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Abstract

Understanding the correlation structure associated with multiple brain measurements informs 

about potential “functional groupings” and network organization. The correlation structure can be 

conveniently captured in a matrix format that summarizes the relationships among a set of brain 

measurements involving two regions, for example. Such functional connectivity matrix is an 

important component of many types of investigation focusing on network-level properties of the 

brain, including clustering brain states, characterizing dynamic functional states, performing 

participant identification (so-called “fingerprinting”) understanding how tasks reconfigure brain 

networks, and inter-subject correlation analysis. In these investigations, some notion of proximity 

or similarity of functional connectivity matrices is employed, such as their Euclidean distance or 

Pearson correlation (by correlating the matrix entries). Here, we propose the use of a geodesic 
distance metric that reflects the underlying non-Euclidean geometry of functional correlation 

matrices. The approach is evaluated in the context of participant identification (fingerprinting): 

given a participant’s functional connectivity matrix based on resting-state or task data, how 

effectively can the participant be identified? Using geodesic distance, identification accuracy was 

over 95% on resting-state data, and exceeded the Pearson correlation approach by 20%. For 

whole-cortex regions, accuracy improved on a range of tasks by between 2% and as much as 20%. 

We also investigated identification using pairs of subnetworks (say, dorsal attention plus default 

mode), and particular combinations improved accuracy over whole-cortex participant 

identification by over 10%. The geodesic distance also outperformed Pearson correlation when the 

former employed a fourth of the data as the latter. Finally, we suggest that low-dimensional 

distance visualizations based on the geodesic approach help uncover the geometry of task 

functional connectivity in relation to that during resting-state. We propose that the use of the 

geodesic distance is an effective way to compare the correlation structure of the brain across a 

broad range of studies.
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1. Introduction

Measurements of brain activity are acquired across multiple sensors or spatial locations, 

such as those obtained by electro/magneto-encephalography, electrophysiology recordings, 

calcium imaging, or functional magnetic resonance imaging (fMRI) data. Understanding the 

correlation structure associated with multiple brain measurements is a central goal in 

neuroscience, as it informs about potential “functional groupings” and network structure [29, 

35]. The correlation structure can be conveniently captured in a matrix format that captures 

the relationships among a set of brain measurements. For example, in the case of fMRI, each 

entry of the matrix might contain an estimate of the functional connectivity (FC) between 

regions i and j, typically computed as the correlation between the time series data of the two 

regions in question.

In recent years, the FC matrix has become an important component of many types of 

investigation focusing on network-level properties of the brain, particularly in fMRI. For 

example, it has been used to cluster brain states [2], characterize dynamic functional states 

[19], perform participant identification [15], and understand how tasks reconfigure brain 

networks [33]. In these applications, some notion of proximity or similarity of FC matrices 

is employed (Fig. 1A). How should similarity be gauged? An intuitive approach is to 

“unroll” the FC matrix into a vector and compute the Pearson correlation between the 

matrices themselves. Thus if, say, two brain states captured by FC matrices are similar (for 

example, during two similar perceptual conditions), their matrices would be (relatively) 

highly correlated. Indeed, the correlation approach has yielded impressive results, such as 

successfully identifying a participant out of a large group of participants based on FC matrix 

similarity, a process dubbed fingerprinting ([15, 14, 3]). Related approaches include 

computing the Euclidean (L2) distance between the vectorized matrices [30], or using the so-

called Manhattan (L1) distance [2].

FC matrices computed by Pearson correlating time series data are objects that lie on a non-

linear surface (technically known as a manifold) called the positive semidefinite cone: their 

geometry is non-Euclidean. Accordingly, distances between Pearson FC matrices must be 

measured along the surface of the cone (Fig. 1B). In addition, FC matrices are often high 

dimensional, and the proximity measure adopted is critical since noisy dimensions can 

contribute substantially to the measure [1].

In the present paper, we characterized the advantages of using a geodesic proximity measure 

between FC matrices. We apply the approach to the problem of participant identification: 

Given resting-state or task data, is it possible to determine a participant from her FC matrix 

[15]? We show that using the geodesic distance, a non-Euclidean distance metric that 

considers the manifold on which the data lies, improves participant identification compared 

to a similarity measure based on Pearson correlation (Fig. 1C). The improvement is shown 

to be nontrivial and consistent across resting-state and task conditions.

We also investigate how distances between high-dimensional FC matrices can be effectively 

visualized in low-dimensional spaces. Such visualization reflected identification accuracy 

based on the full-dimensional data, and thus retained important distance information. We 
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suggest that visualization in lower dimensions aids in understanding the geometry of task FC 

structure in relation to resting-state FC.

2. Methods

2.1. Human Connectome Project Data

We utilized data from N = 100 unrelated participants from the Human Connectome Project 

(HCP) of the 1200-participant release [12]. Data from resting-state and seven tasks were 

employed: emotion processing (EM), gambling (GB), language (LG), motor (MT), 

relational processing (RL), social cognition (SO), and working memory (WM). Throughout 

the paper, we refer to resting-state plus the tasks as conditions. For a description of the tasks 

and scan parameters, see [5]. Data were collected with a repetition time (TR) of 720 ms.

During each run, stimuli were presented in separate blocks often interleaved with fixation 

blocks. Some task runs also contained cues. To retain only task-related segments of the run, 

extraneous segments were trimmed. To account for hemodynamic lag, the first four TRs of 

the block were not used, and the first four TRs following the end of the block were used [8]. 

Emotional processing, working memory, and motor tasks contained 3-second cues at block 

onset. Accordingly, to account for the cue response and the hemodynamic lag, data from 12 

seconds after the cue onset to 3 seconds after the end of the block were used. Time course 

length for each condition before and after trimming is provided in Table 1. Note that 

trimming the fixation periods is important in characterizing participant identification from 

task data, because fixation periods behave much like “mini resting periods” that can 

potentially provide information regarding the participant. Analysis of data without trimming 

is included in supplemental material (Section S1).

2.2. Preprocessing

Task data were part of the “minimally preprocessed” release, which included gradient 

unwarping, fieldmap-based EPI distortion correction, brain-boundary-based registration of 

EPI to structural T1-weighted scan, non-linear registration, and intensity normalization [17]. 

Cortical data were mapped to a surface representation and utilized here. In addition, we 

regressed out 12 motion-related variables (6 translation parameters and their derivatives) and 

low frequency signal changes using the 3dDeconvolve program of the AFNI package [10] 

with the ortvec and polort options (the latter removed linear, quadratic, and cubic trends over 

the duration of individual runs. Resting-state also followed the so-called minimal 

preprocessing pipeline, in addition to denoising using ICA-FIX [34] and regressing out 12 

motion-related variables, as provided with the data distribution. Cortical data were mapped 

to a surface representation. Preprocessing included minimal temporal filtering that 

essentially removed linear trends in the data. The ICA-FIX procedure removed ”bad” 

components such as high frequency noise from the data. No further preprocessing was 

performed for resting-state data in the main text. In particular, band pass filtering is not 

included in HCP’s preprocessing because they believe it can potentially eliminate relevant 

information in resting-state data [6].
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For the results in the main text, the global mean was not regressed from the data. In the 

supplemental material (Section S2), we repeated some analyses on resting-state data that 

included global signal regression as part of the preprocessing pipeline. Although there is no 

consensus in the field whether or not the global mean should be eliminated, some work has 

reported that removal strengthens the association between resting-state functional 

connectivity and behavior [20, 23].

2.3. Regions of interest and organization into subnetworks

For simplicity, we focused on cortical regions of interest (ROIs) only. We used the local-

global Schaefer cortical parcellations that divide the cortex into 300 ROIs [32] (throughout 

the text, we refer to it as “whole-cortex”). A summary ROI-level time series was obtained by 

averaging signals within the region. We then used the Yeo 7-network parcellation to group 

the ROIs into 7 subnetworks known as visual, somatomotor, dorsal attention, ventral 

attention, limbic, frontoparietal, and default mode [39]. The number of ROIs within each of 

the subnetworks is provided in Table 2. The ROIs and the grouping into 7 networks is shown 

in Fig. S4. Some of the effects of varying the number of ROIs are described in the 

supplemental material (Section S3).

2.4. Functional connectivity

Functional connectivity was computed by Pearson correlating time series data between every 

pair of ROIs, resulting in 300 × 300 FC matrices. A symmetric matrix S that satisfies y′S y 
≥ 0 (where y′ is the transpose of y) for any non-zero vector y is said to be positive 

semidefinite and has eigenvalues greater than or equal to zero. After normalizing the time 

series of each ROI to unit variance, let xt = (xt,1, xt,2, … , xt,300) be the vector of activations 

of all ROIs at time t for t = 1, 2, … , T. If we denote the mean across time as x, the 

covariance matrix is given by

Q = 1
T ∑

t = 1

T
xt − x xt − x ′ . (1)

Note that the (i, j) entry of Q is simply the Pearson correlation coefficient between the time 

series of regions i and j. For any non-zero vector y of dimension 300,

y′Qy = y′ 1
T ∑

t = 1

T
xt − x xt − x ′ y

= 1
T ∑

t = 1

T
y′ xt − x xt − x ′y

= 1
T ∑

t = 1

T
xt − x ′y 2 ≥ 0.

(2)

Thus, covariance matrices are positive semidefinite [7].

If Q1 and Q2 are two FC matrices, it can be easily shown following the steps above that αQ1 

+ βQ2 is also positive semidefinite for α, β > 0. Thus, the set of all positive semidefinite 

matrices lie on a cone referred to as the positive semidefinite cone [7].
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2.5. Geometry of functional connectivity matrices

Pearson correlation is often used to characterize the similarity of FC matrices. However, as 

correlation matrices lie on a non-linear space, a natural approach is to compute geodesic 
distances between FC matrices to quantify their distance. The geodesic distance between 

two points on the positive semidefinite cone, and thus between two FC matrices Q1 and Q2, 

is the shortest path between them along the manifold [28]. There exists only one geodesic 

path joining two such points.

For two functional connectivity matrices, their geodesic distance can be computed as 

proposed in [28]:

dG Q1, Q2 = trace(log2(Q1
− 1

2Q2Q1
− 1

2)), (3)

where the matrix log operator is used here. Note that this definition assumes that the matrix 

Q1 is invertible; when this was not the case the identity matrix, I, was added as a 

perturbation matrix to both Q1 and Q2 to ensure that all eigenvalues were greater than 0 (see 

Section S4). For matrices Q1 and Q2 of size n × n (here, n = 300 ROIs), if Q = Q1
− 1

2Q2Q1
− 1

2 , 

and λi for i = 1 to n are the n eigenvalues ≥ 0 of Q, the geodesic distance is simply (see 

https://github.com/makto-toruk/FC_geodesic for code)

dG Q1, Q2 = ∑
i = 1

n
log λi

2 . (4)

From (4), it is clear that dG ≥ 0. In addition, dG = 0 implies λi = 1 (i.e, Q1 = Q2), and vice 

versa. To verify that the geodesic distance is symmetric, note that dG(Q1, Q2) = dG(Q, I) 
(using Eq. 3). By the property of the log operator, dG(Q, I) = dG(I, Q) since log2(Q−1) = 

log2(Q). We refer the interested reader to [16] for a proof of the triangular inequality for 2 × 

2 matrices. Thus, the geodesic distance applied to matrices meets the criteria of a metric.

If q1 and q2 are vectors obtained by stacking the columns of Q1 and Q2, respectively, 

Pearson dissimilarity between the two matrices is defined as

dP Q1, Q2 =
1 − corr q1, q2

2 , (5)

where the corr function is the Pearson correlation coefficient. Pearson dissimilarity ranges 

between 0 and 1 and is not a formal metric because it does not satisfy the triangular 

inequality [36]. The units for geodesic distance and Pearson dissimilarity are arbitrary and 

thus not comparable across these measures.

2.6. Participant identification

Identification involves mapping an unknown participant’s data to one of the participants in 

the database. Since each task in the HCP data contains 2 runs for every participant, we used 
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one run as training data (that is, to form the database) and the other run for testing. 

Identification was performed on each condition (resting-state or task) separately.

Participant identification is equivalent to N-class classification where the objective is to label 

an individual’s FC matrix in the test data to one of the N participants in the training data. To 

do so, we used a 1-Nearest Neighbor approach [15]: An FC matrix in the test data is labeled 

with the participant identity of the FC that is most similar to it in the training data. Suppose 

Qx
test is an unknown participant’s FC matrix. Then

label(x) = arg min
i = 1

N
d Qi

train, Qx
test , (6)

where Qi
train is the ith participant’s FC matrix in the training data and d(·, ·) is a distance or 

similarity measure. Here we compare the use of a geodesic distance metric to a Pearson 

dissimilarity measure.

2.6.1. Identification accuracy—Participant identification was performed using the first 

run as training data and the second run as testing data. For the N participants in the testing 

data, accuracy was defined as

 Accuracy  =  Number of correctly labeled participants 
 Total number of participants  . (7)

Then, the roles of the training and testing data were reversed and accuracy was computed 

again. The reported identification accuracy was the mean of the two accuracy values.

2.7. Bootstrapping

For participant identification statistics, one must confront the non-independence between 

participants in the sample. Consider the following case. If two participants’ FC matrices QA 

and QB are close to each other, B might be mislabeled as A. However, if A was not in the 

training database, it is conceivable that B would have been labeled correctly. Therefore, the 

entire group must be considered as the unit of interest; it is the group that determines if 

identification performance will be poor or good. In our study, we used data from N = 100 

participants in the age range of 22 – 35 years, but demographic factors such as age and 

mental health status can potentially play an important role in identification performance.

A convenient procedure to assess variability in identification performance is to use bootstrap 

resamples, with each resample comprising random draws with replacement of the urn 

containing the group of participants. Thus, a bootstrap resample is a proxy for a group of 

participants, and variability can be quantified by resampling it a large number of times.

More precisely, suppose a dataset of size N for a run is denoted by 𝒟. Let 0 ≤ f P(𝒟) ≤ 1 and 

0 ≤ f G(𝒟) ≤ 1 be the participant identification accuracy obtained using Pearson dissimilarity 

and the geodesic distance, respectively. Let ℛ j be a dataset also of size N obtained by 

resampling 𝒟, with replacement, N times. Thus, ℛ j is a bootstrap resample of 𝒟 and may 
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contain duplicate entries. The accuracy difference on this bootstrap resample is given by 

δ ℛ j = f G ℛ j − f P ℛ j . Such difference score is computed for M = 1000 bootstrap 

resamples ℛ1, ℛ2, …, ℛM and the mean difference score, δ, is computed. This process 

(based on M resamples) provides exactly one mean difference score. The question of interest 

is as follows: How are mean difference scores distributed? Note that this parallels the 

question of the distribution of the sample mean in the setting of the standard Central Limit 

Theorem. In our case, the distribution of mean difference scores is of interest. Since the 

object of interest is the mean difference score, the procedure to determine a specific δ is 

repeated B = 1000 times, resulting in δ1, δ2, …, δB  (that is, B mean differences). Although 

the number of resamples, M × B, is large, the distance matrix of size N × N (between each 

subject’s test-FC to all subjects’ train-FC) is calculated only once making the bootstrapping 

procedure computationally feasible.

Reported p-values were computed as follows. Because accuracy differences are percentages, 

we initially applied a standard Fischer-z transformation to δ1, δ2, …, δB  so that their 

distribution would be approximately normal. To test the null hypothesis H0:δ = 0, a one-

sample t-test was then used.

2.7.1. Evaluating shorter data segments—To understand the effect of the length (or 

the number of frames) of the run, we truncated runs to smaller segments. For a particular 

segment length, 50 segments were obtained each of which had a unique, randomly-chosen 

starting point in the run. The objective was to pick several segments of the same length 

without favoring those that started at the beginning of the scan. For each segment, 1000 

bootstrap iterations were used to obtain a mean accuracy score.

2.8. Multidimensional scaling

Naturally, visualizing distances between FC matrices is not straightforward given their high 

dimensionality. Here, we used non-metric multidimensional scaling to visualize distances in 

three dimensions [21]. Whereas standard multidimensional scaling computes the Euclidean 

distance between the high-dimensional vectors of interest, non-metric multidimensional 

scaling takes as input any dissimilary matrix of the form

D =

d1, 1 d1, 2 … d1, 200
d2, 1 d2, 2 … d2, 200

⋮ ⋮ ⋱ ⋮
d200, 1 d200, 2 … d200, 200

(8)

where di,j is the “dissimilarity” between the FC matrices i and j (the dimensionality of the 

matrix is 200 since we consider a test-FC and a train-FC for each of the N = 100 

participants). Here, either geodesic distance or Pearson dissimilarity was used. Given D, 

non-metric multidimensional scaling finds a set of ℝ3 vectors such that the Euclidean 

distance between these vectors preserves, to the extent possible, the high-dimensional 

distances:
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d i, j = ‖xi − x j‖2
2 ≈ di, j (9)

where the vectors x are low dimensional. Thus, if di,j = d(Qi, Qj) is the distance between two 

FC matrices Qi and Qj, and d i, j is the distance in the lower-dimensional representation, the 

output (set of points) is produced by minimizing the stress function:

S =
∑i < j (di, j − d i, j)

2

∑i < j di, j
2 . (10)

The optimal distances, d i, j, are obtained using a gradient descent approach that minimizes 

the stress. The MATLAB 2018a [24] implementation of mdscale with 1000 gradient descent 

iterations was used. Multidimensional scaling produces low dimensional representatives, x’s, 

for high dimensional FCs such that the Euclidean distances between x’s approximate the 

measured relationships (Pearson dissimilarity or geodesic distance) between their high-

dimensional counterparts. Given that the two measures have arbitrary units, so do their 

estimates in low dimensions.

Note that the objective of using non-metric multidimensional scaling was to represent in a 

more intuitive manner the relationships between high-dimensional functional connectivity 

matrices. Thus, points in the lower-dimensional representation no longer lie on the positive 

semidefinite cone and closeness should be interpreted in the Euclidean sense (two points are 

close if their Euclidean distance is small). The visualizations, approximate as they are, are 

only provided to aid understanding, and are not part of the procedure to determine 

identification accuracy.

2.9. Note on p-values

As discussed by many others recently, we do not view “statistical significance” dichotomous 

thresholds (for example, p < 0.05) as the ultimate criterion in deciding whether a result is 

“real” or not ([4, 25]). In any case, understanding variability and the unlikeliness of a result 

provides some information. Given that we compare geodesic distance to Pearson 

dissimilarity across conditions and other parameters, some form of correction for multiple 

comparisons is opportune. Accordingly, we provide the uncorrected p-value as well as the 

Bonferroni-corrected α level (which we call the “reference α”) so that the reader can further 

gauge the “strength” of the finding. Again, we do not advocate using the Bonferroni-

corrected α in a dichotomous fashion, but provide it as an additional “reference” point for 

the reader.

3. Results

3.1. Motivation behind geodesic distance

We motivate the geodesic distance with simple examples from the space of 2 × 2 FC 

matrices. Since FC matrices are symmetric and positive semidefinite, they take the form
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Q = x y
y z

,

and satisfy x ≥ 0, y ≥ 0 and xy − z2 ≥ 0. Since the matrices have only three unique entries, all 

points that satisfy these equations can be plotted in three dimensions in Euclidean space, and 

form a positive semidefinite cone (Fig. 1B).

In the first example, we considered three points on the cone (i.e., three 2 × 2 FC matrices) 

‘a’, ‘b’ and ‘c’ such that ‘b’ and ‘c’ are equidistant from ‘a’ in terms of the Euclidean 

distance (Fig. 2A). If a tangent surface to the cone is drawn at ‘a’, the point ‘c’ is much 

closer to the tangent surface than ‘b’. Thus, the geodesic distance between ‘a’ and ‘b’ is 

larger than that between ‘a’ and ‘c’ (Fig. 2B). In this case, Pearson dissimilarity is capable of 

distinguishing the two distances.

To motivate why Pearson dissimilarity is problematic, consider that the Pearson correlation 

between two vectors is equivalent to the cosine of the angle between them after they have 

been “centered” individually (that is, the mean of each vector is subtracted from it) and 

normalized. Indeed, the computation of Pearson correlation eliminates the contribution of 

the signal mean, as can be readily seen in the following equation:

corr(x, y) =
∑i xi − x yi − y

∑i xi − x 2 ∑i yi − y 2 , (11)

where x and y are vectors. For FC matrices, such centering which is implicit in Pearson 

correlation alters the eigenvalues and the positive semidefiniteness of the matrix. Since the 

eigenvalues are the basis for computing geodesic distances, we see that Pearson correlation 

in fact distorts the evaluation of similarity between connectivity matrices (relative to what is 

estimated with the geodesic distance). However, while estimating an individual’s FC matrix, 

mean centering does not affect positive semidefiniteness, as shown in Eq. (2).

In a second illustrative example (Fig. 2c), we consider three points ‘a’, ‘b’ and ‘c’ on the 

cone such that ‘b’ and ‘c’ are symmetrically on either side of ‘a’. By symmetry, ‘a’ is 

equidistant from ‘b’ and ‘c’ in terms of both the Euclidean distance and geodesic distance. 

However, Pearson dissimilarity between the two sets of points can be quite distinct. Suppose 

O is the origin and ∠aOb = ∠aOc (where ∠ is the angle subtended between ‘a’ and ‘b’). 

Since Pearson correlation mean centers the vectors ‘a’ and ‘b’, the correlation is related to 

mean-centered vector angles that can be quite different from the original ones (Fig. 2d). In 

other words, if ‘a’, ‘b’, and ‘c’ are vectors obtained by centering ‘a’, ‘b’ and ‘c’, in most 

cases ∠aOb ≠ ∠aOc. The upshot is that measures of similarity based on Pearson correlation 

do not correspond to actual distances between functional connectivity matrices.

3.2. Geodesic distance and participant identification

Participant identification (N = 100) was performed on each condition (resting-state and 

tasks) using two measures: geodesic distance and Pearson dissimilarity (Methods 2.6). FC 

matrices obtained from one run were used as training data and matrices from the second run 
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as testing data. Identification accuracy for each condition is shown in Fig. 3 (accuracy based 

on chance would be 1%).

To assess the robustness of the results and for statistical comparisons between the two 

measures, identification was performed on bootstrap resamples. For each bootstrap 

resample, the difference between accuracy using geodesic distance and Pearson dissimilarity 

was computed. A one-sample two-tailed t-test was then used to assess the null hypothesis 

that the difference distribution had zero mean (Methods 2.7). For each condition, using the 

geodesic distance improved identification accuracy over Pearson dissimilarity (p < 10−6 for 

all tasks; reference α = 0.05/8 = 0.00625 given 8 conditions; Fig. S6). The mean 

improvement using geodesic distance was around 8%, ranging from 2% (relational 
processing) to as much as 19% (resting-state). For resting-state and the language conditions, 

the accuracy obtained using the geodesic distance was very hight and close to 95%.

Finn et al. [15] reported a mean accuracy of 93.65% on resting-state data using Pearson 

dissimilarity, which is considerably higher than the 77.5% we obtained. Given that in the 

HCP dataset four runs of resting-state data are available per participant (collected over 

separate days), they averaged the FC matrices obtained obtained during the same day into a 

single FC matrix1. By including this averaging procedure, we replicated their findings more 

closely and obtained an accuracy of 91% using Pearson dissimilarity. Using geodesic 

distance, accuracy increased to 98%. However, since conditions other than resting-state 
contained only two runs, we did not use the averaging procedure on the four runs of resting-

state data in the remainder of our work.

3.3. Low-dimensional visualization of functional connectivity matrices

Since FC matrices are high dimensional, multidimensional scaling was used to visualize the 

distances between them in three dimensions (Fig. 4). The goal of using multidimensional 

scaling was to represent in a more intuitive manner the relationships between high-

dimensional FC matrices. Accordingly, points in the lower-dimensional representation 

should be interpreted in the Euclidean sense (two points are close if their Euclidean distance 

is small). But note that the visualizations are approximate only, and provided to aid 

understanding (they are not part of the procedure to determine identification accuracy).

Within- and between-participant distances estimated in three dimensions were indicative of 

varying identification accuracy (obtained using high dimensional FC matrices) across 

conditions. For resting-state, FC matrices within-participant geodesic distances between 

training and testing were very small, whereas distances between different participants were 

considerably larger, consistent with the high identification accuracy. Visualization of 

Pearson dissimilarity revealed similar characteristics, but the ratios of within- to between-

participant distances were not as large. In fact, using Pearson dissimilarity resulted in 

participant 5 being mislabeled as participant 2, for example.

For the emotional processing task, within-participant distances were not much smaller than 

between-participant distances even for the geodesic distance consistent with the lower 

1We thank one of the reviewers for helping solve this puzzle.
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accuracy on this task. However, all participants in the randomly chosen subset were still 

labeled correctly. Using Pearson dissimilarity, two participants were mislabeled. In general, 

using the geodesic distance resulted in more favorable ratios of within- to between-

participant FC distances.

3.4. Identification accuracy and time course length: resting-state data

Since the length of the time course plays a key role in the quality of the estimate of the FC 

matrix [22, 40], we sought to characterize its effect on participant identification. Because 

resting-state data had the longest time course (1200 TRs), shorter segments varying from 

100 to 1100 TRs (in steps of 100) were extracted. Accuracy improved with length for both 

measures (Fig. 5). Accuracy using the geodesic distance was higher than Pearson 

dissimilarity for segment lengths greater than 200 TRs (p < 10−4; reference α = 0.05/11 = 

0.0045 given 11 segment lengths; Fig. S7). For segment length of 100 TRs, accuracy using 

geodesic distance was still higher than Pearson dissimilarity (but p = 0.051). Notably, the 

geodesic distance, with segment lengths as short as 300 TRs, outperformed the best accuracy 

using Pearson dissimilarity which was obtained with the full time course (four times more 

data; p < 10−4; reference α = 0.05/11 = 0.0045 given 11 segment lengths).

3.5. Identification accuracy and time course length: task data

Although accuracy increased with segment length for resting state, length did not predict 

performance straightforwardly (Fig. 6A). In particular, working memory and language tasks 

had comparable time course lengths, but identification accuracy differed by as much as 10%. 

To probe this issue further, runs were trimmed so that they all had the same duration (138 

TRs, which was the length of the shortest task; for conditions with more data, this target 

length was obtained by deleting time points at the beginning and end of the data segment, 

thereby retaining the middle part).

With time course length equated, accuracy still varied considerably across tasks (Fig. 6B). 

Accuracy obtained using the geodesic distance exceeded that of Pearson dissimilarity for all 

conditions except the gambling task (p = 1 for gambling, p < 10−4 for all other tasks; 

reference α = 0.05/8 = 0.00625 given 8 conditions; Fig S8). Notably, although resting-state 
had the highest identification accuracy when the entire time course was used, it had the 

lowest identification accuracy when length was equated across conditions.

3.6. Brain subnetworks and participant identification

Particular brain subnetworks are known to be engaged more prominently, as well as exhibit 

enhanced functional connectivity, during particular tasks [29]. To evaluate performance 

based on subsets of regions, ROIs were grouped into seven subnetworks (Methods 2.3). Was 

the best subnetwork for identification dependent on condition? Data for all conditions were 

trimmed so that they had the same length (138 TRs; the limbic subnetwork was excluded 

because identification accuracy was less than 10% across conditions).

Using geodesic distance improved the accuracy across most conditions for most 

subnetworks (Fig. 7A). In particular, for the visual, dorsal attention, frontoparietal and 

default mode subnetworks, accuracy was comparable to that obtained with the whole cortex. 
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For example, the default mode subnetwork produced accuracy over 90% for the language 
task. The frontoparietal performance on resting-state and emotion processing was close to 

80%. Further inspection of Fig. 7A revealed additional features of condition/subnetwork 

combinations. For example, the visual subnetwork was not very suitable for identification 

based on resting-state data. Not surprisingly, the default mode subnetwork performed well 

with resting-state data. Interestingly, the frontoparietal subnetwork performed nearly as well 

with resting-state data, too. These two subnetworks obtained even higher identification 

accuracy during the language task.

To further evaluate performance of subnetworks, identification accuracy was averaged across 

conditions (Fig. 7B). By using the geodesic distance, accuracy improved substantially, with 

several subnetworks improving by over 20%. Except for the somatomotor subnetwork, using 

the geodesic distance resulted in improved performance (p = 0.996 for somatomotor, p < 

10−5 for all other subnetworks; reference α = 0.05/7 = 0.0071 given 7 subnetworks; see Fig. 

S9 for bootstrap distributions). The highest mean accuracies were observed in the visual, 

dorsal attention, frontoparietal, and default mode networks for both geodesic and Pearson 

measures, indicating that some subnetworks are more suitable than others for participant 

identification.

Fig. 8 displays geodesic identification accuracy for each condition as a function of 

subnetwork size. Whereas the smallest subnetwork (limbic) performed poorly for all 

conditions, accuracy did not always increase with size. For example, the dorsal attention and 

ventral attention subnetworks have the same size, but the former produced considerably 

higher accuracy on each condition (p < 10−12 for all conditions; reference α = 0.05/8 = 

0.00625 given the 8 conditions; see Fig. S10 for bootstrap distributions). Across conditions, 

the dorsal attention improved over the same-sized ventral attention by over 20%. Of note, 

the somatomotor subnetwork was larger than all but the default mode subnetwork, but it 

produced relatively low identification accuracy; at the same time, the largest subnetwork 

(default mode), was associated with consistently high accuracy across conditions. Finally, no 

single subnetwork exhibited the highest accuracy for all conditions. In fact, performance 

varied across conditions, but also varied in particular ways across subnetworks for each 

condition. Notably, the visual, textttdorsal attention, frontoparietal, and default mode 

subnetworks performed consistently well. Similar trends were observed for the Pearson 

dissimilarity measure but overall accuracy levels were lower (Fig. S11).

3.7. Combining subnetworks improved identification accuracy

As described, subnetworks had comparable (and sometimes higher) identification accuracy 

than whole-cortex performance, although subnetworks were associated with much smaller 

matrices, of course. Could particular subnetworks be combined to further improve 

identification? We tested this possibility by targeting two subnetworks that exhibited high 

performance overall, namely frontoparietal and default mode (see Fig. 7B). The combined 

network included all within-network functional connections of course, but also all between-

network links (for example, a functional connection between a region of the frontoparietal 

network and a region of the default mode network). Time course length was equated for all 

conditions as in Section 3.5. Accuracy using geodesic distance was superior to Pearson 
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dissimilarity (Fig. 9; p < 10−15 for all conditions; reference α = 0.05/8 = 0.00625 given 8 

conditions; Fig. S12).

Using geodesic distance, the combined subnetwork also outperformed both the individual 

subnetworks on all conditions except the language task (p = 0.24 for the language task, p < 

10−12 for all other conditions; α = 0.05/16 = 0.003125 given 8 conditions and comparisons 

with two subnetworks; see Fig. S13–S14 for bootstrap distributions). In addition, for the 

geodesic distance, the combined subnetworks exhibited higher accuracy than whole-cortex 

FC matrices (p < 10−12 for all conditions; α = 0.05/8 = 0.00625 given 8 conditions; see Fig. 

S15 for bootstrap distributions) although the number of ROIs in the combined subnetwork 

(108) was nearly a third as those in the cortex (300). Clearly, the improvement in accuracy 

was not a simple consequence of increased size, but resulted from improved identity 

characterization.

To understand whether addition of other subnetworks to the combined network further 

improved accuracy, we performed identification using combinations of the seven networks 

taken two, three, and four at a time. The maximum identification accuracy across all 

combinations of subnetworks is displayed against the number of combined subnetworks in 

Fig. 10A. The minimum identification accuracy across the combinations of subnetworks is 

also indicated. For all conditions, accuracy initially increased as more subnetworks were 

considered but then decreased. Performance peaked at 2 or 3 subnetworks for all conditions. 

Accuracy varied across the combinations of subnetworks (when the number of subnetworks 

was held constant), and the minimum value (shown in yellow) was less than half the 

maximum in most cases. In Fig. 10B, identification accuracy was averaged across conditions 

and displayed as a function of the number of combined subnetworks.

3.8. Transfer of identifiability between conditions

In the previous sections, training and testing data were based on the same condition. Here, 

we sought to understand if participants could be identified if the training and testing data 

were obtained from different conditions; for example, identifying a participant performing a 

working memory task when the training used resting-state data. Time series length was not 

equated across conditions because our goal was to evaluate how transferable identity-related 

information was between pairs of conditions. Accordingly, we did not want to potentially 

degrade FC information by using shorter data segments. Identification was performed on the 

combined default-plus-frontoparietal network, which as discussed performed well across 

conditions (Fig. 9).

Results for both geodesic distance and Pearson dissimilary are displayed in Fig. 11. Whereas 

Pearson dissimilarity was useful in identifying participants when they performed the same 

task (within-conditions, diagonal entries), performance deteriorated when the training and 

test data originated from different tasks. Notably, across-condition identification was 

considerably higher with the geodesic distance, and this enhancement was rather striking 

when the training data was from resting-state, and to some extent based on the language and 

working memory tasks. For example, testing working memory data based on training with 

resting-state data yielded 94.6% accuracy, which intriguingly was even better than when 

training with working memory itself (accuracy: 92.9%, p < 10−4). On average, training with 
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resting-state yielded 83.4% accuracy when testing on other conditions (see the “column 

mean” in Fig. 11). The present results indicate that the geometry of FC is especially 

important for across-task identification (see Discussion).

Because in this section time course length was not equated across conditions, we note that 

those with longer lengths aided across-task identification. Accordingly, transfer might 

particularly benefit from employing training sets with longer data segments. Nevertheless, 

future research should also evaluate transfer effects when longer data segments are available 

for a wider range of tasks (for example, ≥ 300 TRs) so as to characterize their transfer 

potential.

3.9. FC geometry of task and resting-state data

As some conditions yielded high identification accuracy when training and testing were 

based on different conditions, we sought to visualize distance/dissimilarity in a lower 

dimensional space via multidimensional scaling. Fig. 12A displays the low-dimensional 

representation of the distances/dissimilarities for a set of randomly chosen participants when 

resting-state was employed for training data and working memory for testing (untrimmed 

data). Based on the geodesic distance, resting-state FC matrices were relatively close 

together to one another; in contrast, working memory FC matrices were further “spread out”. 

Intriguingly, such geometry allowed for the separation of FCs based on participant identity. 

To see this, consider the panels in Fig. 12B, which show participant-level distances. In 

contrast, using Pearson dissimilarity, the geometry did not allow accurate participant 

identity. In fact, nearly all participants in this illustrative sample were misidentified.

The results in Fig. 12A prompted us to investigate, in an exploratory fashion, distance/

dissimilarity between conditions, specifically, resting-state, motor, and language (Fig. 13). 

Intriguingly, the geometry of distances was quite different when geodesic distances were 

used compared to Pearson dissimilarity. These observations suggest that when FC matrices 

are used for task classification (not identification as done here), different algorithms may be 

more suited for this aim. For example, non-linear radial basis functions might function better 

for the geodesic case, and linear classifiers for Pearson dissimilarity. Although a fuller 

investigation of this issue is beyond the scope of the present paper, we believe this is a 

fruitful direction. Furthermore, the analysis of functional connectivity of mental states 

should take into account participant-related information since it plays a potentially dominant 

contribution in the identification of mental states [38].

4. Discussion

In this paper, we investigated participant identification based on FC matrices from fMRI 

data by employing geometry-aware methods. Correlation matrices are objects that lie on 

non-linear surfaces, and thereby benefit from non-Euclidean distance measures. Indeed, we 

show that using the geodesic distance improved participant identification, at times by as 

much as 20%. Further, low-dimensional visualization based on geodesic distance contributes 

to understanding how FC geometry affects identification.
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4.1. Factors influencing participant identification

Scan duration determines the amount of data used to estimate FC matrices, and played a key 

role in identification accuracy. For resting-state data, accuracy improved with time course 

length and was close to 95% when the entire data were employed (1200 TRs), but fell to 

under 50% when trimmed to under 150 TRs. The steep drop is possibly due to the 

underlying dynamics of resting-state data [2], and reveals that longer data segments are 

required to more robustly identify functional connectivity patterns that are unique to 

individuals. Notably, using the geodesic distance resulted in higher accuracy than Pearson 

dissimilarity even when, say, only a fourth of the data were employed for FC estimation. 

Thus, a more suitable geometry is particularly appealing when data-limited scenarios are 

envisioned.

When time course length was trimmed to the same duration, identification accuracy still 

varied across scanning conditions. The resting-state condition resulted in the lowest 

accuracy. With the data trimmed to the minimum amount of data, the language task 

exhibited over 80% accuracy. Accuracy of all task conditions exceeded 50%, with four of 

them exceeding 60%. Thus, even with rather limited amounts of data identifying the 

participant was considerably better than the chance level of 1%. In addition, we observed 

considerable variability is performance across conditions, consistent with previous literature 

suggesting that brain states can be manipulated to emphasize individual differences in FC 

[14].

Thus far, we have discussed findings based on whole-cortex FC matrices (300 ROIs were 

employed). We reasoned that particular subsets of regions potentially might be more 

informative than others. To evaluate this possibility identification was applied to resting-state 
and task conditions separately for each individual subnetwork of the Yeo parcellation ([39]). 

The FC matrices employed were therefore relatively small (the number of ROIs ranged from 

20–68). Four subnetworks (vision, dorsal-attention, frontoparietal, default) stood out as 

consistently exhibiting the highest levels of performance. The average accuracy across 

conditions approach 70% for the four networks. Intriguingly, accuracy for the language task 

based on the frontoparietal and default subnetworks exceeded that observed with the whole 

cortex. Whereas subnetwork size might contribute to its ability to identify participants, it is 

clearly not the driving factor. For example, the dorsal-attention and the ventral-attention 

networks had the same number of ROIs, but the former outperformed the latter consistently 

(on average by over 30%).

To further explore subnetwork contributions we also combined the two that displayed the 

highest individual accuracy (frontoparietal and default) into a single network. Remarkably, 

the combined network always numerically outperformed the individual subnetworks, and 

indeed the entire cortex. When additional subnetworks were combined, accuracy initially 

increased but then decreased. Accuracy peaked at two or three subnetworks, with whole-

cortex FCs having the worst performance across conditions. Accuracy also varied across 

combinations of subnetworks, with the minimum value less than half that of the maximum. 

These results are related to the non-uniformity of within-subject test-retest reliability of 

connectivity profiles, and might inform how individual differences are associated with 

heritability and cognitive ability [11]. Thus, future work on individual differences using 
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connectomes should not only consider tasks but also choose appropriate measures and 

subnetworks that emphasize these differences.

Although it was beyond the scope of the present study, it would be valuable to investigate in 

future studies factors contributing to the performance of individual subnetworks, and their 

combinations. For example, subnetworks may contribute highly to identification because 

their individual-specific functional connectivity information capitalizes on the contributions 

of these subnetworks to task performance. Alternatively, but not mutually exclusively, 

subnetworks that do not participate as much during a task may contain diagnostic 

information with respect to participant identity.

To what extent does participant identification transfer between experimental conditions? We 

found that training with one condition and testing with another produced good levels of 

identification accuracy. Certain combinations that on the surface were not obvious produced 

particularly impressive results; for example, training with gambling and testing with 

working-memory, or training with working-memory and testing with language. Training 

with motor produced the least transfer to other tasks, perhaps due to the low-level specificity 

of this task. Notably, training with resting-state produced very high transfer, such that testing 

with each task attained accuracy over 75% (with the exception of relational processing), and 

in some instances over 90%. The choice of measure was particularly important for transfer 

of identifiability and accuracy, with working-memory attaining nearly 95% using geodesic 

distance but less than 42% using Pearson dissimilarity.

4.2. Low-dimensional distance visualizations

Relationships between high-dimensional FC matrices (300 × 300) were visualized in three 

Euclidean-space dimensions using multidimensional scaling. Both the Pearson dissimilarity 

measure and geodesic distance were used. Note that computing geodesic distances takes into 

account the non-linear geometry of correlation matrices. Once their distances are computed, 

and the space nonlinearity taken into account, they can be illustrated in Euclidean space 

(naturally, some distortion ensues due to dimensionality reduction).

In our explorations, low-dimensional visualizations reflected identification accuracy on the 

full data, and thus preserved important distance information. In particular, the higher 

identification accuracy using the geodesic distance resulted in relatively low within- and 

high between-participant distances. Visualization of FC from task data revealed insights into 

the geometry of task correlation matrices in relation to resting-state. Identification accuracy 

is related to the ratio of within-to between-participant distances. Surprisingly, with geodesic 

distances, tasks associated with higher identification accuracy exhibited smaller between-

participant distances. Still, the more favorable ratio of within- to between-participant 

distances led to favorable identification accuracy. Thus, the underlying geometry of 

functional connectivity may provide further insights into our finding that high identification 

accuracy was attained when training and testing were based on different scanning 

conditions.

In the visualizations based on geodesic distance, distances between task FCs did not appear 

to form convex sets (if A and B are two points in a convex set, any point on the line joining 
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them also belongs to the set), and were instead in clustered arrangements. Of note, previous 

work performing clustering of FCs [2, 18] have used k-means which are not well suited to 

finding non-convex clusters [13]. Instead, methods such as spectral clustering [27] and non-

linear support-vector kernels [9] are capable of capturing very general structures, and are 

potentially more suitable for classifying functional connectivity.

Pearson correlation is a common approach to compare FC matrices. The present study 

demonstrates that non-linear measures are better suited to characterize functional 

connectivity relationships. The low-dimensional visualization briefly explored here hints at 

the different geometries associated with the geodesic non-linear metric and the Pearson 

approach. Surprisingly, we noted in our investigations that simple visual inspection of the 

correlation matrices as commonly done in the field to highlight similarities between 

conditions can also be problematic, and in fact can lead to unintuitive scenarios (Fig 14).

4.3. Conclusions

Time series correlation matrices capture important aspects of brain functional organization. 

Here, we propose the use of a geodesic distance metric that reflects the underlying non-

Euclidean geometry of functional connectivity matrices. We compared identification 

performance (also called “fingerprinting”; that is, assigning a participant label to novel 

functional connectivity data) obtained with standard Pearson correlation and the proposed 

geodesic distance. The latter not only improved identification accuracy but also provided 

insights into the geometry of task and resting-state conditions. Importantly, the approach 

advocated here is general and can be utilized to study the clustering of brain states, how 

tasks potentially reconfigure brain networks, and to characterize intersubject correlations. 

Code and html figures are available at https://github.com/makto-toruk/FC_geodesic.
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Fig. 1: 
Functional connectivity matrices and their underlying geometry. (A) Similarity of functional 

connectivity (FC) matrices. Is the FC matrix X more similar to A or B? This question arises 

when the goal is to determine the task being being performed, the mental state, or the 

participant. (B) Illustration of geodesic distance (red) and Euclidean distance (green) on the 

so-called positive semidefinite cone. The geodesic and Euclidean distances between two 

points can differ substantially. (C) Is X, Alice or Bob? Equivalently, is the FC X more 

similar to that of Alice or Bob? Identification involves mapping an unknown participant’s 

data to one of the participants in the database (only two in this case). In this example, X is 

correctly labeled as Alice using geodesic distance, but incorrectly labeled as Bob using 

Pearson dissimilarity.
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Fig. 2: 
Motivating functional connectivity geometry. (A) Identical Euclidean distance does not 

imply identical geodesic distance. (C) Identical geodesic distance can yield very different 

Pearson dissimilarity. (B, D) Comparison of distances/dissimilarity ab and ac in (A) and (C), 

respectively. Distances/dissimilarity cannot be compared across measures because their units 

are arbitrary.
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Fig. 3: 
Participant identification for the eight conditions using the geodesic distance and Pearson 

dissimilarity. Training and testing data were from the same condition. Accuracy improved 

using the geodesic distance on each condition. Error bars indicate standard error of the mean 

across bootstrap iterations. Abbreviations: EM, emotion processing; GB, gambling; LG, 

language; MT, motor; RL, relational processing; RS, resting-state; SO, social cognition; 

WM, working memory.
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Fig. 4: 
Visualization of geodesic distance and Pearson dissimilarity. Distance/similarity between 

high-dimensional functional connectivity matrices (300 × 300) was visualized in three 

dimensions using non-metric multidimensional scaling. Training data (blue) and testing data 

(pink) were selected from five random participants (numbers 1–5). Mislabeled participants 

are encircled in red. (A) Resting-state. (B) Emotional processing task. For resting-state, 

within-participant geodesic distances were very small relative to between-participant 

distances in the lower-dimensional representation (when numbers labeling the participants 

overlapped, only one of them is visible). Online figures are available [37].
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Fig. 5: 
Participant identification accuracy as a function of segment length for resting-state data. 

Accuracy using geodesic distance exceeded Pearson dissimilarity at each segment length 

(see text). Error bars indicate standard error of the mean across bootstrap iterations.
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Fig. 6: 
Participant identification and time course length. (A) Accuracy based on geodesic distance 

for resting-state and task conditions (time course length in TRs in the inset). The red curve 

shows the accuracy for resting-state data trimmed to segment lengths shorter and longer than 

those of task data (lengths from left to right: 100, 125, 145, 170, 200, 300, 600, 900, and 

1200 TRs). (B) Accuracy when data was trimmed such that all conditions had the same time 

course length (138 TRs). Error bars indicate standard error of the mean across bootstrap 

iterations. Abbreviations: EM, emotion processing; GB, gambling; LG, language; MT, 
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motor; RL, relational processing; RS, resting-state; SO, social cognition; WM, working 

memory.
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Fig. 7: 
(A) Participant identification accuracy using subnetworks. Runs were trimmed such that all 

conditions had the same time course length. Some subnetworks were more suitable than 

others for identifying individual differences. The use of geodesic distance showed 

considerable improvements in accuracy for most subnetworks. (B) Across subnetworks, 

average participant identification accuracy is displayed. The geodesic distance substantially 

improved identification accuracy. Error bars indicate standard error of mean across bootstrap 

iterations. Abbreviations: EM, emotion processing; GB, gambling; LG, language; MT, 

motor; RL, relational processing; RS, resting-state; SO, social cognition; WM, working 

memory.
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Fig. 8: 
Participant identification accuracy plotted against subnetwork size for each condition 

(geodesic distance). The size of the subnetwork (the number of ROIs) is also indicated in the 

inset. The error bars represent standard error of the mean across bootstrap iterations.
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Fig. 9: 
Participant identification accuracy by combining subnetworks. For the geodesic distance, the 

frontoparietal (subnet1) and default mode (subnet2) subnetworks were combined. For the 

Pearson dissimilarity measure, the dorsal attention (subnet1) and default mode (subnet2) 

subnetworks were combined (the top two subnetworks based on mean accuracy across 

conditions for this measure). Abbreviations: EM, emotion processing; GB, gambling; LG, 

language; MT, motor; RL, relational processing; RS, resting-state; SO, social cognition; 

WM, working memory.
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Fig. 10: 
Combining up to seven subnetworks. (A) Participant identification accuracy using geodesic 

distance as a function of the number of subnetworks for each condition. For a particular 

condition and number of combined subnetworks (1, 2, 3, or 4), the maximum identification 

accuracy across all combinations of subnetworks is shown with the red bar (the minimum is 

indicated by the yellow line). Accuracy initially increased with the number of subnetworks 

but then decreased, and was lowest using whole-cortex FCs (i.e, number of combined 

subnetworks = 7). (B) Participant identification accuracy averaged across conditions is 

displayed against number of combined subnetworks.
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Fig. 11: 
Participant identification accuracy when the training and testing data were based on different 

conditions. The combined network containing the frontoparietal and default mode 

subnetworks was employed. The mean accuracy for each train and test condition is also 

indicated. For example, when resting-state is used as training data, the column mean is 

computed as the accuracy across all other conditions (i.e., except resting-state itself). The 

row means are computed in a similar fashion by excluding the diagonal term. Abbreviations: 

EM, emotion processing; GB, gambling; LG, language; MT, motor; RL, relational 

processing; RS, resting-state; SO, social cognition; WM, working memory.
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Fig. 12: 
Visualization of task and resting-state functional connectivity distances/dissimilarities in a 

three-dimensional space using multidimensioanl scaling. The numbers indicate participant 

IDs. (A) Distances/dissimilarities between the functional connectivity matrices of resting-
state (RS, used for training) and working memory (WM, used for testing) for a set of 10 

randomly chosen participants. Online figures are available [37]. (B) Participant-level 

distances/similarities between training and testing data. Correct identification is marked in 

green and incorrect in red. For example, when using geodesic distance, the best candidate 

for WM participant 1 (call it WM1) was RS participant 1 (RS1), and the best candidate for 

WM2 was RS2. However, incorrect classifications were also observed, such as RS4 (not 

RS7) being closest to WM7. For Pearson dissimilarity most classifications were incorrect, 

such as RS1 (not RS10) being most similar to WM10. Distances based on the two measures 

have arbitrary units, and are not comparable across them.
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Fig. 13: 
Functional connectivity geometry of resting-state and task conditions (online figures are 

available [37]). Training data for 10 random participants were employed (indicated by the 

numbers). Distances/dissimilarities in low dimensions were obtained via multidimensional 

scaling. Note that the geometry in low dimensions differed considerably for geodesic and 

Pearson, suggesting that condition categorization (not participant identification) should 

capitalize on such geometry for better performance. Abbreviations: MT, motor; LG, 

language; RS, resting-state.
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Fig. 14: 
Visual comparison of functional connectivity (FC) matrices can be unintuitive. (A) Example 

FCs from resting-state data where the geodesic distance correctly labeled the test participant 

but Pearson dissimilarity did not. Pearson dissimilarities and geodesic distances between the 

test-FC and each of the FCs in the training data are shown in (B) and (C). The green bar 

indicates the distance between the test-FC to the correct training set FC; the red bar indicates 

an incorrectly labeled training set FC. For the geodesic distance, the labeled participant had 

indeed the smallest value; not so in the case of Pearson dissimilarity. This example also 

questions the common practice of informally evaluating functional connectivity similarity 
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via simple visual inspection. At the very least, it is not immediate that participant X is more 

similar to Alice than Bob.
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