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Abstract

Cyclin D1 is an important regulator of cell cycle progression and can function as a transcriptionl
co-regulator. The overexpression of cyclin DI has been linked to the development and progression
of cancer. Deregulated cyclin DI degradation appears to be responsible for the increased levels of
cyclin DI in several cancers. Recent findings have identified novel mechanisms involved in the
regulation of cyclin DI stability. A number of therapeutic agents have been shown to induce cyclin
D1 degradation. The therapeutic ablation of cyclin DI may be useful for the prevention and
treatment of cancer. In this review, current knowledge on the regulation of cyclin D| degradation
is discussed. Novel insights into cyclin D| degradation are also discussed in the context of ablative
therapy. A number of unresolved questions regarding the regulation of cellular cyclin D1 levels are

also addressed.

Background

The cyclin D1 proto-oncogene is an important regulator
of G1 to S phase progression in many different cell types.
Together with its binding partners cyclin dependent
kinase 4 and 6 (CDK4 and CDK®6), cyclin D1 forms active
complexes that promote cell cycle progression by phos-
phorylating and inactivating the retinoblastoma protein
(RB) [1-3]. More recent studies have demonstrated that
cyclin D1 also functions as transcriptional modulator by
regulating the activity of several transcription factors and
histone deacetylase (HDAC3) (reviewed in [4]). This
activity is independent of CDK4 activity. The cyclin D1
protein has been shown to be unstable with a short half-
life (~24 min) [5,6] and is degraded mainly via the 26S
proteasome in a ubiquitin-dependent manner [6]. Early
studies suggested that the Skp2 F-box protein might be
involved in cyclin D1 degradation [7]. Recently, two fur-
ther F-box proteins were identified in separate studies as

playing major roles in targeting the cyclin for degradation
[8,9].

Cyclin D1 is important for the development and progres-
sion of several cancers including those of the breast,
oesophagus, bladder and lung [10-19]. Overexpression of
cyclin D1 has also been linked to the development of
endocrine resistance in breast cancer cells [20-22]. Cyclin
D1 overexpression is a common event in cancer but does
not occur solely as a consequence of gene amplification.
Rather, increased levels of cyclin D1 frequently result from
its defective regulation at the post-translational level
[23,24]. A number of therapeutic agents have been
observed to induce cyclin D1 degradation in vitro [25-30].
These studies indicate that the induction of cyclin D1 deg-
radation may offer a useful avenue for therapeutic inter-
vention [25-32].
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In this review, current knowledge on the regulation of cyc-
lin D1 degradation is discussed with a particular emphasis
on recent discoveries in this area. The roles of cyclin D1 as
a regulator of cell cycle progression have been extensively
reviewed [1,4,15,33-37] and will only be mentioned in
the context of its degradation. Here, the current knowl-
edge on the regulation of cell cycle-dependent and drug
induced cyclin D1 degradation is reviewed. The discovery
of novel regulators of cyclin D1 stability [8,9,27] and their
impact on this area of research is also examined.

Cell cycle phase-dependent degradation of cyclin DI

Cyclin D1 levels begin to rise early in G1 and continue to
accumulate until the G1/S-phase boundary when levels
rapidly decline. The degradation of the cyclin is essential
for the replication of DNA because acute overexpression
of cyclin D1 in fibroblasts prevented S-phase entry
[38,39]. Cyclin D1 has been shown to repress DNA repli-
cation by binding to proliferating cell nuclear antigen
(PCNA) and Cdk2. The binding of cyclin D1 to PCNA
directly inhibits DNA synthesis [38]. Initial studies by
Diehl et al., [6] demonstrated that cyclin D1 turnover was
dependent on threonine 286 (T286) phosphorylation
and regulated by ubiquitin-dependent proteasomal degra-
dation. Phosphorylation of cyclin D1 was enhanced by
binding to CDK4 and mutation of T286 to alanine
(T286A) resulted in greatly increased stability of the cyc-
lin. These studies also showed that CDK4 is not required
for T286 phosphorylation, indicating the involvement of
an additional kinase. Glycogen synthase kinase 3f3
(GSK3B) was eventually identified as being capable of
phosphorylating cyclin D1 on T286 and inducing its rapid
turnover [5]. GSK3[ was also shown to promote the redis-
tribution of cyclin D1 from the nucleus to the cytoplasm.
It had been noted previously, that cyclin D1 degradation
at S- phase was accompanied by its relocation to the cyto-
plasm [33] while GSK3p levels were observed to increase
in the nucleus specifically during S-phase [6]. In addition,
the highly stable T286A mutant maintained a nuclear
localization pattern throughout the cell cycle. Further
work eebsequently demonstrated that phosphorylation of
T286 facilitated cyclin D1 nuclear export by enhancing its
association with CRM1, a nuclear exportin [40]. Together
these findings suggested that GSK3[-dependent phospho-
rylation of cyclin D1 mediated its nuclear export and
rapid degradation within the cytoplasm. Since GSK3f is
negatively regulated by the Ras- phosphatidylinositol 3
kinase — Akt pathway [41,42], these findings also linked
cyclin D1 stability to mitogenic stimulation (see Figure 1
and 2). Based on their observations, Diehl et al., [5] pre-
dicted that the deregulation of phosphorylation depend-
ent cyclin D1 degradation might contribute to the
development of cancer. Further studies demonstrated that
the constitutive overexpression of the T286A mutant but
not wild type cyclin D1, resulted in formation of foci in
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late passage cells. Overexpression of cyclin D1 T286A also
facilitated anchorage independent growth of NIH-3T3
cells in soft agar [40].

A number of recent findings have questioned the role of
GSK3f in mediating cyclin D1 degradation. Guo et al.,
confirmed the role of T286 phosphorylation in mediating
cyclin D1 degradation at S phase and demonstrated that
the levels of phosphorylated protein are elevated during
this phase of the cell cycle [43,44]. The authors reported
however, that there was no change in the activity of
GSK3B, Akt or PI3K during S-phase and inhibition of
GSK3p activity did not influence cyclin D1 phosphoryla-
tion or protein levels during the cell cycle. Similarly,
GSK3p localization was not observed to vary with cell
cycle expression in MCF-7 breast cancer cells and inhibi-
tion of GSK3f activity did not completely abolish cyclin
D1 degradation [26,45]. The experimental evidence how-
ever, clearly shows that GSK3f can phosphorylate cyclin
D1 and inhibition of this activity diminishes the effi-
ciency of cyclin D1 degradation. The impact of differential
experimental systems on the conflicting observations
described in these studies remains uncertain. Further stud-
ies on the role of GSK3B-dependent and independent (see
below) cyclin D1 degradation will thus be required.

GSK3/-independent cyclin DI degradation

Cyclin D1 degradation has also been shown to occur inde-
pendently of GSK3. Studies by Germain et al., [46] dem-
onstrated that the cyclin D1 T286A mutant is subject to
ubiquitin-dependent degradation. Similarly, a mutant
unable to bind CDK4 (cyclin D1-KE) was also ubiquit-
ylated. Since cyclin D1 mutants lacking T286 and/or T288
were still susceptible to ubiquitylation and degradation,
the authors proposed the existence of a second pathway
that does not require phosphorylation on T286. Since cyc-
lin D1 mutants that fail to bind CDK4 were also subject to
ubiquitin-dependent degradation, it appears that this
pathway may serve to regulate the cellular levels of free
cyclin D1.

More recently, a novel arginine-directed protein kinase
has been implicated in the regulation of cyclin D1 stabil-
ity [47]. Mirk/Dyrk1b is active at GO and early G1 phases
of the cell cycle and phosphorylates cyclin D1 on T288.
Knockdown of Mirk/Dyrk1b by siRNA oligos resulted in
increased levels of cyclin D1 protein but did not affect
mRNA levels. Furthermore, Mirk/Dyrk1b mediated cyclin
D1 downregulation was not sensitive to inhibition by
lithium chloride (LiCl), an inhibitor of GSK3f. These
findings suggest that Mirk/Dyrklb may cooperate with
GSK3p to regulate cyclin D1 levels [47]. Since cyclin D1
degradation occurs mainly at the G1/S phase boundary
however, the impact of a kinase active only at GO/G1 is
likely to be minimal in proliferating cells. On the other
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Schematic representation of cyclin D| (top) and cyclin D1b (bottom) regulatory sequences. Cyclin D1 stability is regulated by
various mechanisms. The n-terminal region has recently been shown to be important for regulating stability [27]. (?) The mech-
anisms that regulate cyclin DI stability via the n-terminal remain to be clearly defined. The RxxL motif is required for APC
(Anaphase Promoting Complex) mediated degradation following genotoxic insult [48]. GSK3p phosphorylates threonine resi-
due 286 (T286) and regulates cyclin D1 nuclear export and stability [5, 40]. p385APK2 and ERK2 have also been shown to regu-
late cyclin DI stability by phosphorylating T286 [9, 49, | 14]. The threonine 288 residue (T288) has also been shown to
regulate cyclin D1 stability. Phosphorylation of T288 is mediated by the mirk/Dyrk Ib kinase [47]. In cyclin D1b, regulatory
motifs and residues within the c-terminal region downstream of residue 240 are replaced by sequence from intron 4 of the

CCND | gene [62, 63]. Adapted from Knudsen, 2006 [I3, 65].

hand, Mirk/Dyrk1b may serve to regulate cyclin D1 levels
in situations where GSK3[ activity is absent.

In mammalian cells, DNA damage, environmental stress
and viral infection have also been shown to induce the
ubiquitin-dependent degradation of cyclin D1. Genotoxic
stress induces a G1 cell cycle arrest that is mediated by cyc-
lin D1 degradation [48]. Following exposure to ionizing
radiation (IR) cyclin D1 is rapidly degraded via the ubiq-

uitin pathway. This degradation differs from the normal
cell cycle related proteolysis, since it requires an RxxL
destruction box within the N- terminus of cyclin D1. IR
induced cyclin D1 degradation requires the Anaphase-
Promoting Complex (APC) but occurs independently of
GSK3p [48]. Casanovas et al., [49] demonstrated that in
addition to genotoxic stress, various chemically induced
environmental stresses also induce cyclin D1 degradation
in mantle cell lymphoma derived Granta 519 cells.
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Regulation of cyclin DI degradation. A. Cyclin DI does not contain a nuclear localization signal (NLS) [159] and its sequestra-
tion may result in accumulation within the cytoplasm [45, 75, 76]. B. Cytoplasmic cyclin D1 is transported into the nucleus in
association with its binding partners e.g CDK4 and possibly various transcription factors (TF) [159-161]. C. p385APK2 has been
shown to phosphorylate cyclin D1 on threonine residue 286 (T286) and induce its proteasomal degradation [49, | [4]. It is
unclear if the F-box proteins FBX4 and FBXWS8 are involved in mediating p385APK2induced cyclin D1 degradation in the cyto-
plasm. D, E. Within the nucleus, active cyclin dependent kinase 4 (CDK4) or CDKé6- cyclin DI complexes phosphorylate the
retinoblastoma protein (RB) [2]. Cyclin DI can also influence the activity of various transcription factors independently of
CDK4/6 [4]. F. Free cyclin D1 is degraded through the ubiquitin dependent 26S proteasomal degradation pathway independ-
ently of glycogen synthase kinase 3 (GSK3[) [46]. Antizyme can also mediate cyclin D1 degradation via the 26S proteasome
independently of ubiquitin [56]. G, H. GSK3[ phosphorylates cyclin DI on T286 which facilitates its nuclear export by the
exportin CRMI. GSK3 influences cyclin DI stability since the phosphorylated form of the cyclin is subsequently degraded
within the cytoplasm [5, 6, 40]. I. Phosphorylation of T288 is mediated by the mirk/Dyrk Ib kinase and can induce cyclin D1
degradation [47]. ). FBX4 and FBXWS8 ubiquitylate phosphorylated cyclin D| within the cytoplasm, targeting it for 26S protea-

somal degradation [8, 9].
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Osmotic stress induced by sodium chloride (NaCl), cal-
cium chloride (CaCl,) or magnesium chloride (MgCl,)
resulted in the rapid proteolysis of cyclin D1. Similarly,
hydrogen peroxide (H,0,) induced oxidative stress and
sodium arsenite (NaAsO,) also induced a rapid fall in cel-
lular cyclin D1 levels. Specific inhibition of 26S proteas-
omes inhibited cyclin D1 degradation in all cases. Further
studies demonstrated that the osmotic stress induced acti-
vation of p38SAPK2 results in the phosphorylation of T286
and induces cyclin D1 degradation. Accordingly, specific
inhibition of p385APkK2 with the p38 inhibitor SB203580
abolished osmotic stress but not H,0, or NaAsO, medi-
ated cyclin D1 degradation. In vitro assays demonstrated
that active immunoprecipitated p385APK2 from Molt-4
lymphoblastoid cells, phosphorylated cyclin D1 but not
CDK2, CDK4 or cyclin A. Similar results were obtained
using purified p38%4PK2 and cyclin D1 phosphorylation
was abolished by the addition of SB203580 in these
assays. p38%APK2 was also shown to phosphorylate resi-
dues T156 and T286A in vitro. Inhibition of p385APK2 or
mutation of cyclin D1 residue T286 to alanine abolished
cyclin D1 ubiquitylation. It is thus clear, that osmotic
stress induced by compounds such as NaCl results in the
ubiquitin-dependent degradation of T286 phosphor-
ylated cyclin D1. This pathway differs from that regulating
normal S phase associated degradation, since p38SAPK2
and not GSK3f mediates cyclin D1 phosphorylation. The
P385APK2 pathway is activated in response to various envi-
ronmental stresses including UV radiation and histone
deacetylase (HDAC) inhibitors (discussed below) [50].
Kidney derived cell lines exposed to high osmolarity tran-
siently undergo cell cycle arrest [51,52]. Following expo-
sure to environmental stress or DNA damage, the rapid
degradation cyclin D1 may be necessary to ensure rapid
cell cycle arrest. Indeed, the failure to accumulate cyclin
D1 during G2 has been shown to prevent entry into a sub-
sequent round of cell division [53,54]. The elevation of
cyclin D1 levels in G2 is dependent on external stimuli.
The regulation of cyclin D1 accumulation just prior to
mitosis, serves to prevent further rounds of cell cycle pro-
gression under unfavourable conditions [54]. p38SAPk2
may thus play a central role in mediating cyclin D1 degra-
dation following exposure to environmental stress or gen-
otoxic insult.

Infection of Hela cells by the Coxsackievirus group B3
(CVB3) has been shown to induce cyclin D1 degradation
via the ubiquitin pathway [55]. Inhibition of GSK3 activ-
ity by LiCl did not prevent CVB3-induced cyclin D1 deg-
radation. ODC-antizyme, a regulator of ornithine
decarboxylase (ODC) has also been shown to target cyclin
D1 for degradation via the 26S proteasome [56]. Interest-
ingly, antizyme mediated cyclin D1 degradation occurs
independently of ubiquitin or T286 phosphorylation.
Upregulation of antizyme resulted in reduced levels of
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cyclin D1 and has been shown to inhibit the proliferation
of transformed NIH3T3 cells and malignant keratinoc-
ytes. Similarly, tumour development and growth were
also inhibited under conditions of increased antizyme
activity [57-59]. It is clear that efficient cyclin D1 degrada-
tion can occur independently of GSK3f mediated T286
phosphorylation. The above cited studies also indicate
that T286 phosphorylation independent degradation
plays an important role in regulating cyclin D1 stability in
response to environmental insults (see Figure 1 and 2).

Cyclin Db localization, stability and role in cancer
development

A cyclin D1 splice variant (cyclin D1b) has been identified
in various cell lines and tissues [60-63]. An alternative
splicing event within exon 4, results in a 274 amino acid
product lacking the C-terminal PEST domain and residue
T286. Despite the loss of this region which is known to
regulate cyclin D1 stability, the half-life of cyclin D1d is
only slightly greater than that of full length variant (cyclin
D1a). Similarly to the T286A mutant, cyclin D1b is consti-
tutively nuclear but does accumulate to levels above those
of cyclin D1a. Interestingly, cyclin D1b has been shown to
be a poor activator of CDK4 and RB phosphorylation
[63]. None the less, stable overexpression of cyclin D1b in
NIH-3T3 cells results in the formation of foci after 12 pas-
sages [63] and promotes anchorage independent growth
[62]. Injection of late passage NIH-3T3 cells expressing
cyclin D1b into SCID mice resulted in tumour formation
[62]. Similar experiments using NIH-3T3 cells expressing
cyclin D1a did result in tumour formation. Given the fact
that cyclin D1b is relatively unstable and a poor inactiva-
tor of RB, its transforming activity is surprising. It is possi-
ble that the constitutive nuclear localization, increased
mobility or structural changes to the C-terminus facilitate
cyclin D1b transforming activity [62-64]. The absence of a
c-terminal PEST sequence or T286 residue suggests that
the regulation of cyclin D1b is likely to be substantially
different from cyclin D1a (see Figure 1 and 2). Both vari-
ants may however, be jointly regulated by phosphoryla-
tion independent degradation and other pathways
[27,46,56]. Cyclin d1b has been reviewed in [13,65].

Role of the SCF complex in cyclin DI degradation

The Skp- Cullin- F-box (SCF) complexes regulate protein
stability by targeting substrate proteins for ubiquitin-
dependent degradation. Cullin 1 (CUL-1) or cullin 7
(CUL-7) provides a scaffold that allows recruitment of the
E3 ligase subunit RBX1/ROC1. SKP1 in turn binds the
specificity determining component that comprises the F-
box protein family. F-box proteins are evolutionally con-
served and multiple isoforms from several distinct classes
occur in all cell types. The SCF complex has been exten-
sively linked to the ubiquitin-dependent degradation of
numerous cell cycle regulators including cyclin D1 [66-
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70]. Early studies indicated a role for CUL-1 and the SKP2
F-box protein in mediating cyclin D1 ubiquitylation [7].
Inhibition of SKP1, CUL-1 or SKP2 induced the accumu-
lation of cyclin D1 and p21. Furthermore, both cyclin D1
and p21 were shown to interact with CUL-1 in immuno-
precipitates from cell lysates. These studies did not how-
ever, demonstrate a direct interaction between cyclin D1
and SKP2 or the in vitro ubiquitylation of cyclin D1 by
SKP2.

More recently, the F-box proteins FBX4 and FBXW8 have
been identified as bona fide mediators of cyclin D1 ubig-
uitylation using both in vitro and in vivo assays [8,9]. FBX4
recognition of cyclin D1 requires T286 phosphorylation
and the presence of 0B crystallin. Both FBX4 and aB crys-
tallin are required for the rapid ubiquitin-dependent deg-
radation of T286 phosphorylated cyclin D1 and depletion
of either component results in the increased stability and
accumulation of cyclin D1 [8]. FBX4 and oB crystallin are
both cytoplasmic proteins. The nuclear export of T286
phosphorylated cyclin D1 during S phase thus facilitates
association with the SCFBX4-aB aystallin E3 Jigase complex.
Importantly, a number of human cancer cell lines with
high cyclin D1 levels were shown not to express aB crys-
tallin. Exogenously expressed oB crystallin was able to
restore the rapid degradation of cyclin D1 in the MCF-7
breast cancer cell line. Low or absent expression of oB
crystallin and FBX4 mRNA was also observed in numer-
ous tumour samples from a diverse array of malignancies.
Together these findings suggest that deregulated FBX4
activity and/or oB crystallin expression may be responsi-
ble for the increase in cyclin D1 stability observed in some
cancers [8].

An independent study by Okabe et al., [9] has identified
FBXWS8 as a second cyclin D1 E3 ligase. Interestingly, this
study also identified the mitogen activated protein kinase
(MAPK) ERK2 as a novel protein kinase capable of phos-
phorylating cyclin D1 on T286. ERK2 mediated phospho-
rylation of T286 requires a conserved D-domain (amino
acid residues 179-193) within cyclin D1. In vitro assays
demonstrated that ERK2 phosphorylates wild type but not
D-domain deleted (AD) or T286A mutant cyclin D1 in
vitro. Similarly, culture of HCT116 colon cancer cells with
the MEK inhibitor U0126 extended the half life of cyclin
D1 and abolished T286 phosphorylation. The study did
not however, examine the effect of prolonged MEK inhi-
bition by U0126 on cyclin D1 accumulation. In our stud-
ies, treatment of MCF-7 cells with U0126 resulted in
decreased cyclin D1 protein levels following a 24 h expo-
sure (J. P. Alao et al., unpublished observations). ERK2
mediated regulation of cyclin D1 stability may thus be cell
line specific. The study by Okabe et al., [9] also identified
FBXW8 as a second F-box protein capable of mediating
cyclin D1 polyubiquitylation. Cyclin D1 associated with
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Skp1, cullin (CUL1 and CUL7) and CDK4. FBXWS8 inter-
acted with cyclin D1 in a T286 phosphorylation-depend-
ent manner and mediated its ubiquitylation in vitro.
FBXW8 mediated ubiquitylation of cyclin D1 was
enhanced by the presence of ERK2 and mutation of T286
to alanine (T286A) or deletion of the D domain abolished
this activity. The siRNA mediated knockdown of CUL1,
CUL7 and FBXW8 in HCT116, SW480, U-2 OS and T98
cancer cell lines resulted in the mainly cytoplasmic accu-
mulation of T286 phosphorylated cyclin D1. Under these
conditions, the half-life of cyclin D1 was also extended.
The nuclear export of phosphorylated cyclin D1 during S
phase facilitates its subsequent ubiquitylation by FBXW8
localized within the cytoplasm [9]. Interestingly, cyclin
D1 accumulation following CUL1, CUL7 or FBXWS8
siRNA was observed to inhibit the proliferation of
HCT116 cells and coexpression of inducible T286A
mutant abolished this effect. In contrast, knockdown of
FBX4 and oB crystallin enhanced the rate of G2 to S phase
progression despite the accumulation of cyclin D1. Unlike
SCFBX4-0B aystalling the FBXW8 complex is clearly expressed
in various cancer cell lines. Studies on the relative expres-
sion levels of FBXW8 in matched tumour samples have
not yet been reported [9]. Further studies are thus needed
to dissect the relative roles of SCFBX4-aB cystallin gnd
FBXWS in various cell lines and tissues.

Ubiquitin- independent cyclin DI degradation

The findings of an elegant study on the regulation of cyc-
lin D1 ubiquitylation have recently been reported [27].
Cyclin D1 contains 18 lysines that serve as putative ubiq-
uitylation sites. Feng et al., [27] expressed cyclin D1
mutants with single or multiple lysine to arginine substi-
tutions in a human bronchial epithelial cell line. The
effects of these mutations on all-trans-retinoic acid (RA)
(discussed below) induced cyclin D1 polyubiquitylation
and degradation were then investigated. In general, single
substitutions had little effect on cyclin D1 stability. The
joint mutation of lysine 112, 114 or lysine residue 269
alone resulted in a modest increase in cyclin D1 stability
but did not prevent polyubiquitylation [27]. The effective
abolition of cyclin D1 ubiquitylation required the muta-
tion of at least 17 out of the 18 possible lysine residues.
The half-life of these mutants was increased by more than
50 % when de novo protein synthesis was inhibited. Of
interest is the observation that certain mutations stabi-
lized cyclin D1 but did not affect its polyubiquitylation.
Furthermore, a cyclin D1 mutant lacking all lysine resi-
dues exhibited a predominantly nuclear localization [27].
These mutants are none the less still susceptible to some
form of degradation and their cellular levels are not above
those of wild type cyclin D1. In fact, the study by Feng et
al., (2007) [27] demonstrated that the N- terminal end of
cyclin D1 plays an important role in regulating its stabil-
ity. Ubiquitin independent pathways such as those medi-
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ated by antizyme [56] may thus play a crucial role in
regulating cellular cyclin D1 levels. The effects of these
mutants on cellular proliferation have not been reported.

Microscopy vs. subcellular fractionation in studies on
cyclin DI proteolysis

Current models on cyclin D1 degradation assume a pre-
dominantly nuclear localization with the cytoplasm as the
site of degradation. The reader is warned however, that
discrepancies exist in regard to the actual cellular localiza-
tion of cyclin D1. Subcellular fractionation or the selective
purification of cellular organelles is a useful method for
studying protein localization and redistribution within
the cell [71]. Subcellular fractionation techniques have
been employed in several studies on cyclin D1 degrada-
tion and localization [9,45,72-76]. Intriguingly, these
studies suggest that the majority of cyclin D1 is localized
within the cytoplasm of various cell lines. Conversely,
immunofluorescence studies have consistently demon-
strated a predominantly nuclear localization for cyclin D1
outside of S phase [33,40,43,77]. The suggestion that
cytoplasmic sequestration regulates cyclin D1 activity in
postmitotic neurons, neonatal cardiomyocytes and cancer
cell lines is partly based on experiments that involved sub-
cellular fractionation techniques [19,45,75,76]. Impor-
tantly, the fractionation of mantle cell lymphoma (MCL)
and multiple myeloma (MM) cell lines suggests that cyc-
lin D1b localizes to both the nucleus and cytoplasm [73].
At present, the significance of the observations made in
studies using subcellular fractionation remains unclear. It
is also unclear if subcellular fractionation techniques can
be reliably employed in studies on cyclin D1 localization.
It has been proposed that a small protein like cyclin D1
might be released from the nucleus during the prepara-
tion of subcellular fractions [54]. The accurate normaliza-
tion of protein levels or concentrations between different
subcellular fractions also presents technical difficulties. A
survey of the literature reveals however, that in contrast to
cyclin D1 (~34 kDa), the highest levels of small proteins
like USF-1 (~34 kDa), c-Fos (~41 kDa), c-Jun (~36 kDa)
and CDK2 (~34 kDa) occur in the nuclear fraction
[19,71,78]. Cyclin D1 nuclear export also appears to be an
active process that requires 7286 phosphorylation/CRM1
binding [40] and the protein appears to be immobile
within the nucleus [63]. Confocal microscopy analyses
also suggested the predominantly cytoplasmic localiza-
tion of cyclin D1 in MCF-7 cells, even though it appeared
to be predominantly nuclear when the same antibody was
used for wide-field microscopy [45]. Further studies will
be required to validate the use of subcellular fractionation
in studies on cyclin D1 localization and degradation. Such
validation might be expected to substantially alter our
view of how cyclin D1 is regulated at the post translational
level in certain cell types.
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Drug induced cyclin DI degradation

The importance of cyclin D1 in cancer makes it an attrac-
tive target for anti-cancer therapy and ablative agents are
currently in development [32,79,80]. Several conven-
tional and experimental anti-cancer agents have been
observed to induce cyclin D1 degradation in a wide range
of cancer cell lines. Additionally, several naturally derived
compounds induce cyclin D1 degradation in cancer cells.
Cyclin D1 degradation induced by these agents is not
strictly dependent on T286 phosphorylation. The litera-
ture on the effects of various natural and synthetic com-
pounds on cyclin D1 stability is reviewed below. For
clarity, the cell lines, drug concentrations, proteasome
inhibitors and rates of cyclin D1 degradation in the vari-
ous studies are mentioned (see Table 1).

The retinoid receptors comprise a large family of nuclear
receptors that regulate various cellular and physiological
processes [81,82]. Retinoids inhibit the proliferation of
cancer cells and prevent secondary tumour formation. The
modulation of retinoid receptor activity thus presents an
attractive therapeutic target (reviewed in [31,79]. All-trans
retinoic acid (RA) has been shown to delay G1/S phase
transition and negatively regulate cyclin D1 expression
[29]. Treatment of immortalized human bronchial epi-
thelial (BEAS-2B) cells with 4 uM RA results in a rapid
decline in cyclin D1 levels within 3-6 h. RA induced cyc-
lin D1 degradation was abolished by specific inhibition of
26S proteasomes using lactacystin. Treatment of NT2/D1
embryonal carcinoma cells with 10 uM RA resulted in
reduced cyclin D1 levels within 2 days of treatment [30]
and was sensitive to the proteasome inhibitor LLnL
(ALLN, Calpain inhibitor 1, N-acetyl-leucyl-leucyl-nor-
leucinal, MG101). RA induced cyclin D1 degradation
requires T286 phosphorylation since the T286A mutation
abolished polyubiquitylation in vivo. It is noteworthy, that
RA was considerably more effective at inducing cyclin D1
degradation in BEAS-2B cells (3-6 h) compared to NT2/
D1 cells [29,30]. Further studies demonstrated that recep-
tor- nonselective retinoids but not carotenoids mediate
the degradation of cyclin D1 via the ubiquitin pathway
[83]. The effects of retinoids on cell proliferation and cyc-
lin D1 stability thus appear to be dependent on retinoic
acid receptor (RAR) o, RARP and the retinoid X receptor
(RXR) but not RARY. Retinoid mediated cyclin D1 degra-
dation has been proposed to underlie the chemoprevent-
itive and antiproliferative activity of these compounds
[27,29,30].

Differentiation-inducing factor-1 (DIF-1) induces cyclin
D1 degradation in human oral squamous cell carcinoma
(SCC) and cervical cancer cell lines [84-86]. Differentia-
tion-inducing factors (DIFs) are morphogens that were
first identified in Dictyostelium where they regulate stalk
differentiation [87,88]. DIF-1 induces GO/G1 cell cycle
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Table I: Compounds known to induce cyclin DI degradation in mammalian cell lines.

Compound Conc. T286 dependent? 2 Cell line Proteasome inhibitor
All-trans retinoic acid (RA) 4-10 uM Yes BEAS-2B, NT2/D| Lactacystin, LLnLb
Differentiation-inducing factor-1 and 3 (DIF-1 and DIF-3) 30 uM Yes¢ SCC, Hela MGI32
|-Methyl-4-phenylpyridinium ion (MPP*) 300 nM Yes MG63 MGI132
hypothemycin 0.5 ug/Ml N.D. NIH3T3-DT Lactacystin
O-methyl deoxybouvardin (RA-VII) 100 nM N.D. DLD-I Lactacystin
GL331 10 uM N.D. CLI-5 N-CBZ-L-L-L-AL
Resveratrol 300 uM N.D. SW480 LLnLb
Diferuloylmethane (curcumin) 25 uM N.D. LnCap, various breast cancer derived Lactacystin
Lovastatin 10 uM PC-3-M LLnLb.d
Aspirin 5 nmol/L Yese SW480, HT-29 MGI132
Cycloheximide 50 uM No MCF-7 MGI132
15-deoxy-A!2 !4 prostaglandin J, (PGJ2)f 5-20 uM N.D. MCEF-7 MG132, PSII
Ciglitazonef 3040 uM N.D. MCF-7 MG132, PSII
Troglitazonef 40 uM No MCF-7 MG132, lactacystin, epoxomicin
A2-TGe 5uM No MCF-7 MG132, lactacystin, epoxomicin
Rapamycin 100 nmol/L Yes MCF-7, MDA-MB-468 LLnLb
Trichostatin A (TSA)h I uM Yes/not MCF-7, MDA-MB-231, KNRK MGI32, ALLN, lactacystin, NLVSi
Sodium chloride (NaCl), calcium chloride (CaCl,), 50 mM Yese Granta 519 LLnL®, lactacystin, MG 132

magnesium chloride (MgCl,)

a) T286 phosphorylation requirement, b) LLnL (ALLN, Calpain inhibitor |, N-acetyl-leucyl-leucyl-norleucinal, MG101), c) Mirk/Dyrk Ib mediated
T288 phosphorylation required, d) Lactacystin failed to abolish lovastatin induced cyclin D| degradation, e) p385APK2 mediated T286
phosphorylation, f) PGJ2, ciglitazone and troglitazone are PPARY agonists, g) A2-TG is structurally related to troglitazone but lacks PPARYy agonist
activity, h) TSA is a prototype HDAC inhibitor, i) partial requirement for GSK3f in TSA induced cyclin DI degradation, j) NLVS (NIP-leu;-vinyl

sulphone)

arrest, in part by inducing the ubiquitin-dependent degra-
dation of cyclin D1 [84]. The DIF-1 induced degradation
of cyclin D1 is one of the most rapid reported to date,
occurring within 30 to 60 minutes after exposure to 30 uM
of the compound. Inhibition of proteasome activity with
MG132 abolished DIF-1 induced cyclin D1 degradation.
DIF-1 activates GSK3f and causes it to relocate to the
nucleus. Inhibition or siRNA mediated knockdown of
GSK3p attenuated DIF-1 induced cyclin D1 degradation.
Similarly, the T286A mutant was resistant to DIF-1
induced degradation, while the T288A mutant was par-
tially resistant. DIF-1 thus induces cyclin D1 degradation
in a manner dependent on the phosphorylation of T286
and T288 by GSK3B and Mirk/Dyrklb respectively. Fur-
ther studies have demonstrated that DIF-3 (30 uM)
induces cyclin D1 degradation in cancer cells similarly to
DIF-1. DIF-3 activates GSK3f and Mirk/Dyrklb in HeLa
cells and the induction of cyclin D1 degradation requires
phosphorylation of T286 and T288 [85].

MPP+ (1-Methyl-4-phenylpyridinium ion) is an active
metabolite of (1-Methyl-4-phenyl-1,2,3,6-tetrahydropyri-
dine (MPTP), that inhibits proliferation and induces cyto-
toxicity in various cell types [89-91]. MPTP is used to
induce experimental models of Parkinson's disease
[92,93]. MPP+ induced cell cycle arrest but not apoptosis
in MGG63 osteosarcoma cells [94]. Doses as low 300 nM
induced near complete depletion of cyclin D1 within 4 h
of treatment. Co-treatment with the proteasome inhibitor
MG132 abolished the MPP+ induced cyclin D1 degrada-
tion. MPP+ treatment resulted in the dephosphorylation

of Akt and inhibition of GSK3[ with LiCl, also effectively
abolished cyclin D1 degradation. MPP+ thus induces the
ubiquitin-dependent degradation of cyclin D1 in MG63
cells in a phosphorylation dependent manner [94]. The
natural metabolites hypothemycin (0.5 pug/Ml) and O-
methyl deoxybouvardin (RA-VII) (100 nM) have also
been shown to induce the ubiquitin-dependent degrada-
tion of cyclin D1 in transformed NIH3T3 mouse and
human colon cancer cell lines respectively [95,96]. In
both studies, inhibition of proteasomal activity by lacta-
cystin abolished the effect of these compounds on cyclin
D1 degradation. GL331 is a semi-synthetic podophyllo-
toxin derivative similar to etoposide (VP-16) [97,98]. Cul-
ture of CL1-5 human lung adenocarcinoma cells with 10
uM GL331 induced cyclin D1 degradation within 4 h of
exposure and was sensitive to proteasome inhibition (N-
carbobenzyloxy-leucine-leucine-leucine-aldehyde, N-
CBZ-L-L-L-AL) [99]. The role of T286 phosphorylation in
mediating the degradation of cyclin D1 by hypothemycin,
RA-VII and GL331 has not been reported. The phytochem-
ical resveratrol is common in food products including red
wine and inhibits cancer cell proliferation in vitro [100-
102]. Treatment of SW480 colon cancer cells with 300 uM
resveratrol induced effective clearance of cyclin D1 within
2 h and was inhibited by LLnL [103]. The effect of resver-
atrol on cyclin D1 degradation may be cell line specific
since the cyclin was not degraded in HL60 promyelocytic
leukaemia cells [104]. Diferuloylmethane (curcumin) is a
chemopreventitive agent that inhibits the proliferation of
a wide range of cancer cells [105,106]. Treatment of
LnCap prostate cancer cells and various breast cancer cell
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lines with 25 uM curcumin for 3 h resulted in a near-total
loss of cyclin D1 expression [107]. Co-culture of curcumin
with lactacystin abolished cyclin D1 degradation. The role
of GSK3B in mediating curcumin induced cyclin D1 deg-
radation however, remains unclear. Curcumin also
strongly repressed the expression of cyclin D1 mRNA
within 30-60 min in MCF-7 and LnCap cells [107]. The
simultaneous repression of cyclin D1 expression and
increased degradation at the protein level, partly explains
the rapid effect of curcumin on cyclin D1 levels in these
cells. Lovastatin inhibits 3-hydroxy-3-methylglutaryl-
coenzyme A reductase and has been shown to induce cell
cycle arrest [108-110]. Treatment of PC-3-M prostate can-
cer cells with 10 uM Lovastatin for 36 h induced cyclin D1
degradation. Lovastatin induced cyclin D1 degradation
was inhibited by LLnL but not lactacystin [111]. Aspirin
[112,113] was recently reported to induce the p38SAPK2
dependent degradation of cyclin D1 in SW480 and HT-29
colon cancer cells [114]. Treatment of SW480 cells with 5
nmol/L aspirin induced complete clearance in about 1 h.
The effect of aspirin on cyclin D1 stability in HT-29 cells
was less potent, inducing a partial reduction of protein
levels within 4 h. Aspirin induced cyclin D1 degradation
was effectively inhibited by MG132. As expected, inhibi-
tion of p38SAPK2 activity abolished aspirin induced cyclin
D1 degradation [114].

Cycloheximide inhibits protein synthesis by preventing
peptide initiation and extension in ribosomes [115,116].
Although it is not a therapeutic agent, cycloheximide is
commonly used in studies on protein stability and degra-
dation. In most cell lines, cyclin D1 levels rapidly decline
following the inhibition of protein synthesis with
cycloheximide. MG132 effectively abolishes cyclin D1
degradation following the inhibition of protein synthesis
[8,26,27]. Treatment of MCF-7 cells expressing cyclin D1
constructs lacking lysine residues with cycloheximide still
resulted in a decline in protein levels [27]. This observa-
tion highlights the importance of ubiquitin independent
degradation in regulating cyclin D1 stability.

The proliferator- activated receptor (PPAR) superfamily of
nuclear receptors mediates cellular processes such as pro-
liferation and differentiation (reviewed in [117-119]).
Activation of the proliferator- activated receptor y (PPARY)
by 15-deoxy-A1214 prostaglandin ], (PGJ2) or synthetic
ligands, inhibits tumour cell proliferation and induces the
ubiquitin dependent degradation of cyclin D1 [120,121].
Treatment of MCF-7 cells with 5-20 uM PGJ2 or 30-40
UM or the thiazolidinedione based PPARy agonist ciglita-
zone inhibited G1 to S phase progression but not apopto-
sis. Following treatment with 30 uM PGJ2 or 80 uM
ciglitazone, total cyclin D1 levels were reduced to unde-
tectable levels between 3 and 15 h after addition of either
compound [120]. Cyclin D1 degradation was inhibited by
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the proteasome inhibitor MG132 (carbobenzyloxy-leu-
cyl-leucyl-leucinal, Z-LLL-CHO) and PSII but not calpain
inhibitors and resulted in the accumulation of poly-ubiq-
uitylated species. Indirect fluorescence microscopy analy-
ses suggested that cyclin D1 accumulates in the cytoplasm
of PGJ2 treated MCF-7 cells [120]. This study did not how-
ever, investigate the role of GSK3p in mediating PGJ2 or
ciglitazone induced cyclin D1 degradation. Later studies
by Huang et al., [28], have demonstrated that the effect of
synthetic PPARy agonists on cyclin D1 stability is inde-
pendent of PPARy activation. In this study, a related
PPARYy agonist, troglitazone (at concentrations of 40 uM),
induced cyclin D1 degradation in MCF-7 cells 12-18 h
after exposure. Co treatment of MCF-7 cells with the
PPARY antagonist GW9662 did not suppress troglitazone
induced cyclin D1 degradation. Furthermore, additional
thiazolidinediones such as rosiglitazone and piolitazone
did not affect cyclin D1 stability, while derivatives that
have no effect on PPARy activity still induced degradation.
Similarly to ciglitazone [120], troglitazone induced cyclin
D1 degradation was also sensitive to specific inhibition of
26S proteasomes by MG132, lactacystin and epoxomicin.
Troglitazone did not however, activate GSK3f or require
the activity of this kinase to induce cyclin D1 degradation.
Derivatives of ciglitazone and troglitazone (A2-TG and
A2-CQG) that are inactive as PPARYy activators also induced
cyclin D1 degradation. The effect of these derivatives on
cyclin D1 stability was similar to that of their parent com-
pounds with slightly enhanced potency. The modification
and optimization of A2-TG structure (by substitution of
the terminal hydroxyl moiety) has resulted in the synthe-
sis of derivatives with improved potency, capable of
inducing cyclin D1 degradation at concentrations as low
as 5 uM [80]. Taken together, the studies by Wang et al.,
Qin et al. and Huang et al., [80,120,121] indicate that
PGJ2 and some synthetic PPARY agonists induce the ubiq-
uitin-dependent degradation of cyclin D1 independently
of GSK3p activity. Since A2-TG derivatives induce cyclin
D1 degradation at low concentrations that are clinically
achievable independently of PPARYy activation, Huang et
al., [80] have suggested that these compounds may be par-
ticularly useful as a platform for developing therapeutic
cyclin D1 ablative agents.

Mammalian target of rapamycin (mTOR) is a target of the
phosphatidylinositol 3-Kinase (PI3K)/protein kinase B
(PKB/Akt) pathway (reviewed in [121-126]) and plays a
major role in coupling mitogenic stimuli to cell cycle pro-
gression. Rapamycin binds to FK506 binding protein 12
(FKBP12) to form a complex which binds to and inacti-
vates mTOR [127-130]. mTOR regulates several cellular
processes. Previous studies have shown that mTOR regu-
lates protein synthesis by phosphorylating the 4E binding
proteinl (4E-BP1), which frees the eukaryotic initiation
factor-4 (elF-4F) to form a multi-subunit complex with
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elF-4A, elF-4B and elF-4G. The formation of active elF4
complexes results in an increase in the rate of translation
of cyclin D1 mRNA and other regulators of G1- S phase
progression [123]. Deregulated PKB/Akt activity is com-
mon in many cancers and results in mMTOR mediated stim-
ulation of G1- S phase progression. The activity of several
anti-apoptotic proteins that promote cancer cell survival is
also increased as a result of deregulated PKB/Akt activity
[131-133]. Furthermore, the deregulation of mTOR activ-
ity is associated with the development of both solid and
haematological malignancies (reviewed in [134]). PKB/
Akt and mTOR thus present important therapeutic targets
for anti-cancer agents [135]. Rapamycin inhibits cellular
proliferation and induces G1 arrest, partly by repressing
the expression of cyclin D1 [136-139]. In addition to sup-
pressing the translation of cyclin D1 mRNA [137],
rapamycin also induces the ubiquitin-dependent degrada-
tion of cyclin D1 [136]. Treatment of MCF-7 cells with
100 nmol/L rapamycin resulted in an approximately 50 %
reduction in cyclin D1 levels. In MDA-MB-468 breast can-
cer cells which express lower levels of cyclin D1, treatment
with this concentration of rapamycin reduced the level of
cyclin D1 to near undetectable levels within 6 h. Treat-
ment with rapamycin also reduced the half life of cyclin
D1 in MCF-7 and MDA-MB-468 cells by approximately 44
and 20 % respectively. Inhibition of 26S proteasomal
activity with ALLN abolished rapamycin induced cyclin
D1 degradation. Rapamycin also activated GSK3f
although this was not accompanied by phosphorylation
of serine 9 (Ser9). Inhibition of GSK3f in MCF-7 cells by
LiCl, SB216763 and SB415286 abolished cyclin D1 degra-
dation as effectively as ALLN. Similarly, an exogenously
expressed cyclin D1 T286A mutant was refractory to
rapamycin induced degradation [136]. Taken together,
these findings demonstrate that rapamycin activates
GSK3p and induces the phosphorylation dependent deg-
radation of cyclin D1 via the ubiquitin pathway in breast
cancer cell lines.

Histone deacetylase inhibitors (HDACIs) have shown
potent selective activity as anti cancer agents both in vitro
and in vivo [140-146]. Trichostatin A (TSA) is a prototype
HDACI that has been shown to induce cyclin D1 degrada-
tion in human breast cancer and transformed rat kidney
fibroblast cell lines. Treatment of MCF-7 cells with 1 uM
TSA induced complete cyclin D1 degradation within 6 h
of drug addition [25]. Similar results were obtained in
MDA-MB-231 and rat KNRK cells, although the effect of
TSA on cyclin D1 stability was less pronounced in these
cell lines [25,45]. A structurally unrelated HDACI, HC-
toxin (HCT) also repressed cyclin D1 expression in MCF-
7 and MDA-MB-231 cells [25]. The induction of cyclin D1
degradation may thus be a general feature of HDACIs. TSA
induced the accumulation of polyubiquitylated cyclin D1
species and the nuclear export of the recombinant wild
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type protein but not a T268A mutant. The proteasome
inhibitors MG132, ALLN, lactacystin and NLVS (NIP-leu,-
vinyl sulphone) all inhibited TSA induced cyclin D1 deg-
radation to varying degrees in MCF-7 cells. The inhibition
of calpain activity with ALLM (Calpain inhibitor II, N-
acetyl-leucyl-leucyl-methional) or cathepsin activity did
not affect TSA induced cyclin D1 degradation. TSA also
induced accumulation of SKP2 in MCF-7 cells. Further-
more, the siRNA mediated knockdown of SKP2 delayed
TSA induced cyclin D1 degradation [25]. The recent iden-
tification of bona fide E3 ligase complexes that target cyclin
D1 suggests however, that SKP2 is not directly involved in
the degradation of this cyclin [8,9]. It remains to be deter-
mined if SKP2 indirectly affects cyclin D1 stability in TSA
treated MCF-7 cells. Inhibition of GSK3p activity with
SB216763 or knockdown by siRNA partially inhibited
cyclin D1 degradation. Similarly, inhibition of CRM1
mediated nuclear export with leptomycin B (LMB) also
partially abolished TSA induced degradation. The ubiqui-
tin-dependent degradation of cyclin D1 induced by TSA in
MCEF-7 cells is thus partially dependent on GSK3 activity
[26]. HDACIs have also been shown to delay entry into
mitosis by activating the p38SAPK2 checkpoint [50].
Although osmotic stress has been shown to induce the
p385APK2_dependent degradation of cyclin D1, the role of
p385APK2 in mediating HDAC induced cyclin D1 degrada-
tion remains to be investigated. HDACIs have recently
been shown to sensitize cancer cells to the cytotoxic effects
of conventional therapeutic agents [147-152]. The effect
of HDACIs on cyclin D1 stability may underlie some of
these effects. Deregulated cyclin D1 expression has been
associated with resistance to endocrine and erbB therapies
[20-22,153,154]. HDACIs may thus be clinically useful in
overcoming drug resistance associated with cyclin D1 over
expression.

Pharmacologically and structurally diverse compounds
have been shown to induce cyclin D1 degradation. Little
is known about how these compounds affect the stability
of the cyclin D1b variant which lacks the c-terminal regu-
latory sequences. PPARY activators and HDAC inhibitors
have been shown to induce cyclin D1 degradation inde-
pendently of T286 phosphorylation. These compounds
may thus also be useful in the ablation of cyclin D1b lev-
els.

Unresolved questions

The recent identification of SCF-complexes that mediate
cyclin D1 degradation has greatly broadened the under-
standing of how the stability of this cyclin is regulated
[8,9]. Prior studies suggest however, that additional medi-
ators of cyclin D1 degradation exist [56]. Both SCFFBX4-aB
aystallin and FBXW8 specifically target T286 phosphor-
ylated cyclin D1 for ubiquitin-dependent degradation.
Cyclin D1 degradation can occur independently of T286
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phosphorylation and variants that lack threonine phos-
phorylation sites are still relatively unstable [46,63]. In
MCEF-7 cells, the expression of aB crystallin is extremely
low or absent [8]. None the less, inhibition of protein syn-
thesis with cycloheximide still results in the fairly rapid
decline of cyclin D1 levels [8]. Inhibition of GSK3p or
CRM1 dependent nuclear export failed to abolish the
rapid degradation of cyclin D1 [26]. Cyclin D1 can thus be
effectively degraded even in the absence of SCFFBX4-aB crys-
tallin complexes. Several potential anti-cancer agents have
been shown to induce cyclin D1 degradation via the pro-
teasome (discussed above). The effects of these agents on
the expression and activity of SCFFBX4-0B aystallin gpd
FBXW8 remains to be determined. SCFBX4-aB crystallin
expression is often lost in cancer cells as a result of chro-
mosomal deletions [8]. It is thus unclear if drug induced
cyclin D1 degradation is dependent on the expression of
SCFFBX4-0B aystallin. FBXW8 and other specific E3 ligases.
PPARy agonists and HDAC inhibitors effectively induce
cyclin D1 degradation even in the absence of GSK3[ activ-
ity [26,28]. Since SCFtBX4-oB aystallinand FBXWS specifically
target T286 phosphorylated cyclin D1, it is possible that
the degradation induced by troglitazone and TSA occurs
independently of these E3 ligases. The precise roles of
both complexes in mediating cancer cell proliferation
remain unclear. Knockdown of SCFBX4-aB aystallin com-
plexes by siRNA shortened progression into S phase fol-
lowing nocodazole release. Furthermore, SCFFBX4-aB
aystallin expression is frequently lost in cancer cell lines and
primary cancers [8]. In direct contrast, siRNA mediated
knockdown of FBXW8 complexes inhibited the prolifera-
tion of cancer cell lines [9]. SCFBX4-0B crystallin and FBXW8
may thus regulate different aspects of phosphorylation
dependent cyclin D1 degradation. It is also possible that
while the loss of SCFFBX4-aB aystallin g]lows the accumula-
tion of cyclin D1 during cancer development, the contin-
ued expression of FBXWS is required to maintain levels
below the threshold required to repress DNA replication
[38,43,54].

An early study suggested a role for calpains in regulating
cyclin D1 stability [111]. In this study, LLnL and ALLM
but not lactcystin inhibited serum starvation induced cyc-
lin D1 loss in NIH 3T3 cells. Furthermore, lactacystin
failed to abolish actinomycin D and lovastatin induced
cyclin D1 loss in PC-3-M prostate cancer cells. For these
reasons, cyclin D1 stability was initially assumed to be
regulated by calpains (ref). MG132 completely abolished
TSA induced cyclin D1 degradation in MCF-7 cells
[26,45]. Lactacystin only partially inhibited TSA induced
cyclin D1 degradation but completely abolished troglita-
zone induced cyclin D1 degradation [28]. The inhibition
of protein synthesis with cycloheximide led to the rapid
decline of cyclin D1 levels in MCF-7 cells. This loss of cyc-
lin D1 expression was inhibited by MG132 but not lacta-
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cystin, SB216763 or LMB [26]. Ubiquitin-dependent
degradation clearly plays an important role in regulating
cyclin D1 stability [8,9]. It is possible however, that pep-
tide aldehyde proteasome inhibitors like MG132 and
LLnL block additional pathways that regulate cyclin D1
stability [155-157].

The SK-UT-1B cell line presents an interesting paradox.
The ubiquitin-dependent degradation of cyclin D1 is
defective in this cell line and lysates fail to mediate the
polyubiquitylation of cyclin D1 in vitro [46,158]. In con-
trast to MCF-7 cells, the inhibition of protein synthesis
did not lead to the rapid decline of cyclin D1 levels in SK-
UT-1B cells. Furthermore, cyclin D1 levels remained ele-
vated even when the cells were arrested at the G1/S phase
boundary with hydroxyurea [45]. These observations sug-
gest that cyclin D1 levels do not decline during S phase in
this cell line. The expression of a SKP2 splice variant
which fails to migrate to the nucleus has been linked to
defective proteolysis in SK-UT-1B cells [ 158], since expres-
sion of SKP2 rescued cyclin D1 degradation. Recent stud-
ies suggest however, that SKP2 is not a direct mediator of
cyclin D1 degradation [8,9]. SK-UT-1B cells may thus har-
bour additional defects in pathways that regulate cyclin
D1 degradation. The degradation of cyclin D1 at S phase
facilitates DNA replication and cell cycle progression. In
fact, deregulated cyclin D1 expression is known to inhibit
cell proliferation and the generation of clones stably
expressing the T286A mutant is somewhat difficult
[9,38,43,54]. The question thus arises: how SK-UT-1B
cells proliferate in the absence of cyclin D1 degradation?
One possibility is that SK-UT-1B cells integrate the prolif-
erative and anti-proliferative properties of cyclin D1 by
means of cytoplasmic sequestration. In this model, cyclin
D1 is retained in the cytoplasm and its nuclear import is
dependent on its binding partners (CDK4, CDK6, p21,
P27 and various transcription factors). At the same time,
nuclear accumulation is tightly regulated by the continu-
ous nuclear export of GSK3f phosphorylated cyclin D1
throughout the cell cycle [44,45]. The nuclear accumula-
tion of cyclin D1 is thus limited by its continuous export
which prevents PCNA and CDK2 inhibition. This would
permit the effective replication of DNA in the absence of
cyclin D1 degradation. The simultaneous inhibition of
ubiquitin-dependent degradation and nuclear export did
not result in the nuclear localization of cyclin D1 when its
synthesis was inhibited in MCF-7 and SK-UT-1B cells [45].
The precise mechanism(s) that underlie the defective deg-
radation of cyclin D1 in SK-UT-1B cells remains to be
clearly defined. Such characterization could provide fur-
ther insights into the regulation of cyclin D1 stability.

GSK3p activity appears to remain unchanged throughout
the cell cycle and recent studies suggest a limited role for
this kinase in mediating cyclin D1 degradation [44]. Inhi-
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bition of GSK3p can however, inhibit TSA induced cyclin
D1 degradation and results in increased levels of the cyc-
lin within the nucleus [26,45]. Changes to the accessibil-
ity of cyclin D1 during S phase could also result in
increased T286 phosphorylation in the absence of
increased GSK3p activity [43,44]. If its major role does not
involve regulating cyclin D1 stability, what then is the cel-
lular function of GSK3 mediated T286 phosphorylation?
The transforming activity of the T286A mutant and cyclin
D1b seems to depend more on their constitutive nuclear
localization, than on their stability or capacity to phos-
phorylate RB [63]. It is possible therefore, that GSK3f
functions to regulate the levels of cyclin D1 within the
nucleus. Cyclin D1 has been reported to be sequestered in
the cytoplasm of post mitotic neurons [75]. The cytoplas-
mic sequestration of cyclin D1 may also present also a
novel mechanism for regulating its activity in some cancer
cell lines [45]. It remains to be seen, whether the concept
of a predominantly cytoplasmic localization for cyclin D1
turns out to be a paradigm or a heresy.

Conclusion

Cyclin D1 is an important regulator of cell cycle progres-
sion and overexpression of cyclin D1 has been linked to
the development and progression of cancer. Deregulated
cyclin D1 expression is also linked to the development of
resistance to hormone therapy in breast cancer. In many
cancers, the impaired ubiquitin-dependent degradation of
cyclin D1 is responsible for its elevated levels. A number
of therapeutic agents have been shown to induce cyclin
D1 degradation via the ubiquitin pathway. Drug induced
cyclin D1 ablation may provide a useful chemopreventive
or treatment strategy for cancer. The development of such
agents requires a firm understanding of cyclin D1 regula-
tion. Recent reports have increased our understanding of
how cyclin D1 degradation is regulated. At present, a
number of questions remain unanswered. These include
the role of phosphorylation and/or ubiquitin-independ-
ent degradation, the effects of agents that induce cyclin D1
degradation on the stability and/or activity of cyclin D1b,
SCFIBX4-0B arystallin gnd FBXW8, as well as the precise role of
GSK3p in regulating cyclin D1 activity. Finally, the signif-
icance of cyclin D1 sequestration within the cytoplasm
needs to be properly addressed. We can look forward to
further exciting developments in this important area of
cancer cell research in the coming years.
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