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Abstract

Whole-genome expression data generated by microarray studies have shown promise for

quantitative human health risk assessment. While numerous approaches have been devel-

oped to determine benchmark doses (BMDs) from probeset-level dose responses, sensitiv-

ity of the results to methods used for normalization of the data has not yet been

systematically investigated. Normalization of microarray data converts raw hybridization sig-

nals to expression estimates that are expected to be proportional to the amounts of tran-

scripts in the profiled specimens. Different approaches to normalization have been shown to

greatly influence the results of some downstream analyses, including biological interpreta-

tion. In this study we evaluate the influence of microarray normalization methods on the tran-

scriptomic BMDs. We demonstrate using in vivo data that the use of alternative pipelines for

normalization of Affymetrix microarray data can have a considerable impact on the number

of detected differentially expressed genes and pathways (processes) determined to be

treatment responsive, which may lead to alternative interpretations of the data. In addition,

we found that normalization can have a considerable effect (as much as ~30-fold in this

study) on estimation of the minimum biological potency (transcriptomic point of departure).

We argue for consideration of alternative normalization methods and their data-informed

selection to most effectively interpret microarray data for use in human health risk

assessment.

Introduction

Whole-genome expression data generated by microarray studies are a promising resource for

human health risk assessment. Analysis of these data can provide insight into mechanisms of

biological processes, enable prediction of adverse outcomes of chemical exposures, and sup-

port estimation of points of departure (PODs) for derivation of toxicity values (reviewed in

[1]).
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Genomic dose-response studies (GDRS) done in an in vivo setting have been shown to

identify gene set (e.g., pathway)-level PODs that approximate those identified using much

more resource intensive guideline toxicity assessments [2,3]. In addition, mechanistic interpre-

tation of GDRS data can yield a deeper understanding of molecular effects produced by tested

substances in a manner that can support Adverse Outcome Pathway (AOP) development and

human relevance determination [4].

One approach to analysis of GDRS data is embodied in the BMDExpress software [5]

which carries out a three-step process to identify gene set-level biological potency estimates

referred to as benchmark dose (BMD) values. The three-step process includes (i) identification

of probe sets (genes) responsive to chemical exposure, (ii) dose response model fitting of treat-

ment responsive probe sets, and (iii) summarization of gene-level BMDs as gene set (e.g., path-

way) level BMDs. Pathway level BMD and their lower confidence limits (BMDLs) are

subsequently interpreted in the context of the lowest doses at which biological changes occur

(i.e., biological effect point of departure [BEPOD] and biological point of departure lower

bound [BEPOD/L], in the case of the lowest BMD and associated BMDL, respectively).

At each level of the analysis, parameter selection (e.g., choosing a minimum fold change) is

made that can dramatically impact the amount of information that is carried through the anal-

ysis. For the assessment discussed here we have used a set of parameters identified by the

National Toxicology Program (NTP) [6].

Before BMD modeling of microarray expression data can take place, the raw fluorescence

signals must be processed. This processing, frequently referred to as “normalization”, mathe-

matically transforms raw signals to expression estimates that are proportional to the amounts

of corresponding transcripts in the profiled specimens. The need for normalization relates to a

complex set of processes that can introduce non-biological variability, along with complex

relationships between input quantities of mRNAs and signal intensities. These processes

include, but are not limited to reverse transcription, labeling and hybridization on microar-

rays. Normalization of raw data from Affymetrix microarrays has been the focus of a remark-

able amount of research due to the significant effect it can have when interpreting microarray

data and the popularity of the Affymetrix platform. Numerous normalization methods are cur-

rently available, including MAS5.0.0, RMA, GCRMA, and PLIER. Each of these methods

includes background adjustment (separates the specific signal from the non-specific signal),

normalization and probe summarization steps [7]. Due to differences in assumptions underly-

ing each of these methods[8], selection of normalization methods can significantly impact

results of downstream analyses, such as identification of differentially expressed genes [9],

clustering of genes or specimens [10], development of gene expression-based classifiers and

building gene networks [11]. Previously published GDRS employed the most commonly used

method for normalization of Affymetrix microarrays RMA (Robust Multi-array Average)

[3,12–15]. Here we investigate the influence of different normalization methods on genomic

dose-response modeling.

In this article we demonstrate the influence of different normalizations of expression

microarrays on the findings from 5-day in vivo genomic dose-response studies of crude

4-methylcyclohexanemethanol (crude MCHM) [16], neat 4-methylcyclohexanemethanol

(MCHM) [16], N,N-dimethyl-p-toluidine (DMPT) [17] and p-toluidine [17] in liver tissues,

and propylene glycol phenyl ether (PPH) [16] in kidney tissues of orally-exposed rats. Our

results indicate that normalization remarkably impacts the number of detected differentially

expressed genes and responsive gene sets. In addition, we demonstrate that the different nor-

malization methods can lead to changes in model fitting, which alter individual probe set

BMD values. Estimates of minimum biological effect potency (BEPOD/L) were found to be

robust to the effects of different normalization methods for some but not all chemicals. In
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some cases, potentially impactful differences between BEPOD/L values were observed with dif-

ferent normalization methods, hence this variable should be considered carefully when per-

forming genomic dose response analysis.

Materials and methods

Gene expression data

All expression data used in this study were generated by profiling liver specimens of rats using

the Affymetrix Rat Genome 230 2.0 Array that contains more than 31,000 probe sets analyzing

transcripts from 15,575 annotated unique genes (NetAffx Annotation File, Release 36; URL:

https://www.thermofisher.com/order/catalog/product/900505).

Raw expression data for livers of male Harlan Sprague Dawley or male F344/N rats exposed

orally for 5 days to crude 4-methylcyclohexanemethanol (crude-MCHM), or neat 4-methylcy-

clohexanemethanol (MCHM), and for kidneys of rats exposed orally to propylene glycol phe-

nyl ether (PPH) were accessed from the Gene Expression Omnibus (GEO) as series GSE75655,

GSE75657 and GSE75656, respectively. Hepatic transcriptomics data for F344/N rats exposed

orally to N,N-dimethyl-p-toluidine (DMPT) or p-toluidine for 5 days [17] were accessed from

the GEO as series GSE100502. All.cel files available for each replicated exposure level and vehi-

cle controls were included in this analysis.

Crude MCHM represents a mixture of six components in addition to the major component

4-methylcyclohexanemethanol (MCHM) used as a coal cleaning liquid. Propylene glycol phe-

nyl ether (PPH) is an industrial chemical used as a latex coalescent and a solvent for textile

dyes. Toxicological significance of MCHM and PPH is associated with a recent spill and large

scale contamination of drinking water in West Virginia [18]. N,N-dimethyl-p-toluidine

(DMPT) is an accelerant for methyl methacrylate monomers in medical devices that has been

shown to induce liver carcinogenesis in male and female F344/N rats and B6C3F1 mice in a

2-year oral exposure study. p-toluidine, structurally-related to DMPT, is reportedly a liver car-

cinogen in mice [17].

Data processing

The raw fluorescence signals was processed using the following methods: MAS5.0.0 (Microar-

ray Affymetrix Suite version 5.0), RMA (Robust Multichip Analysis), GCRMA (GeneChip

Robust Multichip Analysis) and PLIER (Probe Logarithmic Intensity Error Estimation) [7,19].

Raw data in.cel file format were imported into Expression Console Build 1.3.1.187 (Affymetrix,

Santa Clara, CA, USA) and processed using the MAS5.0 and RMA methods with default con-

figurations. Processing using the PLIER method was performed with PM-MM background

correction and quantile normalization. Processing using the GCRMA method was imple-

mented in R version 3.5.1 (https://www.R-project.org) using the “GCRMA: Background

Adjustment Using Sequence Information” R package version 2.52.0 (Bioconductor version

3.7). PLIER16 values were calculated from PLIER values by adding 16 to each signal intensity

value as a simple variance-stabilizing transformation. Low-quality microarrays were identified

by visual inspection of the Relative Log Expression (RLE) boxplots generated by Expression

Console (Affymetrix). RLE values are calculated for each probeset as the ratio between expres-

sion of this probeset in a given microarray and the median expression of this probeset across

all the arrays in the dataset [20]. Low-quality microarrays were removed from the datasets and

the raw data were re-normalized by the GCRMA, RMA and PLIER methods (MAS5.0 uses a

per-chip approach and re-normalization was not needed). Normalized data used in this study

for BMD modelling are available as S1 Dataset (also at the URL: https://catalog.data.gov/

organization/epa-gov).
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Differential expression analysis and transcriptomics BMD modeling

Normalized data were imported into BMDExpress for Windows, version 2.20 build 0167

BETA (https://github.com/auerbachs/BMDExpress-2/releases) [21]. For all chemicals, differ-

entially expressed genes were determined from normalized datasets with all probesets

included. To examine the influence of non-informative probesets, the analysis was also per-

formed following removal of the probesets that showed "Absent" MAS5.0 absolute detection

calls across all specimens from MAS5.0 and PLIER16-normalized data (MAS5.0_noA calls and

PLIER16_noA calls methods).

Differentially expressed probesets were detected using the Williams trend test (p<0.05;

absolute fold change�1.5). Benchmark response of 1 SD was used for each feature. Best mod-

els among linear, 2nd degree polynomial, Hill, power and exponential models (degrees 2–5)

were selected based on the lowest AIC. For more details on parameters used in BMDExpress,

see S1 File. Gene set-level BMD values were determined by mapping probes that met BMD fil-

tering criteria (S1 File) to GO: Biological Process ontologies and Reactome Pathways [22]. The

most sensitive GO:BP (Gene Ontology Biological Process) or Reactome pathways were identi-

fied as those with lowest median BMD or BMDL values calculated from all mapped probesets

and reported as BEPOD or BEPOD/L, respectively.

Visualization and statistics

Comparison of differentially expressed genes was visualized using Venn diagrams (http://

bioinformatics.psb.ugent.be/cgi-bin/liste/Venn/calculate_venn.htpl). All other plots were pro-

duced using TIBCO Spotfire Analyst version 7.8.0 (TIBCO Software Inc, Palo Alto, CA 94304,

USA). Agreement between probe-level BMD or BMDL values determined by different normal-

ization methods was assessed by Pearson correlation using TIBCO Spotfire Analyst version

7.11.10 (TIBCO Software Inc, Palo Alto, CA 94304, USA). Statistical significance of differences

among probeset-level best model fit BMD and BMDL values for PPH determined by 7 normal-

ization methods were tested using Kruskal-Wallis test and the differences were considered sta-

tistically significant for two-tail p-values<0.05. Most sensitive GO:BP gene sets were

summarized for visualization using Revigo tool [23].

Results

Assessment of normalization

We explored the influence of 7 different microarray normalization methods and two different

collections of gene sets on estimation of BEPOD/L values for five test articles using public data

generated by genomic dose-response studies. Methodological differences between 7 used nor-

malization methods are summarized in (Table 1 in S1 File).

Visual inspection of RLE plots for raw MCHM and PPH data identified low-quality microar-

rays that differed from other microarrays in medians and distributions of their RLE values. These

microarrays were removed from datasets and differentially expressed genes (probe sets) and

BMD values were determined from the remaining expression data (S1 File, Figs 1–10 in S1 File)

Effect of normalization on the identification of differentially expressed

probe sets and active gene sets

Different normalization methods identified remarkably different numbers of differentially

expressed probe sets (DEPSs). The highest numbers of DEPSs for most chemicals were identi-

fied by using the MAS5.0 and PLIER methods, while PLIER16 and PLIER16-noAcalls identi-

fied considerably less probe sets corresponding to differentially expressed genes (Fig 1A).
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Likewise, the GCRMA method produced more DEPSs than RMA with the single exception of

p-toluidine (Fig 1A).

The use of MAS5.0 and PLIER also produced the highest numbers of DEPSs with accept-

able model fits (AMFs; i.e. DEPSs where the global goodness of fit p-value >0.1 and the

BMDU/BMDL ratio <40), which would be therefore included in the gene set BMD analysis

(Fig 1B). Consistent with this observation, these two methods produced highest numbers of

GO:BP and Reactome Pathways, from which gene-set-level BMDs and ultimately BEPOD val-

ues could be determined (Fig 1C and 1D)). In contrast, the RMA, GCRMA, PLIER16 and

PLIER16_noAcalls methods generally identified fewer DEPSs for which acceptable model fits,

and therefore all identified fewer “active” GO:BP and Reactome pathways that could be used

for estimation of BEPOD (Fig 1C and 1D).

Comparison of overlaps among DEPSs with acceptable model fits across the 7 normalization

methods was also performed for all data sets. In all chemical-organ sets, the percent of overlap-

ping DEPSs with AMFs was quite small (<10%) when all normalizations were compared, sug-

gesting that normalization is likely to have a large impact on the qualitative interpretation (e.g.,

mode of action, AOP assessment) of the toxicogenomic effects. To obtain a sense of how great

the effect normalization has on the identification of DEPS with AMF, an “intersection” set for

all normalizations per treatment-chemical pair was identified and used as a comparator for

each normalization in a given chemical-treatment set (Fig 2A). This analysis showed that nor-

malization methods such as MAS5.0 and PLIER consistently identified a greater number of

DEPSs with acceptable model fits compared with other normalization methods. To more accu-

rately quantify the relative increase and DEPSs with AMFs, a fold increase over intersection for

each normalization in a chemical-organ pair was calculated (Fig 2B). MAS5.0 (median ~9.5)

and PLIER (median ~7) showed the greatest fold increase in DEPSs with BMDs whereas

PLIER16 normalizations showed the smallest fold increases of intersection (Fig 2B). These find-

ings are consistent with the relatively larger number of active GO:BP and Reactome pathways

that are identified when using MAS5.0 and PLIER normalized data (Fig 1C and 1D). In addi-

tion, these results are consistent with analysis of overlaps among differentially expressed genes

identified by different normalization methods (S1 File, Fig 11 in S1 File).

Effect of normalization on the distribution of probeset BMD and BMDL

Distributions of probeset-level BMD and BMDL values showed differences across normaliza-

tion methods (Fig 3A and 3B). For example, differences among distributions of best model fit

BMD and BMDL values for PPH were found statistically significant (Kruskal-Wallis p<0.0001

for BMD and BMDL). Median probeset-level BMD value for the MAS5.0 method

(BMD = 637.4 mg/kg-day) was higher than median BMD values determined by all other nor-

malization methods (range: 341.6–583.9 mg/kg-day); however, the lowest probeset-level

BMDs for PLIER16 and PLIER16_noA (71.1 mg/kg-day) were found substantially higher than

corresponding values for MAS5.0 and other normalization methods (range: 0.36–19.3 mg/kg-

day) (Fig 3A). Notably, median probe-set level BMD values were highest for MAS5.0 normali-

zation across all chemical-treatment pairs (Fig 3C). Similar manifestations are present in the

gene set analysis where the GO:BP median BMD value distributions were higher when using

MAS5.0 and generally lowest with PLIER16 (Fig 3D and 3E)

Effect of normalization on the lowest gene set BMD and BMDL (BEPOD

and BEPOD/L) determination

Selection of different normalization methods influenced determination of lowest median gene

set-level BMD (BEPOD) and BMDL (BEPOD/L) for different chemicals to a different extent.
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Within a gene set type for any one treatment, the BEPOD/L variation ranged from 1.1 fold

(Crude MCHM, Reactome BMDL) to up to 30.4 fold (P-toluidine, GO:BP BMDL) due to dif-

ferent normalizations (Fig 4 and S1 File, Table 2 in S1 File). The mean and median variations

in BEPOD/L values for a chemical treatment-gene set pair due to different normalizations

were 6.2- and 3-fold, respectively. In general, MAS5.0 normalization tended to yield the lowest

BEPOD/L values and PLIER16 the highest (S1 File, Fig 12 in S1 File). Further, GO:BP gene

sets tended to produce lower BEPOD/Ls compared to the Reactome Pathway set, likely due to

the relatively larger number curated gene sets included in the GO:BPs.

Effect of normalization on the identity of the gene sets with the lowest

BMD and BMDL (BEPOD and /L)

Influence of normalization methods on the identity of the most sensitive GO Biological Pro-

cesses and Reactome pathways varied across datasets (Fig 5A and 5B). For instance, the same

three most sensitive GO:BP gene sets (GO:0002933, GO:0070988, and GO:0070989) were

found for all normalization methods in the case of the MCHM data set (Fig 5A and S1 File,

Table 3 in S1 File). In contrast, a variety of different GO:BP gene sets were identified as the

most sensitive when using different normalizations of the p-toluidine dataset. While

“MAS5.0_noA calls” and “PLIER16_noA calls” detected the same most sensitive pathways as

their corresponding parental methods, MAS5.0 and PLIER16, other normalization methods

identified seemingly biologically unrelated most sensitive GO:BP gene sets such as, e.g.

GO:00043588 “Skin development” (RMA), GO:0044246 “Regulation of multicellular organis-

mal metabolic process” (GCRMA), GO:0007040 “Lysosome organization” (MAS5.0), and

GO:0048266 “Behavioral response to pain” (PLIER) (Fig 5C). Further, median BMD values

corresponding to these pathways were also appreciably different (S1 File, Table 2 in S1 File).

Agreement of Gene Set BMD and BMDL values across normalizations

To determine the effect of normalization on overall agreement of the BMD values, Pearson

correlation between both probe set BMD values and median BMD values for GO:BP and Reac-

tome pathways in each of the five experiments was performed. In nearly all cases, BMD values

from probe sets (PS) or gene sets exhibited positive correlation, however the range of Pearson

correlation coefficients (PCCs) varied from as high as 1, with average PCCs for any pair of nor-

malizations mostly falling between 0.2 to 0.4 (Fig 6A). In most cases, PS BMDs and median

BMDs had higher agreement for GO:BP than for Reactome pathways. Evaluation of individual

pairings of normalizations across experiments demonstrated the MAS5.0 group of normaliza-

tions and PLIER16 group normalization show high intragroup similarity across all PSs and

gene set BMDs (Fig 6B). Other pairings such as RMA-MAS5.0, PLIER16-MAS5.0, PLIER--

MAS5.0 show considerably worse agreement. Notably, the agreement of BMD values from

Reactome pathways was found to be more negatively affected by changes in normalization

than BMD values for GO:BP gene sets.

Discussion

Gene expression profiling has been identified as a promising method to address challenges in

chemical risk assessment that have traditionally relied on data generated by time and resource

consuming animal studies. This promise is especially true for short-term, in vivo, dose-

Fig 1. Effect of different normalizations on the number of (A) differentially expressed probe sets (DEPSs), (B) probe

sets with acceptable BMD estimates, (C) active GO Biological Processes and (D) active Reactome Pathways.

https://doi.org/10.1371/journal.pone.0232955.g001

PLOS ONE Microarray normalization and transcriptomic dose-response modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0232955 May 15, 2020 7 / 16

https://doi.org/10.1371/journal.pone.0232955.g001
https://doi.org/10.1371/journal.pone.0232955


Fig 2. (A) Effect of different normalizations on the number of differentially expressed probe sets (DEPSs) with acceptable model fits (AMFs). (B) Fold

increases in DEPSs over an intersection of all normalizations for any individual chemical-treatment pairs.

https://doi.org/10.1371/journal.pone.0232955.g002
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response microarray studies that demonstrated potential to produce transcriptomics bench-

mark doses in good agreement with traditional toxicological studies [1,2].

Unlike RNA-seq, where methods for analysis are still evolving, gene expression microarrays

are an established tool in transcriptomics studies. Considering the relative maturity of data

analysis of expression microarrays, they will likely continue to play a substantial role in whole-

genome expression studies particularly in cases where the data will be used for critical decision

making (e.g., in regulatory context) [1].

Analysis of microarray expression data needs to address a non-biological variability intro-

duced by sample preparation, labeling, hybridization, fluorescence reading and other technical

Fig 3. Impact of normalization on the overall distribution of probe set-level BMD (A) and BMDL (B) values and GO:BP median BMD (D) and BMDL (E) values in

each of the 5 experiments.

https://doi.org/10.1371/journal.pone.0232955.g003
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issues through normalization of raw microarray data. Normalization procedures attempt to

remove non-biological variability from data by exploiting and enforcing known or assumed

invariances of the data using different approaches [26]. Not surprisingly, numerous normaliza-

tion methods have been developed for different platforms of expression microarrays [7,19,27–

29]. These methods can produce considerably different results of downstream studies utilizing

gene expression data, which was previously shown for some specific types of analyses, such as

class discovery and gene co-expression analyses [9–11]. This study is the first to systematically

evaluate the effect of microarray normalization on the transcriptomic BMD modeling. Consid-

ering the potential influence of normalization methods due to their different underlying

assumptions and performance, the absence of insight on microarray normalization, especially

in the context of quantitative toxicogenomics, may be perceived as a gap impairing the use of

microarray data in chemical risk assessment.

The purpose of this study was to examine sensitivity of transcriptomics BMD modeling to

some frequently used methods for microarray data normalization. Our results demonstrate

that the use of different normalization methods produces considerably different lists of differ-

entially expressed genes. Further, we found that the influence of microarray normalization

methods on the results of transcriptomics BMD modeling is limited on some, but considerable

on other datasets. We show that the fold differences between BMDL values determined from

microarray data normalized by different methods can be as low as 1.1 -fold, but also as big as

30.4-fold. These differences are potentially noteworthy, because transcriptomic and apical

BMD values can differ by a factor of ten, when transcriptomic values are determined using

RMA normalization [3]. Historically, genomic BMD analysis using Affymetrix microarrays

Fig 4. Effect of normalization on the lowest median BMD (BEPOD) and BMDL (BEPOD/L) values for GO:BP and Reactome pathways. The distribution

of BEPOD and BEPOD/L values across 7 normalizations are shown for each of the 5 experiments. Fold variation: max BEPOD to min BEPOD (or max

BEPOD/L to min BEPOD/L) ratio. Mean and median fold variations are shown for BEPOD/L vales.

https://doi.org/10.1371/journal.pone.0232955.g004
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has relied exclusively on the RMA method; however, the findings presented here suggest that

the appropriateness of the choice of normalization methods should likely be considered on a

case-by-case basis. Consideration on a case-by-case basis instead of choosing a single method

as suitable for all data reflects the fact, that normalization methods differ in their fundamental

assumptions, and these assumptions are satisfied by real data to varying degrees. This consid-

eration may include behavior of normalized data (e.g., through RLE and MA plots), number of

genes and gene sets that could be used for determination of BEPOD and BEPOD/L values,

emphasis on sensitivity/specificity and possibly also examination of quality of probe sets that

mapped to the most sensitive gene sets and subsequently projected into BEPOD and BEPOD/

L values. If decision among several normalization methods cannot be made, normalizations

that provide lowest BEPOD estimates for specific datasets will be interesting in the context of

quantitative risk assessment as the most protective. In our study, the MAS5.0 and MAS5.0_-

noA methods provided lowest (or next to lowest) BEPOD and BEPOD/L estimates for three

datasets, GCRMA for one dataset, and all normalization methods were equivalent for one

dataset.

Prior comparisons of microarray normalization methods have not produced a clear winner.

While some investigators found GCRMA to perform as well as or better than other methods

[30], others reported good performance of PLIER and its superiority over MAS5.0 [31], and

some studies favored RMA over other methods [32]. In gene expression correlation studies,

MAS5.0 reportedly outperformed the GCRMA, RMA and Li-Wong methods [11]. Normaliza-

tion methods differ in their precision and accuracy and the most precise methods have been

shown to be generally less accurate, while more accurate methods tend to have low precision

[19]. For instance, RMA offers higher precision than the MAS5.0 method, which introduces

high variability, particularly into low-intensity probes. Nevertheless, MAS5.0 provides linear

relationship between signal and transcript concentration even at low transcript concentrations

when the RMA method introduces bias [19], and the use of MAS5.0 alongside with detection

calls substantially improves its performance to detect differentially expressed genes [33]. Fur-

thermore, relative importance of precision and accuracy seems to depend on the purpose of

transcriptomics analysis. For instance, classification and clustering problems benefit from

more precise methods, because in these analyses variability accumulates from all probe sets

and quickly impairs their results. While we do not attempt to propose a guideline regarding

the use of microarray normalization methods, we argue that different normalization methods

need to be considered as a part of quantitative toxicogenomic studies and that sensitivity of

reported BEPOD and BEPOD/L values to different normalization, or justification of appropri-

ateness of the selected normalization method need to be provided. It should be also noted that

normalization methods less sensitive to violations of a broader range of assumptions may be

developed in future. This would benefit dose-response gene expression studies, in which nor-

malization methods need to address likely substantial differences among transcriptomes at low

and high exposure levels, which violate assumption common to several normalization meth-

ods, that most genes are not differentially expressed. Consequently, the RMA pipeline, which

Fig 5. GO Biological Processes (A) and Reactome Pathways (B) that were identified as most sensitive when different

normalizations were employed. A black cell indicates that the gene set was identified as the gene set with the lowest

median BMD value. (C) Visualization of most sensitive GO:BP terms for p-toluidine/liver data across different

normalizations. Most sensitive GO:BP terms for this chemical/tissue pair were found to be most diverse across

normalizations. REVIGO tool [23] was used to remove redundant terms (conservative removal; allowed

similarity = 0.9) and connect highly similar GO:BP terms. Similarity measure: SimRel score [24]. The size of bubbles

indicates the frequency of the GO term in the Gene Ontology Database (GOA) for Rattus norvegicus [25].

https://doi.org/10.1371/journal.pone.0232955.g005
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has been almost exclusively used for processing of Affymetrix microarray data in quantitative

toxicogenomics, should not be applied indiscriminately.
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