
Immunotherapy response and
microenvironment provide
biomarkers of immunotherapy
options for patients with lung
adenocarcinoma

Xue Zhan1†, Shihan Feng1†, Xutao Zhou2†, Wei Liao2, Bin Zhao3,
Qian Yang1, Qi Tan1 and Jian Shen1*
1Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic
Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China,
2Department of Oncology, Jiulongpo Hospital of Traditional Chinese Medicine, Chongqing, China,
3Department of Oncology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China

Background: Immunotherapy has been a promising approach option for lung

cancer.

Method: All the open-accessed data was obtained from the Cancer Genome

Atlas (TCGA) database. All the analysis was conducted using the R software

analysis.

Results: Firstly, the genes differentially expressed in lung cancer

immunotherapy responders and non-responders were identified. Then, the

lung adenocarcinoma immunotherapy-related genes were determined by

LASSO logistic regression and SVM-RFE, respectively. A total of

18 immunotherapy response-related genes were included in our

investigation. Subsequently, we constructed the logistics score model.

Patients with high logistics score had a better clinical effect on

immunotherapy, with 63.2% of patients responding to immunotherapy, while

only 12.1% of patients in the low logistics score group responded to

immunotherapy. Moreover, we found that pathways related to

immunotherapy were mainly enriched in metabolic pathways such as fatty

acid metabolism, bile acid metabolism, oxidative phosphorylation, and

carcinogenic pathways such as KRAS signaling. Logistics score was positively

correlated with NK cells activated, Mast cells resting, Monocytes, Macrophages

M2, dendritic cells resting, dendritic cells activated and eosinophils, while was

negatively related to Tregs, macrophages M0, macrophages M1, and mast cells

activated. In addition, ERVH48-1 was screened for single-cell exploration. The

expression of ERVH48-1 increased in patients with distant metastasis, and

ERVH48-1 was associated with pathways such as pancreas beta cells,

spermatogenesis, G2M checkpoints and KRAS signaling. The result of

quantitative real-time PCR showed that ERVH48-1 was upregulated in lung

cancer cells.

Conclusion: Our study developed an effective signature to predict the

immunotherapy response of lung cancer patients.
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Introduction

Deaths from lung cancer account for a significant

percentage of all cancer-related deaths (Nguyen et al.,

2022). There are many types of lung cancer, but the

majority of them are non-small cell lung cancer (NSCLC)

(Zhang et al., 2021). As cancer genomics has advanced in the

past few decades, several mutations have been identified as

lung adenocarcinoma (LUAD) driver genes, such as KRAS,

epidermal growth factor receptors (EGFRs), c-METs, and so

on (Chen et al., 2019; Wang et al., 2019; Sun et al., 2020; Wang

et al., 2020). A variety of drugs have since been developed to

target mutations in driver genes. Despite receiving targeted

therapies, most patients eventually develop resistance to them,

partly due to secondary mutations in the tumor (Foggetti

et al., 2021; Tumbrink et al., 2021).

Biologically-based cancer immunotherapy provides new

perspectives for cancer treatment (Denisenko et al., 2018).

Generally, LUAD often has high tumor mutational burden

(TMB) and immunogenicity characteristics (Skoulidis et al.,

2018). Therefore, LUAD is an ideal immunotherapy

indication (Zhang et al., 2020). Nowadays, immune therapy,

like immune checkpoints (ICI), has shown encouraging results.

ICI treatment, however, is relatively ineffective for LUAD

patients (Santarpia et al., 2020). So far, a series of biomarkers

that predict the treatment effectiveness of ICI have been verified,

including immune cell status, PD-L1 expression levels,

neoantigens, intestinal flora, and TMB (Peng et al., 2020).

Transcriptome sequencing files have recently made it possible

to estimate the immune status of cancer using the Tumor

Immune Dysfunction and Exclusion (TIDE) algorithm. The

core is to determine whether T cells are depleted in immune

“hot” tumors, or whether there are three types of suppressive

T cell infiltration in immune “cold “tumors (Connolly et al., 2021;

Shao et al., 2021). There is an urgent need to build a model based

on immunotherapy-related genes to indicate the clinical efficacy

of ICI.

Cancer immune status is closely related to the prognosis

of patients and can indicate the effect of immunotherapy

(Ren et al., 2021; Yu et al., 2021). In our investigation, the

lung cancer patients were divided into the corresponding

immunotherapy responders and non-responders groups

through the TIDE algorithm. The characteristic genes of

immunotherapy were screened by LASSO logistic regression

and the SVM-RFE algorithm. Logistics regression analysis

was used to establish a logistics model based on the

immunotherapy characteristic genes, and each patient was

assigned a logistics score according to the identified formula.

Furthermore, we investigated the underlying difference in

patients with high and low logistic score. Finally, ERVH48-1

was identified as an underlying target to interfere with the

response of immunotherapy in LUAD patients.

Methods

Data acquisition

The transcriptomic data and clinical information of lung

adenocarcinoma patients were obtained from the Cancer

Genome Atlas database (TCGA-LUAD project). The

format of transcriptomic data was STAR-counts and the

format of clinical data was bcr-xml. All raw data was

organized using the author’s R and Perl code. Before

analysis, all the data were preprocessed, including probe

annotation, missing value completion and Data

standardization. The baseline information of enrolled

patients was shown in Table 1.

TABLE 1 The baseline information of the TCGA-LUAD patients.

Clinical variable Number Percentage (%)

Age ≤65 241 46.2

>65 262 50.2

Unknown 19 3.6

Gender Female 280 53.6

Male 242 46.4

Stage Stage I 279 53.4

Stage II 124 23.8

Stage III 85 16.3

Stage IV 26 4.9

Unknown 8 1.5

Tstage T1 172 32.9

T2 281 53.8

T3 47 9.0

T4 19 3.6

Unknown 3 0.6

Mstage M0 353 67.6

M1 25 4.8

Unknown 144 27.6

Nstage N0 335 64.2

N1 98 18.8

N2 75 14.4

N3 2 0.4

Unknown 12 2.3

Frontiers in Genetics frontiersin.org02

Zhan et al. 10.3389/fgene.2022.1047435

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1047435


Evaluation of immunotherapy response

Each patient’s response rate to immunotherapy was assessed

using the Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm (Fu et al., 2020). Specifically, the cancer type was

selected as NSCLC. Among them, patients with TIDE >0 were

considered non-responders to immunotherapy, and patients

with TIDE <0 were considered responders to immunotherapy.

Machine learning algorithm and logistic
model

The LASSO logistic regression and SVM-RFE algorithmwere

performed to optimize variable selection (Deo, 2015). The

immunotherapy characteristic genes of LUAD were screened

by LASSO logistic regression and SVM-RFE algorism. Logistics

regression analysis was used to establish a logistics model based

on the immunotherapy characteristic genes, and each patient was

assigned a logistics score according to the identified formula.

Biological enrichment

The Gene Set Enrichment Analysis (GSEA) algorithm was

utilized to explore the differences in biological pathways

(Subramanian et al., 2005). The reference gene set was

Hallmark and c2. cp.kegg.v2022.1. Hs.symbols.gmt file. Gene

Ontology (GO) analysis was conducted using the

“Clusterprofiler” package (Yu et al., 2012).

Immunocytes infiltration assessment

Immunocyte infiltration was quantified using the

“CIBERSORT” algorithm (Chen et al., 2018).

Genome instability analysis

TMB and microsatellite instability (MSI) were obtained

directly from the TCGA database. Tumor stemness index

mRNAsi and EREG-mRNAsi were obtained from previously

published articles (Malta et al., 2018).

Single-cell RNA-seq analysis

ERVH48-1 analysis at single-cell RNA-seq level was

performed via the http://tisch.comp-genomics.org/home/

website.

Cell lines and quantitative real-time
(qRT) PCR

Normal BEAS-2B and lung cancer A549, H1299, and SPC-

A1 cell lines were laboratory stocks. Total RNA was extracted

using an RNA extraction kit following the protocol. SyBr Green

PCR systemwas used for the qRT-PCR. The primers used were as

follows: ERVH48-1, forward primer, 5′-CTCCGGGTTCCAACC
AATG-3′, reverse primer, 5′-AGAGGCGACTAGAGGCTGAG-
3’; GAPDH, forward primer, 5′- GGAGCGAGATCCCTCCAA
AAT-3′, reverse primer, 5′- GGCTGTTGTCATACTTCTCAT

GG-3’.

Statistical analysis

An analysis of the data was conducted using R software, and a

p value of 0.05 on both sides was considered statistically

significant.

Results

Screening immune response-related
genes

The whole flow chart of this study was shown in

Supplementary Figure S1. To obtain immune response-

related genes, we first divided patients into the

immunotherapy responders group and the non-responders

group. Figure 1A showed the TIDE score of each LUAD

patient. The patients with TIDE score <0 were defined as the

immunotherapy responder group, and those with TIDE

score >0 were the non-responder group. The “limma”

package was utilized to screen for differential expression

analysis between the two specific groups, defined as

immunotherapy-related candidate genes (Figure 1B). The

LASSO logistic regression and SVM-RFE algorithm were

used to optimize variable selection. The lung

adenocarcinoma immunotherapy-related genes were

screened by LASSO logistic regression and SVM-RFE,

respectively. The LASSO logistic regression algorithm

obtained a total of 18 immunotherapy characteristic genes

(Figures 1C,D). The SVM-RFE algorithm screened

22 immunotherapy characteristic genes (Figure 1E).

Lastly, the intersection of LASSO logistics regression and

SVM-RFE algorithms identified 18 immunotherapy

characteristic genes, including GABRA3, SST, APCDD1L,

CEACAM8, GPR1, ERVH48-1, EPYC, IGF2, PLPP4, PADI3,

MAGEA6, APELA, OBP2A, GAP43, MAGEA3, CYP4Z2P,

MAGEA1, IMPA1P1 (Figures 1F,G).

Frontiers in Genetics frontiersin.org03

Zhan et al. 10.3389/fgene.2022.1047435

http://tisch.comp-genomics.org/home/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1047435


Predictive performance of
immunotherapy response-related
molecules

Next, we found a different expression pattern in

characteristic genes between the immunotherapy responders

and non-responders groups. For example, GABRA3, EPYC,

OBP2A, PAI3, SST, IGF2, GAP43, GPR1, MAGA6, MAGEA1,

APCDD1L, PLPP4, MAGEA3, ERVH48-1, and APELA were

highly expressed in the immunotherapy non-response group,

while CEACAM8, CYP4Z2P, and IMPA1P1 were highly

expressed in the immunotherapy responders group

(Figure 2A). In addition, ROC curves were utilized to assess

the predictive performance of 18 characteristic genes for

immunotherapy of LUAD. The AUC values of all

characteristic genes were >0.5 and the AUC value of

APCDD1L was 0.766 (Figures 2B–S).

Construction of logistics model

To effectively evaluate the clinical efficacy of immunotherapy

for each patient, we constructed the logistics model based on

immunotherapy characteristic genes. Each patient was assigned a

FIGURE 1
Identification of the immunotherapy characteristic genes. Notes: (A) TIDE analysis was performed to evaluate the immunotherapy response of
each patient. (B) Volcano plots depicted differentially expressed genes between immunotherapy responders and non-responders; (C,D): LASSO
logistic regression analysis based on differentially expressed genes between immunotherapy responders and non-responders. (E) SVM-RFE analysis
based on differentially expressed genes between immunotherapy responders and non-responders; (F,G): The intersection of LASSO logistics
regression and SVM-RFE algorithms identified 18 immunotherapy characteristic genes.
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logistics score according to the formula: Logistics score =

1.14,241,470 + GABRA3 * -0.20857125 + EPYC * -0.28555130 +

OBP2A * -0.23632246 + CEACAM8 * 0.20820226 + PADI3 *

-0.04657940 +CYP4Z29 * 0.09164072 + SST * -0.03457475 + IGF2 *

-0.92090211 + GAP43 * -0.24484709 + GPR1 * -0.32626723 +

MAGEA6 * 0.36074564 + MAGEA1 * - 0.13692973 + APCDD1L *

-0.3694431 + MAGEA3 * -0.29105109 + ERVH48-1 * -0.25158873

+ APELA * -0.17219285 + IMPA1P1 * 0.75190815”.

Figure 3A displayed the logistics score of each patient. We

found that the patients in the immunotherapy responder group

had a higher logistics score (Figure 3B). The ROC curve indicated

that the logistics score had excellent performance in predicting

LUAD immunotherapy response (Figure 3C, AUC: 0.851).

Among the patients with low logistics scores, only 12.1%

responded to immunotherapy significantly, while 63.2% of

those with high logistics scores responded significantly

(Figure 3D). In addition, we found a significantly higher level

of CTLA4 and PDCD1 in patients with low logistics score

(Figure 3E).

Biological enrichment analysis

Subsequently, we performed GSEA pathway analysis and GO

analysis on patients with high and low logistics score subgroups.

We found that pathways related to immunotherapy were mainly

FIGURE 2
Evaluation of the prediction performance of immunotherapy characteristic genes. Notes: (A) Expression level of identified 18 characteristic
genes in immunotherapy responders and non-responders; (B–S): Prediction performance of 18 characteristic genes in LUAD immunotherapy
response.
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enriched in many metabolic pathways such as fatty acid

metabolism, bile acid metabolism, oxidative phosphorylation,

and carcinogenic pathways such as KRAS signaling up, MYC

targets, epithelial-mesenchymal transition (Figure 4A). The loop

diagram showed the enrichment of immunotherapy response-

related genes in the pathway, such as GO: 0048568 and GO:

0048562 (Figure 4B). Kyoto Encyclopedia of Genes and Genomes

(KEGG) based on GSEA analysis indicated that the terms of

linoleic acid metabolism, arachidonic acid metabolism, ether

lppid metabolism, alpha linolemic acid metabolism, fc epsilon

ri signaling pathway, metabolism of xenobiotics by cytochrome

P450, long term depression, glycerophospholipid metabolism,

tyrosine metabolism were significantly enriched in the patients

with high logistics score (Supplementary Figure S2).

Tumor microenvironment assessment

The quantified immune cell in the tumor microenvironment

of each LUAD patient was shown in Figure 5A. Correlation

FIGURE 3
Logistics regression model. Notes: (A) Logistic regression model was constructed based on the identified characteristic genes; (B) Differences
of logistics score between immunotherapy responders and nonresponders; (C) ROC curve was utilized to assess the performance of Logistics score
in predicting the response to immunotherapy in LUAD patients; (D) Proportion of immunotherapy responders and non-responders in patients with
high and low logistics score; (E) The level of key immune checkpoints in patients with high and low logistics score.
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FIGURE 4
Biological enrichment analysis. Notes: (A) GSEA analysis between high and low logistics score based on the Hallmark gene set; (B) GO analysis
between high and low logistics score.

Frontiers in Genetics frontiersin.org07

Zhan et al. 10.3389/fgene.2022.1047435

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1047435


FIGURE 5
Immune infiltration analysis. Notes: (A) The CIBERSORT algorithm was utilized to quantify the immune infiltration in the LUAD tumor
microenvironment; (B)Correlation of logistics score and quantified immune cells; (C) Infiltration level of quantified immune cells in patients with high
and low logistics score; (D–G): Level of TMB, MSI, mRNAsi and EREG-mRNAsi in patients with high and low logistics score.
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FIGURE 6
Further exploration of ERVH48-1. Notes: (A) Univariate Cox regression analysis of the characteristic genes; (B,C): Difference in disease-specific
survival and progression-free survival in patients with high and low logistics score; (D–I): The expression of ERVH48-1 in populations with different
clinical characteristics; (J) Pathway enrichment analysis of ERVH48-1.
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analysis showed that logistics score was positively correlated with

NK cells activated, monocytes, macrophages M2, dendritic cells

activated, and eosinophils, while negatively related to T cells

CD4 memory activated, Tregs and mast cells activated

(Figure 5B). Subsequently, the infiltration level of 22 immune

cells in the high and low logistics score subgroups were shown in

Figure 5C. Also, correlation analysis showed that TMB index and

EREG-mRNAsi scores were higher in the low logistics score

group, while MSI scored was higher in the high logistics score

patients (Figures 5D–G).

Role of ERVH48-1 in lung
adenocarcinoma

Univariate Cox regression analysis suggested that ERVH48-1

was significantly associated with the clinical performance of

LUAD patients, suggesting that this gene could affect both the

immune response and the progression of LUAD (Figure 6A).

Kaplan-Meier survival curves also indicated the significant effect

of ERVH48-1 on patients disease-specific survival and

progression-free survival (Figures 6B,C). Subsequently, the

FIGURE 7
Single-cell analysis of ERVH48-1. Notes: (A,B): The ERVH48-1 expression in different cell subgroups; (C): The level of key immune checkpoints
in patients with high and low logistics score.
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expression of ERVH48-1 in patients with different clinical

features was detected, and it was found that the expression of

ERVH48-1 was increased in patients with distant metastasis

(Figures 6D–I). We performed pathway enrichment analysis

and found that ERVH48-1 mainly changed related pathways

such as pancreas beta cells, spermatogenesis, G2M checkpoint

and KRAS signaling (Figure 6J).

Based on the online website, we evaluated the expression

levels of ERVH48-1 in different cells. ERHV48-1 was mainly

expressed in tumor cells andmast cells (Figures 7A,B). Moreover,

we found that the expression of key immune checkpoints was

decreased in the patients with high ERHV48-1 expression

(Figure 7C). Results of qRT-PCR showed that ERVH48-1 was

upregulated in lung cancer cells (Supplementary Figure S3).

Discussion

In our investigation, we collected the TCGA-LUAD dataset to

construct prognostic immunotherapy response features. The

signature consisted of 18 immune response-related genes. Fain

et al. observed that the downstream promoter in tumor cells

overlaps with the DNA methylation site, and then activates the

hypermethylation of its long transcript, resulting in a similar

regional DNA hypermethylation pattern, including tumor

suppressor genes (Fain et al., 2021). Another investigation

demonstrated that the expression of PLPP4 in lung cancer

patients with a higher malignant degree was also increased

(Zhang et al., 2017). In our paper, a model consisting of

18 immune response characteristic genes can efficiently predict

the clinical response of LUAD patients to immunotherapy.

In general, previous prognostic stratification prediction

models are based on the real characteristics of tumors, like

clinical TNM stage, tumor texture, vascular growth

distribution and nerve infiltration. Certain components of

innate and adaptive immunity were also actively involved in

the progression of cancer (Rolfo et al., 2021). An investigation has

shown that the immunological profiles (type, location and

number of tumor-infiltrating immune cells) were a better

predictor of patient survival than traditional histopathology in

colon cancer (Dejima et al., 2021). The “Immunoscore” was a

quantitative tool for predicting tumor immunogenicity. In

addition to the current histopathological staging system, it is

undergoing clinical research on a variety of cancer types

(Pfirschke et al., 2016; Della Corte et al., 2020). In addition to

determining tumor immune microenvironment from RNA

sequencing data, immune characteristics can be used to

predict patient clinical performance. In addition to the

survival rate of patients, this immune characteristic was also a

predictor of response to ICI treatment. In our investigation,

patients with low logistics score had poor responses to

immunotherapy, suggesting that for the selection of patients

before ICI treatment, these 18 immune response-related

characteristic genes may be useful. In the process of selecting

patients for ICI treatment, PD-L1 expression, TMB, mRNAsi,

and EREG-mRNAsi have been measured (Li et al., 2021a). The

predictive performance of this immune feature was not related to

mRNAsi. On the contrary, we found a significant decrease in

TMB in the high logistics score group. Due to logistics score

being a complex model with multiple variables, we believe that

other variables may help to improve the prediction effect of

logistics score groups.

Based on the cancer-immune cycle hypothesis, the anti-

tumor effect involved many gradual processes (Duhen et al.,

2018). Cancer develops when some steps of the process are

hindered, including an increase in immune checkpoint

expression, impaired T-cell infiltration, and antigen regulation

(Li et al., 2021b). As a result, patients may benefit little from ICI

treatment when immune checkpoints are not the only rate-

limiting step. In our investigation, patients with high logistics

score had higher immune checkpoint molecules level. It can be

inferred from the higher levels of immune checkpoint molecules

that the high logistics score group already possessed T cell

activation. Therefore, patients with high logistics scores may

be more sensitive to ICI treatment. In the clinical, the application

of our logistics model might contribute to the therapy section of

the individual patient.

Although some positive results have been achieved, there

were still some limitations. Firstly, this immune feature was

constructed based on public data sets. The predictive ability

needs to be further verified in randomized controlled cohorts.

In addition, we used the logistics score to simulate the patients

response to ICI treatment. But there are not enough

immunotherapy cohorts to validate our model, so the

logistics score still cannot completely replace the real

treatment response.
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