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Characterization of transcriptional 
modules related to fibrosing-
NAFLD progression
Yi Lou1,2, Guo-Yan Tian1, Yu Song1, Yin-Lan Liu1, Yi-Dan Chen1, Jun-Ping Shi1 & Jin Yang1

Based on the severity of liver fibrosis, low or high-risk profile of developing end-stage liver disease was 
present in nonalcoholic fatty liver disease (NAFLD). However, the mechanisms inducing transition from 
mild to advanced NAFLD are still elusive. We performed a system-level study on fibrosing-NAFLD by 
weighted gene co-expression network analysis (WGCNA) to identify significant modules in the network, 
and followed by functional and pathway enrichment analyses. Moreover, hub genes in the module were 
analyzed by network feature selection. As a result, fourteen distinct gene modules were identified, and 
seven modules showed significant associations with the status of NAFLD. Module preservation analysis 
confirmed that these modules can also be found in diverse independent datasets. After network feature 
analysis, the magenta module demonstrated a remarkably correlation with NAFLD fibrosis. The top hub 
genes with high connectivity or gene significance in the module were ultimately determined, including 
LUM, THBS2, FBN1 and EFEMP1. These genes were further verified in clinical samples. Finally, the 
potential regulators of magenta module were characterized. These findings highlighted a module and 
affiliated genes as playing important roles in the regulation of fibrosis in NAFLD, which may point to 
potential targets for therapeutic interventions.

Nonalcoholic fatty liver disease (NAFLD) represents a wide spectrum of disorders ranging from simple steatosis 
(nonalcoholic fatty liver, NAFL), nonalcoholic steatohepatitis (NASH), to cirrhosis or hepatocellular carcinoma 
(HCC). To date, NAFLD is one of the most common types of liver disease in the world1.

The diagnosis of NAFLD rests on clinicopathological criteria, requiring both clinical and biopsy-based infor-
mation. The histological findings are graded as fatty changeand necroinflammatory using NAFLD activity score 
(NAS) scoring system, while fibrosis staging is useful to assess the severity and underlying cause of liver disease2.
Challenges still lies in a lacking consensus for the classification of fatty liver disease, and absence of a uniform 
histological definition of NAFLD3.

Correspondingly, the phenotype and outcome of NAFLD is quite heterogeneous. For instance, though most 
NAFLD patients do not develop clinically significant hepatic disease, some patients can progress to cirrhosis, 
leading ultimately to HCC4. In addition, not all individuals with NASH finally develop cirrhosis or liver cancer5. 
On the contrary, although the severity of NASH generally correlates with the stage of fibrosis, some individuals 
with advanced fibrosis have relatively little NASH6. Moreover, the stage of fibrosis on liver biopsy independently 
associates with liver-related mortality7. When advanced fibrosis is present, absence of NASH is no longer prog-
nostic. For these reasons,recent clinical data focus increasing attention on determining fibrosis, as it is a strong 
indicator of the risk extent for NAFLD8. Recently, our group have shown that fibrosis score is a useful predictor 
of long-term outcome in NAFLD patients9. Mechanisms leading to strongly differing progression of NAFLD, in 
term of fibrosis, have to be elucidated.

The high-throughput technology such as gene expression profiling has been applied to NAFLD and provides 
insights into molecular aspects of NAFLD progression5. However, gene lists based on differential expression anal-
ysis methods are biased against genes with large changes in expression, while lacking the consideration of the 
relationship between changing genes as a whole. In this sense, biological networks represent valuable tools for 
understanding system-level properties10. One network approach, named weighted gene co-expression network 
analysis (WGCNA) allows for the grouping functionally related genes into modules11.It is believed that modules 
are stable units since the overall function of a module can remain the same while individual gene expression can 
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be changed or replaced by other genes with similar redundant functions12. Therefore, functional modules can 
more effectively reveal consistent differences during NAFLD progression.

In the present study, we applied a WGCNA approach to quantitatively assess the traits of mild or advanced 
fibrosing-NAFLD. Genome-scale modules of co-expressed genes with clear functional annotations were 
identified.

Results
Weighted co-expression network construction.  We used GSE49541 dataset in this study, since it con-
tained the relatively largest NAFLD samples with clear fibrosis staging. After preprocessing the data, we applied 
the WGCNA package to compile the network. One outlier sample (GSM789152) was eliminated using hierarchi-
cal average linkage clustering (Supplementary File 1, Fig. S1). Keeping to the scale-free topology criterion, β = 5 
was considered in this study (Fig. 1).

Following dynamic tree cut, the hierarchical clustering dendrogram identified 15 distinct gene modules, as 
shown in Fig. 1b. 348 genes failed to fit within a distinct group and were assigned to the grey module. The grey 
module was ignored in this study. The size of modules ranged from 38 (cyan module) to 2514 (turquoise module) 
genes. All attributes of genes and samples were shown in Supplementary File 2, Table S1–S2.

When compared with the mild samples, a total of 1134 differentially expressed genes (DEGs) were screened 
from the advanced NAFLD samples, including 762 upregulated and 371 downregulated genes. Consistent with 
the earlier research13, WGCNA modeling using DEGs could not match the scale-free feature of the network 
(Supplementary File 1, Fig. S2). DEG enrichment in each module was shown in Fig. 1c, in which DEG was mostly 
enriched in magenta module, and followed by black and blue module.

Identification of meta-modules associated with NAFLD severity.  Next, we evaluated the relation-
ship between each module and NAFLD status by correlating the eigengenes for each module with the fibrosis 
trait. Seven modules showed association evidence with p < 0.05(Fig. 2). Among them, five modules (tan, green, 
yellow, cyan, magenta) were positively correlated with fibrosis, thereafter named fibrosing-NAFLD modules. Two 
negatively correlated modules (blue, black) named NAFLD modules thereafter.

Module-module relationship, also called meta-module, is the groups of correlated eigengenes with correlation 
of eigengenes > 0.5. As shown in Fig. 2c,d, the dendrogram indicates that module mayanta is highly correlated 
with NAFLD fibrosis. While black and blue modules are highly related, their mutual correlations are stronger 
than their correlations with fibrosis trait.

Stability and preservation of co-expression modules.  To test the stability of the identified modules, 
internal analysis by repeating network construction and module identification on expression data that consists of 
resampled sets of the original dataset was performed14. The result proved the robustness of module assignments 
(Supplementary File 1, Fig. S3).

To ask if the identified modules were common in different datasets, an independent validation was performed. 
We retrieved 8 datasets relevant to NAFLD. All samples were from human liver tissue. Fibrosing-NAFLD mod-
ules (tan, green, yellow, cyan, magenta) were stable across E-MEXP-3291, GSE48452, and GSE59045. To examine 

Figure 1.  WGCNA network and module detection. (a) Selection of the soft-thresholding powers. The left panel 
shows the scale-free fit index versus soft-thresholding power. The right panel displays the mean connectivity 
versus soft-thresholding power. Power 5 was choosed, for which the fit index curve flattens out upon reaching 
a high value (>0.9). (b) Cluster dendrogram and module assignment for modules from WGCNA. Genes 
were clustered based on a dissimilarity measure (1-TOM). The branches correspond to modules of highly 
interconnected groups of genes. Colours in the horizontal bar represent the modules. 7012 transcripts were 
assigned to one of 15 modules including module grey. (c) Enrichment of DEGs in each module.
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if these identified modules were also presented in fibrosing liver disease such as HBV, GSE84044 dataset contain-
ing 124 samples with different stages of fibrosis was used as a specific control (Fig. 3).

In addition, NAFLD modules (blue, black) were preserved in other 5 datasets (GSE17470, GSE24807, 
GSE37031, GSE46300, and GSE63067) according to the summary preservation statistics, while fibrosing-NAFLD 
modules showed weak to none evidence for module preservation (Supplementary File 1, Fig. S4).

Functional enrichment analysis of the gene modules of interest.  Gene ontology annotation and 
enrichment analysis were accomplished using DAVID version 6.8 (https://david-d.ncifcrf.gov/)15. Top biological 
processes and KEGG pathway in each module was shown in Table 1.

Globally, top 5 biological processes were enriched in the modules of interest, including small molecule met-
abolic process (blue, FDR = 1.10E-35), extracellular matrix organization (magenta, FDR = 2.50E-10), gluco-
neogenesis (blue, FDR = 2.70E-06), extracellular matrix disassembly (magenta, FDR = 7.31E-06), respiratory 
electron transport chain (black, FDR = 1.30E-04). Top 5 enriched pathways were as follows: hsa01100: Metabolic 
pathways (FDR = 7.81E-15) in the blue module, hsa01200: Carbon metabolism (FDR = 8.11E-11) in the blue 
module, hsa04510: Focal adhesion (FDR = 2.91E-08) in the magenta module, hsa04512: ECM-receptor inter-
action (FDR = 1.91E-06) in the magenta module, and hsa04932: Non-alcoholic fatty liver disease (NAFLD)
(FDR = 4.19E-03) in the black module. The complete annotation for each module was provided in Supplementary 
File 2, Table S3–S4.

Figure 2.  Module-trait and module-module associations of the network. (a) Each row corresponds to a 
module eigengene, column to a trait. Each cell contained the corresponding correlation and p value. The table 
was color-coded by correlation according to the color legend. The grey module included all the genes that 
can’t be clustered. (b) Module significance of each module, which is determined as the average absolute gene 
significance measure for all genes in a given module. (c,d) Eigengene network, including the clustering tree and 
heatmap, represents the relationships among the modules and the NAFLD trait. Meta-modules are defined as 
tight clusters of modules. The dendrogram indicates that magenta module and fibrosing-NAFLD trait are highly 
related. Conversely, blue and black modules are highly related, this meta-module is inversely correlated with 
fibrosis.
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Network analysis of the gene modules of interest.  After viewing the global properties of the interest-
ing networks, we next examined the gene constitution of particular modules based on network unique properties, 
such as gene significance (GS), module membership (MM) and intramodular connectivity (K.in).

Abstractly speaking, a gene is more meaningful with high GS, MM and K.in16. Thus, if MM, K.in or GS of the 
specific module were significantly connected and associated with the NAFLD fibrosis status, it implied that the 
module serves an more important biological role to NAFLD progression.

Figure 3.  Preservation of GSE49541 network modules in different datasets. Each module is represented by its 
color-code and name. Left figure shows the composite statistic Preservation median rank. This measure tends 
to be independent from module size with high median ranks indicating low preservation. Right figure shows 
preservation Zsummary statistic. The dashed blue and green lines indicate the thresholds Z = 2 and Z = 10, 
respectively. Zsummary < 2 implies no evidence for module preservation, 2 < Zsummary < 10 implies weak to 
moderate evidence, and Zsummary > 10 implies strong evidence for module preservation. Fibrosing-NAFLD 
modules (tan, green, yellow, cyan, magenta) show high preservation statistics summary than expected by 
random chance using bootsrapping validation procedures.

module Category Terma PValue FDR

Fibrosing-NAFLD module

magenta GOTERM_BP GO:0030198~extracellular matrix 
organization 1.51E-13 2.50E-10

cyan GOTERM_BP GO:0097284~hepatocyte apoptotic 
process 2.45E-02 2.73E + 01

yellow GOTERM_BP GO:0043687~post-translational protein 
modification 1.29E-06 2.21E-03

green GOTERM_BP GO:0032486~Rap protein signal 
transduction 6.16E-04 1.01E + 00

tan GOTERM_BP GO:0050790~regulation of catalytic 
activity 7.24E-03 9.18E + 00

NAFLD module
black GOTERM_BP GO:0022904~respiratory electron 

transport chain 6.68E-08 1.09E-04

blue GOTERM_BP GO:0044281~small molecule metabolic 
process 6.21E-39 1.10E-35

module Category Term PValue FDR

Fibrosing-NAFLD module

magenta KEGG_PATHWAY hsa04510:Focal adhesion 2.37E-11 2.91E-08

cyan KEGG_PATHWAY hsa03030:DNA replication 8.05E-02 5.08E + 01

yellow KEGG_PATHWAY hsa04120:Ubiquitin mediated proteolysis 8.90E-04 1.13E + 00

green KEGG_PATHWAY hsa04720:Long-term potentiation 1.73E-02 1.94E + 01

tan KEGG_PATHWAY hsa04015:Rap1 signaling pathway 5.78E-02 4.58E + 01

NAFLD module
black KEGG_PATHWAY hsa04932:Non-alcoholic fatty liver disease 

(NAFLD) 3.33E-06 4.19E-03

blue KEGG_PATHWAY hsa01100:Metabolic pathways 5.96E-18 7.81E-15

Table 1.  Top GO and pathway enrichment in each module.
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Of the seven interesting modules, significant correlations were observed between MM and GS in the yellow, 
blue, black, and magenta modules. We also found a markedly correlation between GS and K.in in the yellow, blue, 
black, and magenta modules (Fig. 4). Overall, module magenta shows the best as reflected by its strongly positive 
correlations(r = 0.84, p = 4.5E-56 in GS vs.MM; r = 0.78, p = 2.1E-43 in GS vs.K.in). These results indicated that 
magenta module is heavily involved in NAFLD fibrosis progression.

Characterization of the magenta module content and hub genes.  A network view of magenta 
module, modeled by cytoscpae with TOM ≥ 0.1, is depicted in Fig. 5. The K.in count for each gene ranged from 
0.1 to 14.5, with an average of 3.49 ± 2.90. The GS score for each gene ranged from −0.58 to 0.79, with an average 
of 0.34 ± 0.03. The MM for each gene ranged from −0.68 to 0.92, with an average of 0.43 ± 0.03. Using STRING17 
or GeneMANIA18 database to model the network gave the similar results (Supplementary File1 Fig. S6).

Focusing on the magenta module, we explored those core genes that had a high significance for NAFLD status, 
as well as high K.in. Network top interesting genes of the magenta module based on the above two indexes are 
listed in Table 2. The three top network hub genes (LUM, FBN1, and THBS2) based on K.in and the three top 
genes (EFEMP1, THBS2, and LUM) ranked on GS were disclosed.

Specifically, several proteomic studies have identified lumican (LUM) is expressed differentially across the 
progressive stages of NAFLD19. Upregulated expression of LUM is in association to hepaticfibrosis20. Moreover, 
in animal studies, LUM is a prerequisite for hepatic fibrosis, which involves collagen fibrillogenesis, and matrix 
turnover21.

To the best of our knowledge, there was nothing directly implicating EFEMP1, FBN1 and THBS2 reported to 
be associated with severe NAFLD. However, EFEMP1 has been showed decreased expression in HCC tissue22. The 
following two genes, FBN1 and THBS2, were belong to the cellular adhesion and extracellular matrixconstituent. 
FBN1, has been shown mounting a hepatic progenitor cell response for tissue repair in rat liver23. THBS2 was 
found over-represented in patients with vascular liver lesions such as sinusoidal dilatations24.

All these four genes were significantly upregulated in advanced fibrosing-NAFLD (GSE49541). High expres-
sion of these genes was also confirmed in advanced NAFLD in other cohorts (E-MEXP-2191, GSE48452 and 
GSE84044, Fig. 5c). Conversely, these genes were not differentially expressed in the NAFLD dominant datasets 
(Supplementary File 1, Fig. S5), suggesting EFEMP1, FBN1 and THBS2 maybe the novel candidate biomarkers 
for fibrosing-NAFLD.

Hub genes were significantly up-regulated in the livers from NAFLD patients and mices.  To 
investigate if hub genes were modified in fibrosising-NAFLD, the production of these genes were further exam-
ined in livers from NAFLD animals and patients.

Liver biopsy tissues from NAFLD patients were stained to assess disease severity. Compared with NAFLD 
fibrosis stage 0–1 patients (n = 4), LUM, EFEMP1, FBN1, and THBS2 were remarkablely up-regulated in the 
fibrosis stage 3–4 state patients (n = 4) (Fig. 6a,b).

Figure 4.  Module features of GS, MM and K.in. (a) Modules significantly correlated with NAFLD status (mild 
versus advanced fibrosis). Each point represents an individual gene within each module, which are plotted by 
GS on the y-axis and MM on the x-axis. The regression line, correlation value and p-value are shown for each 
plot. (b) Correlation of the K.in (x-axis) and the GS (y-axis).
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ApoE−/− mice receiving a HFHC diet are the well-established animal models mimicking human NAFLD25. As 
expected, ApoE−/− mice fed a HFHC diet for 20 weeks evidenced hepatic steatosis, ballooning, hepatic inflam-
mation and increased fibrosis. Similarly, Lum, Efemp1, Fbn1, and Thbs2 were significantly higher in livers from 
NAFLD mice with severe fibrosis compared to livers from mice with mild fibrosis (n = 3 in each group, Fig. 6c,d). 
The data in vivo above suggests a close relationship between hub genes and NAFLD fibrosis.

Functional organization of the magenta module.  Next, function relevance of magenta module was 
reannotated using DAVID tool. With the cutoff set as FDR <0.1, focal adhesion, ECM-receptor interaction, and 
phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway constitue the main pathways in magenta module. In 
complete accord with the phenotype, GOterm extracellular matrix organization and cell adhesion were signifi-
cantly enriched.

Figure 5.  Characterization of the magenta module. (a) Gene expression heat-map of module magenta. (b) 
Interaction of gene co-expression patterns in the magenta module. The module was visualized using Cytoscape 
3.0 software. The node colors coded from green to red (low to high) indicate the fold change when compared 
mild with advanced NAFLD state. The node size is proportional to the significance of the expression changes 
compared to mild NAFLD. (c) Four hub genes expression pattern in liver tissues according to GSE49541, 
E-MEXP-3291, GSE48452 and GSE84044 cohort. Data were shown as box and whisker plot. Limma package 
was used for statistical analysis.

Gene GS GSRank k.in k.in Rank
Potential Transcription 
factor

Network Hub genes 
(based on k.in)

LUM 0.779 3 14.511 1 ESR1, BACH1, TRIM28, 
RUNX2

FBN1 0.756 6 13.234 2 TP63

THBS2 0.785 2 12.597 3 ESR1, TP53, BACH1, 
TP63, RELA

Network top genes 
(ranked on GS)

EFEMP1 0.790 1 12.224 4 ZNF217, BACH1, TP63

THBS2 0.785 2 12.597 3 ESR1, TP53, BACH1, 
TP63, RELA

LUM 0.779 3 14.511 1 ESR1, BACH1, TRIM28, 
RUNX2

Table 2.  Hub genes in module magenta.
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Since co-expressed genes may be co-regulated by the common transcription factors (TFs) and microRNAs, we 
performed gene-set enrichment analysis using ChEA, Encode, and Targetscan database26–28 for magenta module. 
Significant enrichments of transcription factors were observed for ESR1, SOX2, TP53, etc (Fig. 7; Supplementary 
File 2, Table S5–S7). Several TFs were reported to be functionally associated with NAFLD. For instance, CpG 
island methylation of ESR1 was found to be involved in lipid and glucose metabolism, and the progression of 
fibrosis in mouse feeding with methyl-deficient diets29. SOX2 expression may predict the prognosis of HCC 
patients30. As a metabolic modulator, growing evidences highlight TP53 a new player in NAFLD pathogenesis31. 
BACH1 gene ablation reduces steatohepatitis in mouse32. Specifically, RELA (p65), is well-known for its trig-
ging inflammatory responses in NAFLD33. RUNX2 downregulation is involved in cirrhotic liver34. Most recently, 
TRIM28 was found to modulate the prevalence of obesity in the population35. The other two genes (ZNF217, 
TP63) enriched in magenta module have not been reported for their relationship to liver.

H3 lysine 27 trimethylation (H3K27me3) was strongly enriched for most of the genes in module magenta. 
Recent paper has shown that in human NAFLD-associated HCC, level of H3K27me3 was correlated positively in 
tumors compared with nontumor tissues36.

Finally, the most enriched miRNAs were observed for miR-200b, miR-200c and miR-429. In high fat diet 
feeding rats, miR-200a, miR-200b and miR-429 were significantly correlated with a severity of NAFLD-specific 
liver pathomorphological features37. Another study has showed, miR-200a, miR-200b, and miR-200c were 
up-regulated in NAFLD38.

Discussion
Here, we present a systematic WGCNA of NAFLD with either mild fibrosis or advanced fibrosis. Among the 14 
modules discovered in this study, seven modules were significantly associated with disease progression.

As an alternative to traditional differential expression analyses which centered on individual genes distinguish-
ing the status of NAFLD, in an unbiased manner, WGCNA groups co-expressed genes that are biologically inte-
grated on a genome-wide scale. We found several features in term of the relationship between WGCNA and DEG 
analysis. First, using differential expression genes to model WGCNA network is not suggested, since it completely 
invalidates the scale-free topology assumption. Second, we found that, globally, DEG genes have less connectivity 
than non-DEG genes (9.57 ± 12.91 vs. 24.93 ± 37.59, respectively), and this association does not follow a simple 
monotonic trend in each module. Third, DEG genes tend not to be hub genes as determined by connectivity in 

Figure 6.  Expression of hub genes in different fibrosis stages of NAFLD. (a,b) The representative HE staining 
of NAFLD patients with different fibrosis stages were shown. Quantification of hub genes was presented. (c,d) 
Liver sections were stained with HE in mice fed with HFHC diet at 20 weeks. Masson’s trichrome staining was 
used to detect the accumulated collagen. The hepatic production of hub genes was confirmed and presented. 
**P < 0.01.
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most modules. However, DEG numbers show a significant enrichment in seven important modules (Fig. 1c). 
Thus, WGCNA and DEG showed efficient mutual complementation when for transcriptome analysis.

Results suggest that the modules identified here are biologically rational. First, fibrosing-NAFLD and NAFLD 
modules were clearly separated by WGCNA approach. Module preservation was extensively studied among dif-
ferent datasets. Second, most of the identified modules are enriched for specific GO terms and KEGG pathways. 
For instance, module black, together with module blue, are markedly inverse correlated with NAFLD fibrosis. 
Both the black and blue modules were enriched in respiratory electron transport chain and small molecule 
metabolic process, which have already been implicated in oxidative stress, and mitochondrial dysfunction for 
NAFLD39. KEGG analysis showed that these modules are directly related to NAFLD. Moreover, hub genes in 
these modules are implicated in NAFLD as reported by literature annotation. As the hub gene of blue mod-
ule,selenium-binding protein 1(SELENBP1) has been shown to be downregulated in the liver tissue of HCC 
patients and the association of its gradual loss with an increased malignant grade40. Thus, it is temping to specu-
late that the NAFLD modules (black, and blue) dominate the period of NAFLD when fibronesis is not obvious.

Recently, the systems biology approach for NAFLD has been applied in studies by integrating genomic data 
and metabolic networks. One study showed that metabolism of amino acids, chondroitin and heparan sulphates 
seem to be involved in the appearance of NASH41. In our analysis, we observed regulation of cellular amino 
acid metabolic process in black or blue module, including branched-chain, sulfur, alpha-amino, serine family, 
aspartate family amino acid metabolic process. Simultaneously, cellular response to amino acid stimulus was also 
enriched in magenta module with relatively small propability, which suggests the continuous amino acid meta-
bolic stress during NAFLD pathogenesis.

This study highlights the importance of magenta moduleas as a driver of fibrosis based on the meta-module, 
and further through the network feature (GS, MM and K.in) analysis. Enriched GO terms or pathway are highly 
concordant. In particular, extracellular matrix (ECM) and PI3K pathway were top core gene sets of the magenta 
module. The ECM is mainly composed of an intricate interlocking mesh of fibrillar and non-fibrillar collagens, 
elastic fibers and glycoproteins42, which is a highly dynamic structure undergoing controlled remodelling43. The 
deposition of increased and abnormal ECM is the hallmark of liver fibrosis44. Correspondingly, the PI3K signa-
ling pathway has been shown to regulate procedures associated with hepatic stellate cell (HSC) activation such 
as collagen synthesis and cell proliferation45. Inhibition of PI3K signaling in HSCs suppresses ECM deposition, 

Figure 7.  Potential factors regulating genes in magenta module. (a) Transcription factors. (b) Histone 
modification markers. (c) Enriched seed and its associated microRNA.
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type I collagen synthesis, and reduce the expression of profibrogenic factors. In a feed-back manner, collagen 
crosslinking increases stiffness, β1 integrin clustering, PI3K signalling and focal adhesion formation to drive the 
disease progression43.

The progression of NAFLD from mild steatosis up to severe steatohepatitis and even cirrhosis or HCC, varies 
widely between individual patients. Recently, one study was to assess the histological severity of NAFLD in a 
cohort with serial biopsy data, and contrary to current dogma, this study suggests that steatosis can directly pro-
gress to NASH and clinically significant fibrosis46. Since causality between liver fibrosis and the prognosis of the 
liver disease is well recognized, the intervening measure may have to be adjusted in different subsets of NAFLD 
patients.

To demonstrate the usefulness of our modules in the development of efficient NAFLD interfere strategies, 
given magenta module as an example, small compounds derived from the Library of Integrated Network-based 
Cellular Signatures (LINCS) L1000 platform47 affecting the gene expression was provided in Supplementary 
File 2 Table S8–9. Next, novel potential biomarkers including EFEMP1, THBS1, FBN1 were disclosed in magenta 
module, after extensive cross-validation. Another noteworthy was the link between the regulators (transcription 
factors and epigenetic markers) and the co-expression mode of genes in magenta module, which may suggest 
the regulatory circuit during NAFLD progression. In the future, more experiments are needed to validate these 
discovery clues.

In summary, this study generated a comprehensive and unbiased snap-shot of the modules as well as genes in 
fibrosing-NAFLD. In particular, magenta module and genes regulating ECM remodelling during NAFLD pro-
gression deserve further attention. An identification of mechanistically linked key module and regulators will aid 
intervention development.

Methods
Gene expression dataset and processing.  Transcription profile of NAFLD was downloaded from the 
Gene Expression Omnibus (GEO) with accession number GSE49541. The raw data were corrected and normal-
ized using the RMA function of affy package of R 3.2.0 in Bioconductor. This datatset represents two clinically 
defined pathological groups at the extremes of NAFLD: mild NAFLD (n = 40, fibrosis stages 0–1), with little risk 
of developing severe liver disease; advanced NAFLD (n = 32, fibrosis stage 3–4), with significant likelihood of 
developing liver-related morbidity and mortality. As described earlier, the two groups were matched for gen-
der, age and body mass index48. Differential expressed genes (DEG) were considered by using the criterion with 
Benjamini & Hochberg adjusted p value less than 0.05.

The microarray datasets referenced during the study (E-MEXP-3291, GSE45428, GSE50594 and GSE84044, 
etc) are available in a public repository from EBI (http://www.ebi.ac.uk/) or NCBI GEO. All the other data sup-
porting the findings of this study are available within the article and its Supplementary File 1 Table S1. It is 
important to emphasize we include only the human NAFLD samples in our study. Full experimental methods and 
detailed descriptions of these public data sets can be found in the original references.

WGCNA network construction and module detection.  After normalization, we removed lowly and 
nonexpressed genes by selecting probes with a mean expression in the top 50% of all probes. Next, genes with 
expression variance above average level were selected. Different probes targeting the same gene were collapsed. 
These steps finally resulted in 7012 genes to infer co-expression networks.

Networks were formed following the protocols of WGCNA49. A pairwise pearson correlation coefficient 
matrix was first computed, and an adjacency matrix and topological overlap matrix (TOM) were constructed11. 
TOM is a parameter referring to the interconnection between two genes, and a module is a cluster of genes with 
high topological overlap. Modules were identified on the dendrogram using the dynamic tree cut algorithm50. 
The module eigengene (ME) is defined as the first principal component of a given module, which can be con-
sidered a representative of the gene expression profiles in a module. Module Membership (MM), also known 
as eigengene-based connectivity (kME), is defined as the correlation between the module eigengene and gene 
expression values. Genes weakly correlated with all of the MEs (|kME| < 0.7) were assigned to none of the mod-
ules. Finally, the interesting module network was visualized by Cytoscape51.

Module preservation implemented in WGCNA was used to detect the conservation of gene pairs between 
two networks52. Briefly, three types of network based module preservation statistics, including density based 
preservation statistics, connectivity based preservation statistics, and network based statistics have been iden-
tified. Then, two composite measures have been defined. Median rank is defined as the mean of median ranks 
computed for connectivity and density measures of each module. Zsummary is used to assess the significance of 
observed statistics and is defined as the mean of Z scores computed for density and connectivity measures. We 
utilize median rank to identify module preservation and Zsummary to assess significance of module preservation 
via permutation testing 200 times.

Feature vectors in WGCNA network.  Gene significance (GS) was defined as the the correlation between 
individual genes and NAFLD trait. The intramodular connectivity (K.in) was calculated as the summation of adja-
cency performed over all genes in a particular network. If GS and MM are highly correlated, it means that genes are 
the most important elements of modules and are highly significantly associated with the trait. Generally, the MM 
is high in relation to k.in, and a higher correlation indicates that a gene is more important to the given module11.

Hub genes tends to be located in the centre of a network, highly connected with other genes and hence of high 
functional significance. Therefore, a gene with high GS, high MM and high K.in in a module was considered to 
be a hub gene.
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Functional annotation of the modules.  Gene ontology (GO) and KEGG pathwayenrichment analysis 
for network modules were performed using the Database for Annotation, Visualization and Integrated Discovery 
(DAVID)15. In DAVID, an overrepresentation of a term is defined as a modified Fisher’s exact P value with an 
adjustment for multiple tests using Benjamini method.

In addition, we related interesting modules to biological curated gene sets on the basis of Enrichr (http://amp.
pharm.mssm.edu/Enrichr), which currently contains a large collection of diverse gene set libraries available for 
analysis53. In Enrichr, apart from the Fisher exact test used in most gene list enrichment analyses, a z-score test 
statistics capture the deviation from the expected rank by the Fisher exact test. Then, a combined score evaluating 
the enrichment was computed as follows: C = log(p)⋅Z. Where C indicates the combined score, p is the p-value 
computed using the Fisher exact test, and Z is the z-score computed by assessing the deviation from the expected 
rank.

Ethical considerations.  All the experiments protocols involving humans and animals were approved by 
the Human Ethics Committee of the affiliated hospital of Hangzhou Normal University. Methods were carried 
out in accordance with the approved guidelines and regulation. Written informed consent was obtained from all 
participants. Appropriate care was given to all animals included for experiments.

Patients.  The criteria for NAFLD were based on those recommended by the Chinese Liver Disease 
Association. Liver biopsies from NAFLD patients with different stages of fibrosis, identified between Feb 2013 
and Oct 2016 in the Department of Liver Diseases, affiliated hospital of Hangzhou Normal University, China was 
collected and stored at −80 °C before analysis. Paraffin embedded liver tissues were used for immunohistochem-
istry (IHC).

Animal studies.  Four-week-old male ApoE−/− mices were purchased from Model Animal Research Center 
of Nanjing University (Nanjing, China). All mices were bred in a specific pathogen-free facility and maintained in 
a 12-hour light-dark-cycle at room temperature and fed ad libitum. The mices were divided into two groups and 
allocated into either a normal Chow-diet (Normal group) or high fat high cholesterol-diet (HFHC group). HFHC 
diet was from Research Diets, New Brunswick (D12079B; Research Diets New Brunswick, NJ). At the end of the 
experiments, a part of the liver tissue was fixed with 10% formaldehyde and the remaining liver was snap frozen.

Liver histology.  Formalin-fixed liver tissue was processed into 4 μm thick paraffin sections and stained with 
hematoxylin and eosin (HE) and Masson’s staining. Degree of NAFLD activity score (NAS) were scored according 
to NASH clinical research network (CRN) scoring system.

Quantitative real-time PCR.  Hepatic mRNA levels were analyzed by qRT-PCR using a 7900 Real Time 
PCR System (Applied Biosystems, USA). The RNA was isolated with TRIzol (Invitrogen, USA). cDNA was syn-
thesized using 2 μg of total RNA with PrimeScript™ Reverse Transcriptase (Takara). Amplification reactions were 
performed using the SYBR® Premix Ex Taq kit (Takara) and 0.2 µM of gene specific primers (Supplementary 
File 1 Table S2) and PCR products were verified by melting curve analysis. The relative quantification expression 
was calculated using the delta-delta Ct method with each gene normalized to GAPDH.
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