the biologically relevant signal. Three of 9 and 8 of 13 genes were
shared between two studies of microdissected lung and breast
primary, respectively, with associated nodal tumours (Hoang et al,
2005; Ellsworth et al, 2009) and our unadjusted gene list, which
mostly reflects immune infiltration. These overlaps could reflect
imperfect microdissection or a small-amplitude immune signal
unrelated to contamination. Finally, non-cancerous thyroid cells
present in the primary tissue blocks could have produced
the spurious downregulation of thyroid differentiation genes
(Figure 3). Because the adjustment for the lymphoid signal also
removed the thyroid signal (Figure 4B), the latter was probably an
indirect consequence of lymphoid contamination: the transcrip-
tomes of bulk tissues contaminated by lymphoid tissues are
obviously less thyroid-like.

We compared the expression profiles of primary PTCs, which
are associated or not with nodal metastasis. We found a signal
associated with nodal invasion, in agreement with studies in other
cancer types (Kikuchi et al, 2003; Tamoto et al, 2004; O’Donnell
et al, 2005; Roepman et al, 2005; Inamura et al, 2007; Méndez et al,
2007; Pei et al, 2007; Kashiwazaki et al, 2008). To further gauge the
significance of these results, we compared the signatures associated
with N0/Nþ obtained from four thyroid cancer data sets. The
signature obtained from one data set was typically not associated
with N0/Nþ in the three others (Figure 5). Thus, our N0/Nþ
signature and, presumably, those published in other studies of
comparable size, are not general markers of nodal invasion.
Anecdotal comparisons of signatures already hinted at this
conclusion (Méndez et al, 2007). Intriguingly, the same N0/Nþ
transcriptional signal was also present in the patient-matched non-
cancerous tissues in our data (Figure 5). To the best of our
knowledge, no other study presented this control. It suggests that
the signature captures patient, rather than tumour-specific
characteristics. This could arise from a predisposition to develop
nodal metastases. However, the inconsistency of the signals
suggests a cohort-specific bias. Only 2 (Takada et al, 2004;
Kroon et al, 2008) among more than 20 studies we surveyed tested
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whether the N0/Nþ status was associated with other available
clinical variables. We searched for such association in our data, but
did not find any. Yet, association with unobserved patient
characteristics cannot be ruled out and is not unlikely given the
limited sample size that characterizes the studies at hand.

Accuracy of N0 apart from Nþ primary tumours classification
was 63% in our thyroid cancer data set. However, a random
permutation control demonstrated that an equal or higher
accuracy might result from chance alone with a probability of
0.12. None of the studies we surveyed presented this control. It is
particularly needed for small studies because accuracy estimates
have a high variance (Figure 6). Published N0/Nþ classification
accuracies range from near perfect to near random. Several factors
may account for this variation, including the type of cancer
investigated, the comprehensiveness of lymph node investigation
and technical details of the statistical procedure. Feature selection
bias is an endemic flaw in the ‘omic’ literature that results in near-
perfect – but grossly inflated – classification accuracies (Ambroise
and McLachlan, 2002). It occurs when the marker genes are
determined using the entire data set and then when the model is
adjusted and ‘validated’ with classical cross-validation. Such
approach breaks the statistical principle of separation of training
and validation data. Five studies reporting accuracies of 89–100%
presented this flaw (Takada et al, 2004; Tamoto et al, 2004;
Inamura et al, 2007; Méndez et al, 2007, 2011). Studies without
feature selection bias reported less successful classification.
Focusing on the classification of N0 vs Nþ with more than 10
nodes invaded in breast primary tumours, Huang et al (2003)
obtained an accuracy of 90%. However, a less contrasted class
definition yielded a modest 62% accuracy (Smeets et al, 2011), in
line with our analysis of the TCGA data (57%, P¼ 0/100, N¼ 606;
Figure 6) and in line with the fact that nodal status is a strong
survival predictor that is independent of gene expression-based
prognostic signatures in this disease (Van de Vijver et al, 2002;
Van’t Veer et al, 2002; Ramaswamy et al, 2003; Wang et al, 2005;
Ivshina et al, 2006). In penile cancer accuracy was 54%, that is,
near random (Kroon et al, 2008). It was 62–67% in colon cancer
(Croner et al, 2005), but significance could not be reached in
TCGA (56%, P¼ 6/100, N¼ 136). Excluding studies with feature
selection bias (Takada et al, 2004; Inamura et al, 2007) and a study
with only four validation samples (Kikuchi et al, 2003), N0/Nþ
lung cancers could not be classified (Xi et al, 2005). We did
not reach significance with TCGA lung adenocarcinomas
(54%, P¼ 6/100, N¼ 230) and small-cell carcinoma (56%,
P¼ 11/100, N¼ 184). In oral cancer, Roepman et al (2005)
reported a 77% correct classification and Nguyen et al (2007)
reported a 92% correct classification using microdissected samples.
The Cancer Genome Atlas head and neck cancer samples could be
classified but with lower accuracy (62%, P¼ 0/100, N¼ 198).
Overall, our TCGA analyses show that N0 and Nþ tumours
cannot be classified for most cancers: accuracies are typically in the
range 50–60% and not significantly better than permutation
controls. Papillary thyroid carcinomas are among the most
amenable to N0/Nþ classification, but accuracy is still limited
(67%, P¼ 0/100, N¼ 340).

We have presented new biological and statistical controls that
expose some of the limits of published studies of the relationship
between primary tumours and nodal metastases. The potential
clinical relevance of gene expression to predict nodal metastases
seems limited for most cancers.
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