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SUMMARY
Phenotypic associations have been reported between blood cell traits (BCTs) and a range of neurological
and psychiatric disorders (NPDs), but in most cases, it remains unclear whether these associations have a
genetic basis and, if so, to what extent genetic correlations reflect causality. Here, we report genetic cor-
relations and Mendelian randomization analyses between 11 NPDs and 29 BCTs, using genome-wide as-
sociation study summary statistics. We found significant genetic correlations for four BCT-NPD pairs, all
of which have prior evidence for a phenotypic correlation. We identified a previously unreported causal
effect of increased platelet distribution width on susceptibility to Parkinson’s disease. We identified mul-
tiple functional genes and regulatory elements for specific BCT-NPD pairs, some of which are targets of
known drugs. These results enrich our understanding of the shared genetic landscape underlying BCTs
and NPDs and provide a robust foundation for future work to improve prognosis and treatment of com-
mon NPDs.
INTRODUCTION

Variation in the functional and physiological properties of blood

cells has been associated with a range of neurological and psy-

chiatric disorders (NPDs), including major depressive disorder

(MDD),1 schizophrenia (SCZ),2 multiple sclerosis (MS),3 stroke,4

and Parkinson’s disease (PD).5 Some phenotypic associations

between blood cell traits (BCTs) and NPD diagnoses have

been shown to have a genetic basis,6 in some cases consistent

with the presence of a causal effect of hematological indices on

disease. For example, Astle et al.7 reported that elevated

lymphocyte count (LYMPH#) causally increases the risk for MS

and SCZ, Harshfield et al.8 reported a causal role of higher pla-

teletcrit (PCT) and eosinophil percentage of white blood cells

(EO%) in susceptibility to ischemic stroke and its subtypes

(i.e., cardioembolic stroke, large-artery atherosclerotic stroke),

and Sealock et al.1 reported a causal effect of increased white

blood cell count (WBC) on risk for depression. Previous studies

have also identified specific genes shared by pairs of BCTs
This is an open access article under the CC BY-N
and NPDs, such as tyrosine kinase 2 (TYK2) underlying MS

and T lymphocyte polarization,9 and the well-established PD

risk gene SNCA (encoding the protein alpha-synuclein), which

also plays a role in development of red blood cells.10 These dis-

coveries improve understanding of disease etiology and poten-

tial points of intervention through re-purposing of drugs.

Despite this progress, the genetic relationships between BCTs

andmany NPDs remain unclear. There is also uncertainty in rela-

tion to whether genetic correlations between BCTs and NPDs

predominantly reflect horizontal pleiotropy, whereby genetic

variants have effects on both members of a trait pair via one

(correlated horizontal pleiotropy) or more (uncorrelated horizon-

tal pleiotropy) independent pathways. Alternatively, a causal

relationship may exist between BCT and NPD, potentially

involving other traits downstream of the exposure but on the

same causal pathway linking the exposure to the outcome

(referred to as ‘‘vertical pleiotropy’’).11 A more comprehensive

understanding of genetic overlap and causal relationships be-

tween BCTs and NPDs is needed to determine whether
Cell Genomics 3, 100249, February 8, 2023 ª 2023 The Authors. 1
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Table 1. GWAS datasets for BCTs used in the study

BCT Class Abbreviation

Basophil count White cells BASO#

Basophil percentage of white cells White cells BASO%

Eosinophil count White cells EO#

Eosinophil percentage of white cells White cells EO%

Lymphocyte count White cells LYMPH#

Lymphocyte percentage of white cells White cells LYMPH%

Monocyte count White cells MONO#

Monocyte percentage of white cells White cells MONO%

Neutrophil count White cells NEUT#

Neutrophil percentage of white cells White cells NEUT%

White blood cell count White cells WBC

Mean platelet volume Platelets MPV

Plateletcrit Platelets PCT

Platelet distribution width Platelets PDW

Platelet count Platelets PLT#

Hematocrit Red cells HCT

Hemoglobin Red cells HGB

High light scatter reticulocyte count Red cells HLSR#

High light scatter percentage of red cells Red cells HLSR%

Immature fraction of reticulocytes Red cells IRF

Mean corpuscular hemoglobin Red cells MCH

Mean corpuscular hemoglobin

concentration

Red cells MCHC

Mean corpuscular volume Red cells MCV

Mean reticulocyte volume Red cells MRV

Mean spheric corpuscular volume Red cells MSCV

Red blood cell count Red cells RBC#

Red cell distribution width Red cells RDW

Reticulocyte count Red cells RET#

Reticulocyte fraction of red cells Red cells RET%

n samples = 408,112; n SNPsa = 9.58M; Vuckovic et al.26 BCT, blood cell

traits; GWAS, genome-wide association study.
aSNPs with minor allele frequency < 1%.
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hematological measures (which are more accessible and well

established than brain-based markers) represent meaningful

predictive or prognostic biomarkers for risk of common brain dis-

orders,12–15 and if hematopoietic pathways may even represent

legitimate targets for development of disease-modifying

treatments.

In this study, we used large-scale genome-wide association

study (GWAS) summary statistics for 29 BCTs and 11 common

NPDs (Tables 1 and 2) to estimate global and local genetic corre-

lations between BCT-NPD pairs using high-definition likelihood

(HDL)16 and heritability estimation from summary statistics

(r-HESS),17 respectively. We then performed multiple Mendelian

randomization (MR) analyses18–24 to explore evidence for causal-

ity between BCTs and NPDs, and we applied summary data-

based MR (SMR)25 to identify putatively functional genes and

regulatory elements shared between pairs of BCTs and NPDs.

A flowchart of the main analytic steps is provided in Figure 1.
2 Cell Genomics 3, 100249, February 8, 2023
RESULTS

Genetic correlations between BCTs and neurological
and psychiatric disorders
We observed Bonferroni significant (p < 1.57 3 10�4) genetic

correlations (rg) for two (of 319) BCT-NPD pairs using the HDL

method (MS and LYMPH#: rg = 0.09, SE = 0.02, p = 3.86 3

10�6; SCZ and monocyte percentage of white cells [MONO%]:

rg = �0.03, SE = 0.01, p = 2.11 3 10�5), and a further two trait

pairs (migraine and platelet count [PLT#]: rg = 0.08, SE = 0.02,

p = 3.94 3 10�4; MS and WBC: rg = 0.06, SE = 0.02,

p = 4.78 3 10�4) surpassed a less stringent 5% Benjamini-

Hochberg false discovery rate (FDR) (Figure 2; Table S1).

Notably, each of these four trait pairs had prior evidence for a

significant phenotypic correlation in the same direction.39–42

We then re-estimated each of these four genetic correlations

after using multi-trait-based conditional and joint analysis

(mtCOJO)23 to condition each trait on each of four potential

confounding factors, including cigarettes per day,43 drinks per

week,43 educational attainment,44 and household income.45

The rg estimates from these conditional HDL analyses were high-

ly consistent with our original estimates, suggesting that these

confounding factors have negligible effects on the shared ge-

netics underlying the focal pairs of BCTs and NPDs (Figure S1;

Table S2).

The magnitude of rg estimates between pairs of BCTs and

NPDs were weak to moderate, ranging from �0.11 to 0.13.

The HDL rg estimates were highly consistent with those esti-

mated by linkage disequilibrium (LD) score regression (LDSC;

R = 0.81, 95% confidence interval [CI] = 0.76–0.84; Figures S2

and S3). Considering all nominally significant genetic correla-

tions, HDL identified 56 pairs of BCTs and NPDs and LDSC iden-

tified 28, of which 14 were not seen with HDL (Table S3; Fig-

ure S2). We also estimated the rg among 406 BCT pairs, and

whereas most BCTs were genetically distinct (322 of 406 pairs

with absolute value of rg < 0.2), we identified strong positive

and negative rg for a subset of BCT pairs (Figures S4 and S5;

Tables S4 and S5), consistent with hematopoietic cell type clas-

sifications reported by Astle et al.7 For example, we found strong

positive rg among white blood cell measures (e.g., LYMPH#,

monocyte count, neutrophil count, WBC) but negative rg among

ratios of thesewhite blood cell countmeasures (e.g., lymphocyte

percentage of white cells, MONO%, neutrophil percentage of

white cells [NEUT%]).

Local genetic correlations between BCTs and
neurological and psychiatric disorders
We used r-HESS17 to estimate local genetic correlations be-

tween 319 pairs of BCTs and NPDs at 1,693 approximately

LD-independent genomic regions (excluding the major histo-

compatibility complex [MHC] region). The rationale was that a

negligible genome-wide genetic correlation may obscure mean-

ingful genetic correlations in defined genomic regions, and the

pattern of local genetic correlations in trait-associated regions

can reveal putative causal relationships between traits.17 As a

validity check, we first compared the genome-wide sum of local

genetic correlations per trait pair to genome-wide rg estimates

(Table S6) from HDL (and LDSC), finding that these were highly



Table 2. GWAS datasets for neurological and psychiatric disorders used in this study

NPDs (abbreviation) by typea Publication n cases n controls Eff. nb n SNPsc

Alzheimer’s disease (AD) Jansen et al.27 71,880 383,378 121,062 9.74M

Amyotrophic lateral sclerosis (ALS) Nicolas et al.28 20,806 59,804 30,872 8.85M

Migraine (migraine) Gormlet et al.29 59,674 316,078 100,394 8.94M

Multiple sclerosis (MS) IMSGC30 14,802 26,703 19,046 6.52M

Parkinson’s disease (PD) Nalls et al.31 37,688 cases, 18,618 proxy cases 1,417,791 108,311 7.52M

Stroke (stroke) Malik et al.32 40,585 406,111 73,795 8.26M

Attention-deficit/hyperactivity disorder

(ADHD)

Demontis et al.33 19,099 34,194 24,509 6.91M

Autism spectrum disorder (ASD) Grove et al.34 18,381 27,969 22,183 9.11M

Bipolar disorder (BIP) Stahl et al.35 20,352 31,358 24,684 9.64M

Major depressive disorder (MDD) Wray et al.36 116,404 314,990 169,989 9.51M

Schizophrenia (SCZ) PGC37 51,900 71,675 60,205 9.55M

GWAS, genome-wide association study; IMSGC, International Multiple Sclerosis Genetics Consortium; NPD, neurological and psychiatric disorder;

PGC, Psychiatric Genomics Consortium.
aNPD, neurological and psychiatric disorder
bEff n: Effective sample size calculated from RICOPILI.38

cSNPs with minor allele frequency < 1%.
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correlated (R = 0.83, 95% CI = 0.79–0.86 for r-HESS and HDL;

R = 0.74, 95% CI = 0.68–0.79 for r-HESS and LDSC; Figure S6),

as expected.

Next, we considered if there was evidence for specific

genomic regions that contribute disproportionately to trait

covariance (Tables S7, S8, S9, S10, S11, S12, S13, S14, S15,

S16, and S17). We identified 32 genomic regions (involving 74

trait pairs) with a Bonferroni significant (p < 9.263 10�8) local ge-

netic correlation and significant local SNP heritability for both

traits (Figure S7; Table S18). These included the APOE region

on chromosome 19 (hg19: 44.7–46.1 Mb) contributing to Alz-

heimer’s disease (AD) and four BCT traits, and two regions on

chromosomes 4 (0.7–1.5Mb) and 17 (43.1–45.9Mb) contributing

to PD and a total of 20 BCT traits, the latter encompassing the

highly pleiotropic 17q21 inversion region, which contains the

microtubule-associated protein tau (MAPT) gene associated

with AD46 and frontotemporal dementia.47 Additionally, nine

and 24 regions were found to contribute to 24 MS-BCT and 26

SCZ-BCT pairs, respectively. Amajority (128 of 166) of these sig-

nificant local genetic correlations involved trait pairs for which

there was no evidence of genome-wide rg from HDL or LDSC.

However, most regions contained genome-wide significant

SNPs for both traits (141 of 166), for the NPD (141 of 166) or

for the BCT (165 of 166).

Finally, we explored if any BCT-NPD pairs exhibited a pattern

of local genetic correlations that were consistent with a putative

causal relationship between traits: that is, trait pairs for which the

average local genetic correlation was significantly different in

BCT-versus NPD-associated regions of the genome. We identi-

fied no single BCT-NPD trait pair satisfying this criterion after

Bonferroni (p < 1.57 3 10�4) or FDR (p < �1.50 3 10�4) correc-

tion for multiple testing, irrespective of the p value cut-off (or

SBayesR48) used to define trait-specific SNPs and genomic re-

gions (Figures S8–S14; Tables S19, S20, S21, S22, S23, S24,

and S25).
Putative causal effects of plateletcrit on stroke and
platelet distribution width on PD
Next, we used the CAUSE (causal analysis using summary effect

estimates)18 method to perform bi-directional MR analyses for

pairs of BCTs and NPDs with evidence for a nominally significant

genome-wide rg (from HDL or LDSC; n = 70 trait pairs; see Fig-

ures 2 and S2), recognizing that causal relationships between

highly polygenic traits (such as the BCTs and NPDs included in

our study) are more likely in the presence of a global genetic cor-

relation. We identified three Bonferroni-significant (p < 3.57 3

10�4, i.e., 0:05
7032) causal relationships (increased LYMPH# on risk

for MS: odds ratio [ORCAUSE] = 1.20 [i.e., a 1.2-fold increase in

risk for MS for each SD increase in LYMPH#], 95% CI = 1.11–

1.31, p = 3.94 3 10�5; increased WBC on MS: ORCAUSE = 1.16,

95% CI = 1.07–1.26, p = 2.60 3 10�4; increased PCT on stroke:

ORCAUSE = 1.07, 95% CI = 1.04–1.11, p = 6.27 3 10�6), two of

which remained significant after conservatively adjusting for all

319 trait pairs (i.e., LYMPH# and MS, PCT and stroke). Notably,

the genetic correlation between LYMPH# and WBC (both mea-

sures ofwhite cells) is 0.64 (SE=0.06, p= 1.273 10�31), suggest-

ing that the putative causal effects of these BCTs on MS repre-

sents a partly overlapping signal. A further three potential

causal relationships were identified at a less stringent 5% FDR

significance level: reduced mean spheric corpuscular volume

(MSCV) on autism spectrum disorder (ASD; ORCAUSE = 0.94,

95% CI = 0.90–0.97, p = 6.45 3 10�4), increased PCT on MS

(ORCAUSE = 1.14, 95% CI = 1.06–1.22, p = 4.29 3 10�4), and

increased platelet distribution width (PDW) on PD (ORCAUSE =

1.07, 95% CI = 1.03–1.12, p = 6.40 3 10�4). In the reverse ana-

lyses, there was no evidence for a causal effect of any NPD on

any BCT (Figure 3; Table S26), suggesting the significant genetic

correlations betweenBCTs andNPDs are unlikely to be driven by

reverse causality.

To further assess these potential causal relationships, we per-

formed a series of sensitivity MR analyses, cognizant of the
Cell Genomics 3, 100249, February 8, 2023 3



Figure 1. Overview of the main analytic steps performed in the study
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strong a priori expectation for pleiotropy under the plausible

assumption that changes in BCTs are inherent to the disease

process. Using six alternativeMRmethods, we identified consis-

tent evidence for a causal effect of increased PCT on stroke, with

p < 0.05 for all methods and four of six surpassing the Bonferroni

significance threshold (Figure 3; Table S27). Notably, the esti-

mated genetic causality proportion (GCP) from latent causal var-

iable (LCV) analysis for an effect of PCT on stroke was 0.69 (SE =

0.21, p = 4.43 3 10�23), which (to put this in perspective) is

roughly equivalent to the GCP estimate for the effect of high

cholesterol on risk for myocardial infarction (GCP = 0.70).24

Consistent with this evidence for a causal relationship, we

observed a significant (albeit modest) positive phenotypic corre-

lation (rP) between PCT and stroke in the UK Biobank (UKB; rP =

0.01 and p = 2.863 10�5, assuming prevalence of 5%; see Data

S1; Table S28).

We also found consistent evidence for a causal effect of

elevatedPDWonPD,withp<0.05 for fiveof sixMRmethods (Fig-

ure 3; TableS27). The exceptionwas LCV (GCP=0.35, SE= 0.43,

p = 0.17), which may be explained by the small estimated rg be-

tween PDW and PD (rg(HDL) = 0.03, SE = 0.02, p = 0.09; rg(LDSC) =

0.05, SE = 0.03, p = 0.04), given that the LCVmethod is known to

produce conservative p values for traits with low rg.
24 Again, as

would be expected given a causal relationship, we observed a

positive rP between PDW and PD in the UKB, although the esti-

mate was only marginally significant (rP � 0.01, p = 8.44 3 10�4

to 0.07depending onprevalence;DataS1; TableS28), potentially

because of the modest number of PD cases in the cohort

(n = 1,323 compared with >5,000 for stroke).

To further evaluate the reliability of the inferred causal effects

of PCT on stroke and PDW on PD, we performed several addi-

tional sensitivity analyses. We first checked the MR-Egger inter-

cept terms in each analysis, confirming there was no evidence

for non-zero estimates, and thus no indication that the MR-

Egger causal estimates were confounded by pleiotropy

(Table S29). Second, we performed leave-one-out analyses for

each trait pair using each of the four two-sample MR methods
4 Cell Genomics 3, 100249, February 8, 2023
(IVW, MR-Egger, weighted median [WMe], and weighted mode

[WMo]). In all instances, there was no evidence that any single

instrumental SNP was responsible for the inference of a causal

relationship for either PCT-stroke or PDW-PD (Figure S15,

Tables S30, S31, S32, and S33). Third, we checked for heteroge-

neity of instrumental SNP effects in the IVW and MR-Egger ana-

lyses, and although there was evidence for heterogeneity, after

removing pleiotropic SNPs identified by generalized summary

data-based MR (GSMR), the causal estimates from IVW and

MR-Egger for PCT-stroke and PDW-PD remained significant

and highly consistent with the original estimates (Table S29).

As a final sensitivity analysis, we explored if the causal effects

of PCT on stroke and PDW on PD were influenced by common

environmental factors associated with disease risk, including

smoking,43 alcohol consumption,43 educational attainment,44

and socioeconomic status.45 We conditioned GWAS statistics

for PCT, stroke, PDW and PD on each potential cofounder using

mtCOJO and then repeated each of the MR analyses (i.e.,

CAUSE, GSMR, IVW, MR-Egger, WMe, and WMo) and LCV us-

ing the conditioned GWAS summary statistics (see STAR

Methods). These conditional MR (and LCV) analyses were all

highly consistent with our primary results (Figure S16;

Table S34). We also applied multivariable MR (MVMR)49 analysis

to PCT-stroke and PDW-PD, adjusting for potential pleiotropic

effects of all four confounders concurrently. Again, these ana-

lyses were highly consistent with the causal inference from our

primary analyses (Table S35), further supporting unidirectional

causal effects of PCT on stroke and PDW on PD.

In addition to PCT-stroke and PDW-PD, we also observed

suggestive support for higher LYMPH# on MS, with four of six

sensitivity analyses surpassing Bonferroni significance (Figure 3;

Table S27). However, effect size estimates varied widely, and

contrary to expectations, there was no evidence for a phenotypic

correlation between LYMPH# and MS in the UKB (rP � �0.002,

p > 0.50; Data S1; Table S28). These findings suggest that

further research will be needed to confirm this putative causal

relationship.



Figure 2. Estimated genetic correlations between BCTs and NPDs using the HDL method

Significant genetic correlations (with estimates provided) are highlighted by red, purple, or orange borders if they were Bonferroni significant (p < 1.57 3 10�4),

FDR significant (p < �7 3 10�3), or nominally significant (p < 0.05), respectively. See Table S1 for complete details of HDL estimates.
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As expected, sensitivity analyses using stroke, PD and MS as

exposures for PCT, PDW and LYMPH# (respectively), were uni-

versally (or largely) non-significant. Sensitivity analyses of the ef-

fect of MSCV on ASD, and of PCT and WBC on MS were highly

inconsistent, and thus we could not further determine if their ge-

netic correlations were due to causality or pleiotropy.

Prioritization of putatively functional genes and
regulatory elements shared by BCTs and neurological
and psychiatric disorders
Finally, we used SMR to identify putatively functional genes and

regulatory elements shared by specific pairs of BCTs and NPDs

because of causality or pleiotropy.

We first applied SMR to PCT, PDW, stroke and PD to identify

functional genes and regulatory elements underlying the putative

causal effects of elevated PCT on risk of stroke and increased

PDW on risk for PD. In analyses using blood-based cis-expres-

sion quantitative trait loci (cis-eQTL) in eQTLGen50 (Table S36)

or platelet cis-eQTLs from GeneSTAR51 (Table S37), no single

gene survived Bonferroni correction (pSMR < 3.18 3 10�6) for

both PDW and PD, or PCT and stroke. However, a total of

18 genes were Bonferroni significant for PCT (n = 5), PDW

(n = 12), or PD (n = 1), in agreement with evidence for stronger

genetic signals for exposures (i.e., PCT, PDW) than outcomes

(i.e., stroke, PD). At a less stringent 5% FDR threshold, we iden-

tified 56 significant genes (also passing the heterogeneity in

dependent instruments [HEIDI] test) for PDW-PD and 20 for

PCT-stroke using blood-based cis-eQTLs in eQTLGen50

(Table S36), and a further four genes (RHD, FXYD5,MAP1LC3A,

and SRSF6) for PDW-PD in analyses using platelet cis-eQTLs

from GeneSTAR51 (Table S37). Among these aforementioned

genes, 40 of 60 and nine of 20 had consistent direction of SMR

effect for PDW-PD and PCT-stroke, respectively (Figure 4). Us-

ing brain-based cis-eQTLs, none of these genes surpassed the

Bonferroni significance threshold (pSMR < 6.633 10�6), but a to-

tal of 17 genes were FDR significant for PD (Table S38) and three

were identified for stroke (CLBA1, IVD, and RMC1), with consis-
tent direction of SMR associations in blood and brain for a large

proportion of genes (with the exception of FXYD5, MGAT3,

RANBP10, RHD, and UBXN2A).

Second, we applied SMR to a further 68 BCT-NPD pairs with a

nominally significant (p < 0.05) genome-wide rg (from HDL or

LDSC). Using data on blood-based cis-eQTLs from eQTLGen,50

we identified 51 pleiotropic genes whose expression level was

Bonferroni-significantly (pSMR < 3.18 3 10�6 and pHEIDI > 0.01

with R10 SNPs) associated with both members of specific

BCT-NPD pairs (Table S39). We then tested for association of

DNA methylation with expression of these 51 genes, using

data on DNA methylation quantitative trait loci (mQTL) in

blood-derived DNA from the Brisbane Systems Genetics Study

(BSGS) and Lothian Birth Cohorts (LBCs).52 We identified 273

DNA methylation probes that were Bonferroni-significantly

associated with expression of one or more of these genes

(pSMR < 5.37 3 10�7, pHEIDI > 0.01 with R10 SNPs;

Table S40), of which 13 independent probes, associated with a

total of 12 genes, were also Bonferroni-significantly associated

(pSMR < 5.37 3 10�7, pHEIDI > 0.01 with R10 SNPs) with both

members of the respective focal BCT-NPD pair (Figure 5;

Tables S41, S42, and S43). These included six genes (ABCB9,

AC100854.1, BACH2, TNFSF14, ZC2HC1A, and ZMIZ1) for

MS and one or more BCTs on chromosomes 6, 8, 10, and 19,

and seven genes (ABCB9, AC091132.16, ARL6IP4, DND1P1,

GATAD2A, OGFOD2, and ZNF664) for SCZ and one or more

BCTs on chromosomes 12, 17, and 19 (including one gene

[ABCB9] overlapping with MS and related BCTs). Two functional

genes (ARL6IP4 and GATAD2A) and regulatory elements

for SCZ and reticulocyte fraction of red cells (RET%) sur-

passed the experiment-wide Bonferroni-corrected thresholds

(pSMR < 9.963 10�9 [i.e., 0:05
15743329311] using cis-eQTL as exposure

and GWAS as outcome; pSMR < 1.05 3 10�8 [i.e., 0:05
93122351] using

mQTL as exposure and cis-eQTL as outcome; pSMR < 1.68 3

10�9 [i.e., 0:05
93122329311] using mQTL as exposure and GWAS as

outcome; pHEIDI > 0.01 withR10 SNPs for each analysis) across

all SMR analyses. Notably, there was evidence for involvement
Cell Genomics 3, 100249, February 8, 2023 5



Figure 3. Summary of significant putative causal relationships between BCTs and NPDs identified by CAUSE (primary MR analysis) and of

MR sensitivity analyses (including LCV and five two-sample MR methods) for each of these relationships

Results colored in blue represent the estimated causal effect of BCTs on NPDs, while results colored in orange represent the estimated causal effect of NPDs on

BCTs. Error bars for CAUSE and the five two-sample MRmethods represent 95% confidence intervals, and those for LCV-based GCP point estimates represent

standard errors. For LCV, a negative GCP indicates a causal effect of BCT on NPD, and vice versa. Single and double asterisks indicate results surpassing

nominal significance (p < 0.05) and Bonferroni significance (p < 3.05 3 10�4), respectively. See Tables S26 and S27 for complete details of the estimates.
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of regulatory elements located in both promoter and repressor

regions for four genes (ABCB9, ARL6IP4, GATAD2A, and

OGFOD2). For example, reduced methylation in the OGFOD2

promoter and increased methylation in the OGFOD2 repressor,

in each case associated with up-regulation of this gene, was

associated with elevated risk for SCZ and reduced RET%

(Table S43). In addition, for all 12 genes that were Bonferroni sig-

nificant for both members of specific BCT-NPD trait pairs across

the three tiers of SMR analyses, the effect of expression on the

two traits was concordant with their local genetic correlations

(n = 13; Table S43). Additionally, a high proportion (10 of 13) of
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these local genetic correlations surpassed a 5% nominal signif-

icance threshold, indicating a high degree of consistency be-

tween SMRand r-HESS in relation to shared genetic risk factors.

Third, we performed SMR analyses in regions of Bonferroni-

significant local genetic correlation, focusing on the subset of

BCT-NPD pairs with negligible genome-wide rg (p > 0.05). On

the basis of these criteria, a total of 60 trait pairs and 31 genomic

regions were selected for investigation. Using the same multi-

step SMR analytic strategy described above, we identified a

total of nine Bonferroni-significant genes (ABCB9, ARL6IP4,

DND1P1, GATAD2A, OGFOD2, ZNF664, GNL3, LINC02210,



Figure 4. Summary of FDR-significant functional genes associated with PCT-stroke and PDW-PD trait pairs, with consistent direction of

SMR effects

(A and B) PCT-stroke (A) and PDW-PD (B) trait pairs. The width of each line represents the SMR association strength. Line color indicates whether upregulation

(orange) or downregulation (red) of functional genes is associated with increased disorder risk or BCT values. Genes with an asterisk symbol are known drug

targets (Table S49). See Tables S36 and S37 for complete details of the SMR estimates.
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and AC005829.1) and regulatory elements for SCZ and PD and

one or more BCTs (Figure 5; Tables S39, S40, S41, S42, and

S44), two of which (GNL3 and GATAD2A; the latter was also

reported in pairs of SCZ and RET% of nominally significant

genome-wide rg; Tables S45–S48) were also Bonferroni-signifi-

cantly associated with their specific NPDs using brain cis-

eQTLs53 and mQTLs.53 In each case, the expression effects of

these genes on specific pairs of BCTs andNPDswere consistent

with their respective local genetic correlations (Table S44).

Last, we conducted gene set enrichment analysis (GSEA) us-

ing ShinyGO54 to identify biological pathways shared between

specific pairs of BCTs and NPDs. We focused on 11 trait pairs

with R5 shared genes identified using SMR applied to blood-

based or brain-based cis-eQTLs (Table S49). We identified 31

pathways containing R2 gene set members at an FDR < 0.05,

including n = 5 for MS-EO#, n = 2 for MS-RDW, n = 5 for SCZ-

LYMPH#, n = 12 for SCZ-MONO%, n = 3 for SCZ-NEUT%, n =

1 for SCZ-RET#, and n = 3 for SCZ-RET%

(Table S50). However, whereas the minimum gene set enrich-

ment for these pathway terms was >5-fold, the highest propor-

tion of pathway-specific genes was only 0.04, for tau protein

binding in SCZ and MONO% (2 of 45 pathway genes, 338-fold

enrichment, FDR p = 4.68 3 10�4).

DISCUSSION

We generated new insights into the shared genetics of BCTs and

neurological and psychiatric disorders using large-scale GWAS

summary statistics, and through integration of these data with
blood- and brain-based gene expression and DNA methyl-

ation QTLs.

We identified a broad landscape of genetic correlations be-

tween BCTs and NPDs, including Bonferroni-significant genetic

correlations between two BCT-NPD pairs (MS-LYMPH#, SCZ-

MONO%), each of which has prior evidence for a significant

phenotypic correlation40,42; our results provide evidence for a

genetic contribution to these previously reported correlations.

Overall, the magnitude of HDL-based rg estimates between

BCTs and neurological diseases were greater than those

between BCTs and psychiatric disorders (T statistic = 2.68,

ptwo-sample t test = 7.87 3 10�3); this suggests that neurological

diseases (in aggregate) have greater genetic overlap with BCTs

than psychiatric disorders, although we acknowledge that not

all NPDs are represented in our study. Notwithstanding this

caveat, our findings are consistent with evidence for a crucial

role of the peripheral immune system in regulating some neuro-

logical diseases (e.g., MS, stroke).55 Interestingly, we failed to

replicate some previously reported positive genetic correlations

between attention-deficit/hyperactivity disorder (ADHD)-RET%,

MDD-WBC, and SCZ-LYMPH#,6 potentially due to the use of

different GWAS summary statistics for some psychiatric disor-

ders (e.g., a subset of the European-based PGC3 SCZ GWAS

[n = 123,575] used in this study versus complete PGC3 SCZ

GWAS [n = 130,644] in Reay et al.6) and BCTs (i.e., our BCT

GWAS were obtained from Vuckovic et al.,26 whereas the previ-

ous study used the publicly available blood-based biomarker

GWAS from http://www.nealelab.is/uk-biobank), and the use of

different LDSC-based SNP sets (i.e., our study focused on
Cell Genomics 3, 100249, February 8, 2023 7
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Figure 5. Summary of blood-based Bonferroni-significant functional genes and regulatory elements associated with both members of BCT-

NPD trait pairs with significant genome-wide genetic correlations and significant local genetic correlations (but negligible genome-wide

genetic correlations)

(A and D) Association of gene expression with each member of the focal BCT-NPD pair. (B and E) Association of DNA methylation with expression of trait-pair-

associated genes. (C and F) Association of DNA methylation with BCT-NPD pairs. The width of each line represents the SMR association strength. Line color

indicates whether up-regulation or down-regulation of functional genes (or DNAmethylation levels) is associated with increased disorder risk or BCT values. See

Tables S43 and S44 for complete details of the SMR estimates.
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SNP with minor allele frequency [MAF] R 0.01, whereas Reay

et al.6 applied MAF R 0.05). Further studies will be required to

establish these findings conclusively.

Investigation of local genetic correlations between BCTs and

NPDs detected 32 Bonferroni-significant local genetic correla-

tions for 74 trait pairs. Interestingly, the majority of these trait

pairs (n = 60) did not have a significant genome-wide HDL- or

LDSC-based rg, suggesting that meaningful local genetic corre-

lations are common between traits with negligible genome-wide

rg, and in most cases, a significant genome-wide rg reflects the

presence of moderately significant local genetic correlations

across the genome rather than highly significant local genetic

correlations in specific genomic regions.

MR analyses identified compelling evidence for two putative

causal relationships between BCTs and NPDs: a causal effect
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of increased PCT on stroke, which has been previously re-

ported by Harshfield et al.,8 and a causal effect of increased

PDW on PD, which to our knowledge has not been previously

reported. MR analyses also revealed suggestive evidence for

a causal effect of elevated LYMPH# on MS, previously reported

by Astle et al.,7 although the evidence for this relationship re-

mains inconclusive. In relation to increased PCT and stroke,

our analyses strengthened the evidence for a causal effect

through use of more powerful GWAS summary statistics for

BCTs (sample size of 408,000 compared with 173,000 in

Harshfield et al.8), and the application of additional, and argu-

ably more sophisticated MR methods, including GSMR, LCV,

and CAUSE, the latter of which is capable of differentiating

causality from both correlated and uncorrelated pleiotropy.

High PCT levels may induce stroke via a reduction in blood
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flow and vessel patency,56 which have been associated with

stroke severity.57

In relation to increased PDW and risk for PD, we found consis-

tent evidence for a causal relationship using six of seven MR

methods.Weak genetic correlation has been previously reported

between PDW and PD,58 but our results suggest this is due

(at least in part) to a causal effect of PDW on PD. Increased

PDW is an indicator of platelet activation, which is known to

occur as part of the inflammatory response.59–61 Platelet activa-

tion has also been specifically implicated in neuroinflamma-

tion,62 which is hypothesized to be a core pathogenic mecha-

nism in PD.63,64 Our findings are consistent with recent

evidence that regular use of non-steroidal anti-inflammatory

drugs (i.e., anti-platelet medications such as ibuprofen and

aspirin) is protective for PD in carriers of mutations in the estab-

lished PD gene LRRK2.65

To explore if the inferred causal effect of increased PDW on

risk for PD is a signature of underlying inflammation, we

adjusted SNP effects for PDW (and PD) using summary data

from a large GWAS of C-reactive protein66 (CRP; see Data

S2). Interestingly, the magnitude of the causal effect of PDW

on PD remained largely unchanged after adjusting for CRP, sug-

gesting that the causal effect of PDW on PD may involve platelet

functions independent of the inflammatory response. Notably,

the protein implicated in the primary cellular pathology of PD,

alpha-synuclein, is present in large quantities in platelets, where

it regulates the Ca2+-dependent release of alpha granules.67

Irrespective of the mechanism, our findings highlight the poten-

tial clinical utility of these platelet parameters as potential risk

markers and targets for improving prevention and prognosis

of stroke and PD.

With the exception of the PCT-stroke and PDW-PD (and to a

lesser extent LYMPH#-MS) associations, there was no consis-

tent evidence for a causal relationship, usingmultipleMRmodels

or r-HESS, for any other BCT-NPD pair, including those with

significant genome-wide rg. This implies, as expected, that

pleiotropy is pervasive between BCTs and NPDs, which is

consistent with findings reported by previous studies of

vascular-neuropsychiatric associations.7,68

Using SMR, we identified a total of 60 and 20 FDR-significant

genes associated with PDW-PD and PCT-stroke, respectively

(Tables S36 and S37). Given evidence for a causal effect of

increased PDW on PD risk, and of the well-established role of

elevated PCT on susceptibility to stroke, these genes represent

especially interesting candidates for mitigating risk for PD and/

or stroke via modulation of platelet activity or function. Interest-

ingly, 11 of the 60 PDW-PD genes and two of the 20 PCT-stroke

genes are known drug targets (Table S51). For example, the

SYK (spleen-associated tyrosine kinase) gene, which is targeted

by 30 drugs with primary indications for a range of cancers and

autoimmune disorders, plays an essential role in platelet activa-

tion as part of the collagen receptor glycoprotein (GPV1)-

induced signaling pathway.69 In our analyses, up-regulation of

SYK was Bonferroni-significantly associated with increased

PDW and FDR-significantly associated with higher risk for PD,

suggesting that SYK inhibitors (e.g., cerdulatinib, apitolisib, fos-

tamatinib, entospletinib, lanraplenib) may represent potential

drug re-purposing opportunities for mitigation of PD risk.
Another notable example is the catenin beta 1 gene (CTNNB1)

which codes for b-catenin, a protein that plays essential roles

in the Wnt/b-catenin pathway and cadherin-catenin cell adhe-

sion, which in platelets undergoes complete proteolysis during

platelet aggregation.70 Our analyses indicate that up-regulation

of CTNNB1 is associated with reduced PDW and is protective

for PD (both at FDR 5% significance level), suggesting that

b-catenin inhibitors may be worthy of further investigation in

relation to ameliorating risk for PD. Interestingly, although a

number of anti-platelet and anticoagulation therapies are

commonly used in stroke prevention (e.g., aspirin), the genes

targeted by these drugs were not identified in our SMR ana-

lyses, an omission that may be attributable to a lack of power

in the stroke GWAS and/or the fact that anticoagulation factors

produced in the liver may not be captured by blood-based cis-

eQTLs.

Among the remaining FDR-significant genes (i.e., excluding

drug targets), a particularly notable gene for PD is COA5

(cytochrome c oxidase assembly factor 5), which is known to

be associated with mitochondrial complex IV deficiency.71 This

is significant given the broad body of evidence implicating mito-

chondrial dysfunction in degeneration of dopaminergic neurons

in PD patients,72 and the intimate role of mitochondria in platelet

activation.73 Further studies will be required to evaluate the

clinical significance of this and other putative functional genes

and regulatory elements for PD and stroke. Clarification of

the specific genes and molecular mechanism(s) linking PDW

to PD may present opportunities for mitigating risk for PD via

platelet-targeting therapeutics, as is currently the case for

stroke.

Looking beyond PCT-stroke and PDW-PD, the blood-based

SMR analyses identified 51 genes for BCT-NPD pairs with at

least nominally significant genome-wide rg (Table S39). Among

these, a total of 12 genes (Table S43)—all involving associations

between MS and/or SCZ and one or more BCTs—showed Bon-

ferroni-significant evidence for a regulatory pathway linking

specific DNA methylation probe(s) to gene expression, gene

expression to both members of specific BCT-NPD pairs, and

for direct and consistent effects of DNA methylation on the

same BCT-NPD pairs. Several of these functional genes are

worthy of mention:

GATAD2A (GATA zinc finger domain containing 2A) is a crucial

subunit of the nucleosome remodeling and histone deacetylation

(NuRD) complex, which is one of the primary chromatin remodel-

ing complexes in mammalian cells.74 GATAD2A has been re-

ported to be implicated in elevated risk for SCZ, potentially via

its role as a regulator of gene expression during neurodevelop-

ment.75–77 The NuRD complex is also centrally involved in hema-

topoiesis,78 although the specific role of GATAD2A in relation to

the seven BCTs associated with this gene in our SMR analyses

remains unclear. Interestingly, whereas the SCZ risk allele at

GATAD2A was associated with up-regulation of this gene in

blood, it was associatedwith down-regulation in brain, consistent

with prior reports79 and the idea that a proportion of risk alleles

have different effects on gene expression in different organs.

Another notable gene is MAPK3 (mitogen-activated protein

kinase 3), a key member of the extra-cellular signal-regulated

kinase pathway, which plays a central role in cell growth,
Cell Genomics 3, 100249, February 8, 2023 9
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differentiation and survival via regulation of transcription and

translation. In our analyses, up-regulation ofMAPK3wasBonfer-

roni-significantly associated with increased risk for SCZ and

decreased NEUT%, the latter of which is consistent with neutro-

penia, a potentially life-threatening condition characterized by

reduced neutrophil count and correspondingly higher risk for

infection. This is significant, because whereas neutropenia

(and the related condition of agranulocytosis) is a well-known

side effect of some second-generation anti-psychotics, such

as clozapine, our results suggest that some genetic variants

associated with increased risk for SCZ also directly increase

susceptibility to neutropenia.80,81 There was no evidence for a

causal effect of NEUT% on risk for SCZ in the MR analyses, sug-

gesting that the association of MAPK3 with SCZ and NEUT% is

due to pleiotropy. We also found no evidence for an association

of DNA methylation with expression of MAPK3, or with risk for

schizophrenia or variation in NEUT%. Further study will be

needed to decipher the pleiotropic mechanism(s) via which

MAPK3 influences NEUT% and susceptibility to SCZ.

Another gene associated with increased risk for SCZ and

reduced NEUT% was ABCB9 (ATP-binding cassette subfamily

B member 9), which is a member of the MDR/TAP subfamily of

ABC transporters, responsible for translocation ofMHCpeptides

into lysosomes. Up-regulation of ABCB9 was also associated

with increased risk for MS, increased LYMPH#, and reduced

RET%. The association of ABCB9 with SCZ (among other traits

such as cardiometabolic disease) has been previously re-

ported,76,82,83 but here we provide evidence for a role of this

gene in MS, LYMPH#, NEUT%, and RET%. The association of

ABCB9 with both MS and LYMPH# indicates that this is one of

the genes underlying the positive genetic correlation between

these traits.

The application of gene set enrichment analysis to Bonferroni-

significant genes identified through SMR identifiedmultiple FDR-

significant biological pathways that were shared by specific

pairs of BCTs and NPDs. The top-ranked pathway was tau pro-

tein binding for SCZ-MONO%, which is notable given that aber-

rantly phosphorylated tau protein has been associated with risk

for SCZ84; and there is evidence that monocyte-derived macro-

phages play an important role in phagocytosing extra-cellular

oligomeric tau protein.85 Although this observation has potential

therapeutic implications, an important caveat is that the propor-

tion of pathway-specific genes was small (<5%). This was also

the case for other FDR-significant pathways identified by

GSEA, which suggests that larger studies will be needed for

robust inference of biological pathways shared by specific pairs

of BCTs and NPDs.

In conclusion, we report a broad landscape of genetic overlap

between BCTs and common NPDs, finding evidence to suggest

that platelet parameters may be useful biomarkers for risk strat-

ification of primary prevention trials of PD. Additionally, we iden-

tified multiple functional genes and regulatory elements for spe-

cific pairs of BCTs and NPDs, some of which are previously

unreported, including known drug targets that may present

drug re-purposing opportunities for PD. Our results provide a

robust genetic foundation for improving prognosis, prevention,

and possibly new avenues for treatment of common NPDs on

the basis of readily assayed BCTs.
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Limitations of the study
We note several limitations in our analyses. First, potential sam-

ple overlap between BCT and NPD GWAS summary statistics

(i.e., both AD and PD GWAS included participants of UKB that

overlap with the BCT GWAS) may introduce weak instrument

bias and thus decrease the power of MR methods for detecting

causal relationships.86 Nevertheless, we believe the magnitude

of such bias is minimal for two reasons: (1) the intercept from

bivariate LDSC was <0.02 for all pairs of BCTs and NPDs, and

(2) we applied multiple MR models with different instrumental

SNP sets and observed consistent results. Second, the blood-

based cis-eQTL summary data used in our SMR analyses were

not corrected for blood cell proportions. This has the potential

to influence the SMR results for BCTs, although because the

eQTLGen dataset is very large, any potential influence of blood

cell heterogeneity is likely to be averaged out. Third, although

we report a number of statistically significant findings, further

investigation will be required to determine if they are clinically

meaningful.
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37. Trubetskoy, V., Pardiñas, A.F., Qi, T., Panagiotaropoulou, G., Awasthi, S.,

Bigdeli, T.B., Bryois, J., Chen, C.Y., Dennison, C.A., Hall, L.S., et al.
12 Cell Genomics 3, 100249, February 8, 2023
(2022). Mapping genomic loci implicates genes and synaptic biology in

schizophrenia. Nature 604, 502–508. https://doi.org/10.1038/s41586-

022-04434-5.

38. Lam,M., Awasthi, S., Watson, H.J., Goldstein, J., Panagiotaropoulou, G.,

Trubetskoy, V., Karlsson, R., Frei, O., Fan, C.C., De Witte, W., et al.

(2020). RICOPILI: rapid imputation for COnsortias PIpeLIne. Bioinformat-

ics 36, 930–933. https://doi.org/10.1093/bioinformatics/btz633.

39. Zeller, J.A., Frahm, K., Baron, R., Stingele, R., and Deuschl, G. (2004).

Platelet-leukocyte interaction and platelet activation in migraine: a link

to ischemic stroke? J. Neurol. Neurosurg. Psychiatry 75, 984–987.

https://doi.org/10.1136/jnnp.2003.019638.

40. Prat, A., Biernacki, K., Lavoie, J.F., Poirier, J., Duquette, P., and Antel,

J.P. (2002). Migration of multiple sclerosis lymphocytes through brain

endothelium. Arch. Neurol. 59, 391–397. https://doi.org/10.1001/arch-

neur.59.3.391.

41. Lim, Z.W., Elwood, E., Naveed, H., and Galea, I. (2016). Lymphopenia in

treatment-naive relapsing multiple sclerosis. Neurol. Neuroimmunol. Neu-

roinflamm. 3, e275. https://doi.org/10.1212/NXI.0000000000000275.

42. Drexhage, R.C., Hoogenboezem, T.A., Cohen, D., Versnel, M.A., Nolen,

W.A., van Beveren, N.J.M., and Drexhage, H.A. (2011). An activated set

point of T-cell and monocyte inflammatory networks in recent-onset

schizophrenia patients involves both pro- and anti-inflammatory forces.

Int. J. Neuropsychopharmacol. 14, 746–755. https://doi.org/10.1017/

S1461145710001653.

43. Liu, M., Jiang, Y., Wedow, R., Li, Y., Brazel, D.M., Chen, F., Datta, G., Da-

vila-Velderrain, J., McGuire, D., Tian, C., et al. (2019). Association studies

of up to 1.2 million individuals yield new insights into the genetic etiology

of tobacco and alcohol use. Nat. Genet. 51, 237–244. https://doi.org/10.

1038/s41588-018-0307-5.

44. Okbay, A., Wu, Y., Wang, N., Jayashankar, H., Bennett, M., Nehzati,

S.M., Sidorenko, J., Kweon, H., Goldman, G., Gjorgjieva, T., et al.

(2022). Polygenic prediction of educational attainment within and be-

tween families from genome-wide association analyses in 3 million indi-

viduals. Nat. Genet. 54, 437–449. https://doi.org/10.1038/s41588-022-

01016-z.

45. Hill, W.D., Davies, N.M., Ritchie, S.J., Skene, N.G., Bryois, J., Bell, S., Di

Angelantonio, E., Roberts, D.J., Xueyi, S., Davies, G., et al. (2019).

Genome-wide analysis identifies molecular systems and 149 genetic

loci associated with income. Nat. Commun. 10, 5741. https://doi.org/

10.1038/s41467-019-13585-5.

46. Allen, M., Kachadoorian, M., Quicksall, Z., Zou, F., Chai, H.S., Younkin,

C., Crook, J.E., Pankratz, V.S., Carrasquillo, M.M., Krishnan, S., et al.

(2014). Association of MAPT haplotypes with Alzheimer’s disease risk

and MAPT brain gene expression levels. Alzheimer’s Res. Ther. 6, 39.

https://doi.org/10.1186/alzrt268.

47. Ghetti, B., Oblak, A.L., Boeve, B.F., Johnson, K.A., Dickerson, B.C., and

Goedert, M. (2015). Invited review: frontotemporal dementia caused by

microtubule-associated protein tau gene (MAPT) mutations: a chame-

leon for neuropathology and neuroimaging. Neuropathol. Appl. Neuro-

biol. 41, 24–46. https://doi.org/10.1111/nan.12213.

48. Lloyd-Jones, L.R., Zeng, J., Sidorenko, J., Yengo, L., Moser, G., Kemper,

K.E., Wang, H., Zheng, Z., Magi, R., Esko, T., et al. (2019). Improved poly-

genic prediction by Bayesian multiple regression on summary statistics.

Nat. Commun. 10, 5086. https://doi.org/10.1038/s41467-019-12653-0.

49. Burgess, S., and Thompson, S.G. (2015). Multivariable Mendelian

randomization: the use of pleiotropic genetic variants to estimate causal

effects. Am. J. Epidemiol. 181, 251–260. https://doi.org/10.1093/aje/

kwu283.
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66. Ligthart, S., Vaez, A., Võsa, U., Stathopoulou, M.G., de Vries, P.S., Prins,

B.P., Van der Most, P.J., Tanaka, T., Naderi, E., Rose, L.M., et al. (2018).

Genome analyses of >200, 000 individuals identify 58 loci for chronic

inflammation and highlight pathways that link inflammation and complex

disorders. Am. J. Hum. Genet. 103, 691–706. https://doi.org/10.1016/j.

ajhg.2018.09.009.

67. Park, S.M., Jung, H.Y., Kim, H.O., Rhim, H., Paik, S.R., Chung, K.C.,

Park, J.H., and Kim, J. (2002). Evidence that alpha-synuclein functions
as a negative regulator of Ca(++)-dependent alpha-granule release

from human platelets. Blood 100, 2506–2514. https://doi.org/10.1182/

blood.V100.7.2506.

68. Siewert, K.M., Klarin, D., Damrauer, S.M., Chang, K.M., Tsao, P.S., As-

simes, T.L., Davey Smith, G., and Voight, B.F.; The International Head-

ache Genetics Consortium (2020). Cross-trait analyses with migraine

reveal widespread pleiotropy and suggest a vascular component to

migraine headache. Int. J. Epidemiol. 49, 1022–1031. https://doi.org/

10.1093/ije/dyaa050.

69. Jooss, N.J., De Simone, I., Provenzale, I., Fernández, D.I., Brouns,

S.L.N., Farndale, R.W., Henskens, Y.M.C., Kuijpers, M.J.E., Ten Cate,

H., van der Meijden, P.E.J., et al. (2019). Role of platelet glycoprotein

VI and tyrosine kinase syk in thrombus formation on collagen-like sur-

faces. Int. J. Mol. Sci. 20, 2788. https://doi.org/10.3390/ijms20112788.

70. Kumari, S., and Dash, D. (2013). Regulation of beta-catenin stabilization

in human platelets. Biochimie 95, 1252–1257. https://doi.org/10.1016/j.

biochi.2013.01.021.

71. Huigsloot, M., Nijtmans, L.G., Szklarczyk, R., Baars, M.J.H., van den

Brand, M.A.M., Hendriksfranssen, M.G.M., van den Heuvel, L.P., Smei-

tink, J.A.M., Huynen, M.A., and Rodenburg, R.J.T. (2011). A mutation in

C2orf64 causes impaired cytochrome c oxidase assembly and mito-

chondrial cardiomyopathy. Am. J. Hum. Genet. 88, 488–493. https://

doi.org/10.1016/j.ajhg.2011.03.002.

72. Schapira, A.H., Cooper, J.M., Dexter, D., Jenner, P., Clark, J.B., andMars-

den, C.D. (1989). Mitochondrial complex I deficiency in Parkinson’s dis-

ease. Lancet 1, 1269. https://doi.org/10.1016/s0140-6736(89)92366-0.

73. Boudreau, L.H., Duchez, A.C., Cloutier, N., Soulet, D., Martin, N., Bollin-
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

GWAS summary statistics for BCTs Vuckovic et al.26 http://ftp.ebi.ac.uk/pub/databases/gwas/summary_

statistics/GCST90002001-GCST90003000

GWAS summary statistics for AD Jansen et al.27 https://ctg.cncr.nl/software/summary_statistics

GWAS summary statistics for ALS Nicolas et al.28 http://ftp.ebi.ac.uk/pub/databases/gwas/summary_

statistics/GCST005001-GCST006000/GCST005647/

GWAS summary statistics for migraine Gormlet et al.29 http://www.headachegenetics.org/content/datasets-

and-cohorts

GWAS summary statistics for MS IMSGC30 https://imsgc.net/?page_id=31

GWAS summary statistics for PD Nalls et al.31 https://research.23andme.com/collaborate/#publication

GWAS summary statistics for stroke Malik et al.32 https://www.megastroke.org/download.html

GWAS summary statistics for psychiatric disorders PGC https://www.med.unc.edu/pgc/download-results/

GWAS summary statistics for cigarettes per day Liu et al.43 https://conservancy.umn.edu/handle/11299/201564

GWAS summary statistics for drinks per week Liu et al.43 https://conservancy.umn.edu/handle/11299/201564

GWAS summary statistics for education attainment Okbay et al.44 http://www.thessgac.org/data

GWAS summary statistics for household income Hill et al.45 http://ftp.ebi.ac.uk/pub/databases/gwas/summary_

statistics/GCST009001-GCST010000/GCST009523/

Blood-based cis-eQTL eQTLGen50 https://www.eqtlgen.org/cis-eqtls.html

Platelet cis-eQTL GeneSTAR51 https://www.biostat.jhsph.edu/�kkammers/GeneSTAR/

Brain-based cis-eQTL GTEx53 https://cnsgenomics.com/software/smr/#DataResource

Blood-based mQTL BSGS and LBC52 https://cnsgenomics.com/software/smr/#DataResource

Brain-based mQTL Qi et al.53 https://cnsgenomics.com/software/smr/#DataResource

Individual-level data from UK Biobank UK Biobank https://biobank.ndph.ox.ac.uk/showcase/

Software and algorithms

R 4.0.5 R Core Team https://www.r-project.org/

HDL 1.3.8 Ning et al.16 https://github.com/zhenin/HDL

LDSC 1.0.1 Bulik-Sullivan et al.87,88 https://github.com/bulik/ldsc

r-HESS 0.5.4 Shi et al.17 https://huwenboshi.github.io/hess/

CAUSE 1.2.0 Morrison et al.18 https://jean997.github.io/cause/

TwoSampleMR 0.5.6 Hemani et al.32 https://mrcieu.github.io/TwoSampleMR/

GSMR 1.0.9 Zhu et al.23 https://yanglab.westlake.edu.cn/software/gsmr/

LCV O’Connor et al.24 https://github.com/lukejoconnor/LCV

MVMR via TwoSampleMR 0.5.6 Hemani et al.32 https://mrcieu.github.io/TwoSampleMR/

mtCOJO 1.9.3.2 beta Zhu et al.23 https://yanglab.westlake.edu.cn/software/gcta/#mtCOJO

SMR 1.03 Zhu et al.25 https://yanglab.westlake.edu.cn/software/smr/

PLINK 1.9 PLINK Working Group https://www.cog-genomics.org/plink/1.9/

ShinyGo 0.76 Ge et al.54 http://bioinformatics.sdstate.edu/go/

Ricopili 1118b Lam et al.38 https://sites.google.com/a/broadinstitute.org/ricopili/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Yuanhao

Yang (yuanhao.yang@mater.uq.edu.au).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
d GWAS summary statistics for MS are available by application from https://imsgc.net/?page_id=31. GWAS summary statistics

for migraine are available from the International Headache Genetics Consortium (IHGC, http://www.headachegenetics.org/

content/datasets-and-cohorts) by request to Professor Dale Nyholt (d.nyholt@qut.edu.au). All other data are publicly available

and listed in the key resources table.

d This study did not generate any unique datasets or code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

GWAS summary data
We obtained publicly available European-ancestry GWAS summary data for 29 BCTs,26 including measures of red cells (e.g., hemat-

ocrit, hemoglobin), platelets (e.g., PCT, PDW), and white cells (e.g., BASO#, LYMPH#), and 11 common NPDs, including AD,27

ADHD,33 ALS,28 ASD,34 bipolar disorder (BIP),35 MDD,36 migraine,29 MS,30 PD,31 SCZ37 and stroke32 (Tables 1 and 2). BCTs reported

by Vuckovic et al.26 were extracted from the main hematological indices of clinic-based blood samples from 408,112 European par-

ticipants in the UKB. The authors implemented linear mixed regression to generate BCT GWAS summary statistics for the trans-

formed and inversely normalized BCT residuals (i.e., regressing out effects from sex, age, age-squared, principal components,

and recruitment center). GWAS of common NPDs were performed based on large-scale European samples, with the number of in-

dividuals ranging from �40K for MS to >1.45M for PD. Among 11 NPDs, eight (ADHD, AD, ALS, ASD, BIP, MS, SCZ and stroke)

involved analysis of cases diagnosed by clinicians or physicians (or with an equivalent clinical diagnosis), and three (MDD, migraine,

PD) involved a combination clinical and self-reported cases. Each GWAS summary dataset comprised�6-10M common SNPs after

filtering out SNPs with MAF <1% (Tables 1 and 2).

cis-eQTL and mQTL summary data
We used summary data for blood- and brain-based cis-eQTL and mQTL for SMR analyses (see below). Blood-based cis-eQTL and

mQTL data were obtained from the eQTLGen consortium (nsample = 31,684; nprobe = 19,250)50 and the BSGS and LBC (1921 and

1936; nsample = 1,980; nprobe = 94,338),52 respectively. We also obtained platelet cis-eQTL data (nsample = 180; nprobe = 4,555)

from the GeneSTAR Research Study.51 Brain-based cis-eQTL data (neffect sample = 1,194; nprobe = 28,538)53 were based on a

meta-analysis of 10 Genotype-Tissue Expression (GTEx v6)89 brain regions, the CommonMind Consortium (CMC)90 and Religious

Orders Study and Memory and Aging Project (ROSMAP)91; and the brain-based mQTL data (neffect sample = 1,160; nprobe =

436,077)53 were based on a meta-analysis of three datasets: ROSMAP,91 Hannon et al.92 and Jaffe et al.93 All these multi-omics

data were publicly available and of European descent, with imputation based on the 1000 Genomes European reference panel

(hg19 genome build).94

Estimation of genetic correlations using high-definition likelihood (HDL)
We used the HDL16 method to estimate the genetic correlation for each pair of BCTs and NPDs, using GWAS summary statistics.

HDL is a recently developed extension of bivariate LDSC,87 which makes use of LD across the entire autosomal genome with exclu-

sion of theMHC region (chromosome 6: 28,477,797-33,448,354 bp) via fitting an additional variance-covariance LDmatrix to achieve

significant reductions in variance of rg estimates, thereby improving power. Here, HDL was applied to 319 pairs of BCTs and NPDs,

with themethod implemented using the default UKB referencewith�1M imputedHapMap3 autosomal SNPs, after excluding strand-

ambiguous SNPs (i.e., A/T, C/G). We defined significant HDL rg estimates as those surpassing the Bonferroni corrected threshold

(p < 1.57 3 10�4, i.e., 0:05
29311).

Estimation of genetic correlations using LD score regression (LDSC)
We also conducted bivariate LDSC87,88 for each pair of traits as a sensitivity analysis. Bivariate LDSC estimates the rg between traits

using the slope from the regression of the product of the single trait GWAS test statistics (Z scores) on LD score. We applied bivariate

LDSC to 319 pairs of BCTs and NPDs using the default LD scores of the 1000 Genomes European reference, again excluding SNPs if

they were strand-ambiguous or located within the MHC region. As with HDL, we defined significant LDSC-based rg estimates as

those surpassing the Bonferroni corrected threshold (p < 1.57 3 10�4).

Investigating potential confounding factors mediating the shared genetics underlying pairs of traits with significant
genetic correlations
For BCT-NPD trait pairs with Bonferroni-corrected or FDR significant genome-wide rg (from HDL or LDSC), we investigated whether

their shared genetics were driven by potential confounding factors, including smoking, drinking, educational attainment, and socio-

economic status that have been reported to be commonly associated with BCTs7,95,96 and NPDs.97–100 We investigated the roles of

these potential confounding factors using a conditional approach. First, we utilised mtCOJO23 to condition GWAS summary data of

BCTs and NPDs on the GWAS of cigarettes per day,43 drinks per week,43 educational attainment,44 and household income,45
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respectively. We used genotype data from unrelated Europeans in the UK Biobank as a reference. We then re-estimated the genetic

correlations between specific pairs of BCTs and NPDs on the basis of their conditional GWAS summary statistics, using HDL.

Estimation of local genetic correlations using r-HESS
Pairs of BCTs and NPDs may share genetic variance in small genomic regions even in the absence of a significant genome-wide

genetic correlation. Moreover, the pattern of local genetic correlations in trait-associated regions can indicate potential causal

relationships between traits. To investigate these possibilities, we used r-HESS17 to estimate local genetic correlations between

319 BCT-NPD pairs in 1,693 approximately independent LD regions (average widthz1.5Mb,101 based on the hg19-based 1000 Ge-

nomes European reference), excluding those in theMHC region.Wedefined significant local genetic correlations as those surpassing

the Bonferroni corrected threshold (p < 9.26 3 10�8; i.e., 0:05
1693329311).

We then followed the approach proposed by Shi et al.17 and classified the local genetic correlations into four groups for each pair of

traits: (i) regions harboring only NPD-specific SNPs, (ii) regions harboring only BCT-specific SNPs, (iii) regions harboring SNPs shared

by bothmembers of the BCT-NPD trait pair (‘‘Intersection’’), and (iv) other regions (‘‘Neither’’). We defined trait-specific SNPs (used to

classify genomic regions into each of the four groups) as those with p < 1 3 10�5, and compared these results to four other p value

cut-offs (p < 53 10�8, p < 13 10�6, p < 13 10�4, and p < 13 10�3), as ameans of accommodating differential GWASpower between

BCTs and NPDs. We also performed a further sensitivity analysis using a Bayesian-based approach (SBayesR)48 to define trait-spe-

cific SNPs. SBayesR implements a Bayesian likelihood multiple regression procedure to refine the estimated effect sizes of trait-

associated SNPs by updating the ‘prior’ SNP effects of GWAS summary statistics to ‘posterior’ SNP effects. We used a sparse

LD correlation matrix generated from Europeans in the UK Biobank as a reference for SBayesR. Genomic regions were excluded

if the estimated local genetic correlation was missing (e.g., because the local estimated single-trait heritability was negative), less

than �1 or greater than 1 (e.g., because at least one of the local estimated single-trait heritability estimates was close to zero).

For each group that comprised R5 local genetic correlation estimates, we calculated the mean and SE of the local genetic correla-

tions within the group. A causal effect of BCT on NPD was suggested if the average local genetic correlation in regions harboring

BCT-specific SNPs was Bonferroni significantly non-zero (p < 1.57 3 10�4, for 319 pairs) and Bonferroni significantly different

from that in ‘‘Intersection’’ regions, ‘‘Neither’’ regions, and regions harboring NPD-specific SNPs (p < 1.57 3 10�4 based on a

two-tailed Z-test). We used an equivalent strategy to identify patterns of local genetic correlations consistent with a potential causal

effect of NPD on BCT.

Mendelian randomization analyses
We used multiple MR methods to evaluate evidence for causality of BCTs on risk for NPDs, and vice versa. We focused on a total of

70 trait pairs with nominally significant (p < 0.05) genome-wide rg (fromHDLor LDSC), recognizing that a causal relationship is unlikely

to exist in the absence of a global genetic correlation between highly polygenic traits like the BCTs and NPDs used in our study.

We first utilized the Bayesian multivariate linear model-based MR method CAUSE,18 that assumes the genetic effect of the expo-

sure on the outcome is comprised of a causal effect (b), correlated pleiotropy (h; defined as instruments with horizontal effects on

both exposure and outcome through a shared pathway), and uncorrelated pleiotropy (q; defined as instruments with horizontal ef-

fects on the exposure and outcome via separate mechanisms or pathways). This approach enables CAUSE to distinguish a causal

effect from correlated pleiotropy by quantifying the joint distribution of instrumental SNP effects, under the assumption that all instru-

mental SNPs are influenced by a causal effect, whereas only a subset are influenced by correlated pleiotropy. The CAUSE method

utilizes more (approximately independent; LD r2 < 0.10 based on the 1000 Genomes European reference) instrumental SNPs (with an

arbitrary p < 13 10�3) thanmany otherMRmethods that rely solely on genome-wide significant SNPs, which is purported to increase

power.18 CAUSE also implements an approach called expected log pointwise posterior density (ELPD) to compare the overall model

fit between the null model (no causal or pleiotropy effect), sharing model (the existence of a pleiotropic effect but no causal effect),

and causal model (the existence of both causal and pleiotropic effects). We applied CAUSE using the R package ‘cause’, excluding

SNPs in the MHC region. We considered a relationship to be putatively causal if the causal effect estimated by the causal model

surpassed the Bonferroni corrected significance threshold (p < 3.57 3 10�4, i.e., 0:05
7032), and the overall fitness of the causal model

was significantly (p < 0.05) better than the sharing model or null model.

To strengthen evidence of causality from the CAUSE analysis, we performed sensitivity analyses using six alternative MRmethods

with different assumptions on pleiotropy, including inverse variance weighting (IVW),19 MR-Egger,20 WMo,21 WMe,22 and GSMR.23

Among the six alternative models, IVW19 is the basic approach that assumes no correlated pleiotropy and the presence of uncorre-

lated pleiotropy (with mean zero), thereby adding noise to the random-effects meta-analysis of SNP effects. MR-Egger20 is an exten-

sion of IVW that assumes no correlated pleiotropy but non-zero uncorrelated pleiotropy, which adds an extra intercept to the IVW to

account for such uncorrelated pleiotropy. GSMR23 has the same assumptions as MR-Egger and utilizes the HEIDI approach to iden-

tify and exclude confounding SNPs due to uncorrelated pleiotropy. Both WMe22 and WMo21 are capable of removing partial corre-

lated and uncorrelated pleiotropy. WMe22 is implemented using the weighted median but not weighted mean of the SNP ratio, and

thus is capable of identifying true causality if the proportion of invalid instrumental SNPs of correlated and uncorrelated pleiotropy

is %50%. WMo21 estimates the causal effect merely from the largest subset of SNPs with consistent effects. While WMo drops

some instrumental SNPs and likely has reduced power, it has the ability to identify true causality, particularly when amajority of instru-

mental SNPs are invalid. Furthermore, we inferred putative causal relationships between BCTs andNPDs using the LCV (latent causal
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variable) model.24 The LCVmodel assumes that the genetic correlation between two traits is mediated by a latent variable, which has

a causal effect on each trait and can be quantified by estimating the GCP (genetic causality proportion) using the mixed fourth mo-

ments of marginal SNP effect sizes for each trait. GCP estimates vary between 0 (no causal relationship) to 1 (fully causal relation-

ship), with higher values implying a stronger partially causal relationship.

We considered causal relationships that were consistently identified (p < 0.05) by all alternative methods as unlikely to be false

positives. We applied these alternative methods using the R packages ‘TwoSampleMR’, ‘gsmr’, and ‘LCV’, with exclusion of

SNPs within the MHC region. Independent SNPs (LD clumping r2 < 0.05 within 1,000Kb windows based on the 1000 Genomes Eu-

ropean reference) with p < 5 3 10�8 were selected as instrumental variables for all these alternative MR methods except LCV, for

which all SNPs were used. For MR effect size estimates for binary exposures (i.e., NPDs), we converted the MR effects from

logit-scale to liability-scale using the method of Byrne et al.102 All MR effects were then transformed into ORs for concise interpre-

tation. The interpretation of the OR for ‘‘BCT/ NPD’’ is that, as an example, if the estimated OR is 1.2, the NPD risk is increased by

1.2-fold for each SD increase in the BCT. Similarly, the interpretation of the OR for ‘‘NPD / BCT’’ at 1.2 (as an example) is that the

level of BCT is increased by 1.2-fold per SD increase in NPD liability.

To evaluate the reliability of our MR results, we implemented several additional sensitivity analyses to evaluate the validity of instru-

mental SNPs for pairs of traits with consistent evidence for a causal relationship across all MR models.103 The sensitivity analyses

included: (i) checking whether the intercept term in MR-Egger regression is significantly different from zero; (ii) checking for hetero-

geneity among instrumental SNPs using Cochran’s Q and I2; and (iii) performing leave-one-out analyses using each of the four two-

sampleMRmodels to evaluate if single instrumental SNPsmay be responsible for the inferred causal relationship(s). MR results satis-

fying all three sensitivity analyses were considered robust.

Finally, we investigated the contribution of four potential confounding factors (i.e., cigarettes per day,43 drinks per week,43 educa-

tional attainment,44 household income45) on estimates of inferred causality between specific pairs of BCTs and NPDs, using two ap-

proaches. First, we re-estimated the causal effects for each pair of traits with consistent evidence for a causal relationship by

applying the same MR methods (and LCV) to their conditional GWAS summary statistics, generated using mtCOJO. Second, we

applied MVMR49 analysis to each BCT-NPD trait pair with consistent evidence for a causal relationship. The MVMR method is

capable of estimating causal effects between an exposure and outcome whilst adjusting for the potential pleiotropic effects of mul-

tiple outcome-related confounding factors concurrently.

Multi-omics analysis of putatively functional mechanisms underlying shared genetic loci for BCTs and neurological
and psychiatric disorders
Next, we utilized SMR25 to identify putatively functional genes and regulatory elements shared by pairs of BCTs and NPDs. SMR is an

MR-equivalent analysis method that utilizes GWAS summary statistics to test for an association between gene expression (i.e., expo-

sure) and a target phenotype (i.e., outcome), using genome-wide significant SNPs as instrumental variables. In our analyses, we used

SMR to test for (i) association of gene expression (exposure) with pairs of BCTs and NPDs (outcomes), (ii) association of DNAmethyl-

ation (exposure) with gene expression (outcome), and (iii) association of DNA methylation (exposure) with pairs of BCTs and NPDs

(outcome). We also implemented the HEIDI test to distinguish linkage from a causal effect or pleiotropy, given a significant SMR as-

sociation could be explained by different causal SNPs in high LD having effects on the exposure and outcome separately (i.e., link-

age), rather than by a causal variant affecting outcome via changes in the exposure (i.e., causal effect) or the causal variant having a

shared effect on both exposure and outcome (i.e., pleiotropy). Here, we performed SMR analyses across 70 pairs of BCTs and NPDs

with evidence for a nominally significant (p < 0.05) rg (by HDL or LDSC) and/or a causal relationship on the basis of MR analyses.

We first tested for an association of blood-based gene expression (exposure) with BCT-NPD pairs (outcome traits) using blood-

based cis-eQTLs from eQTLGen,50 reporting genes surpassing Bonferroni correction (pSMR < 3.18 3 10�6, based on correction for

testing of 15,743 probes with cis-eQTL p < 53 10�8) and also the HEIDI test (pHEIDI > 0.01 withR10 SNPs). With respect to pairs of

platelet parameters and related NPDs (e.g., PCT-stroke and PDW-PD), we further carried out SMR using platelet cis-eQTLs from

GeneSTAR51 (Bonferroni-corrected pSMR < 6.31 3 10�5, i.e., 0:05
793 qualified eQTL probes, pHEIDI > 0.01 with R10 SNPs). For all Bonferroni-

significant genes, we then used SMR to test for an association of blood-based DNA methylation (exposure) with gene expression

(outcome), using mQTL summary data from BSGS and LBC and cis-eQTL data from eQTLGen, respectively. DNA methylation-

gene expression associations were declared significant if they had a Bonferroni corrected pSMR < 5.373 10�7 (correction for testing

of 93,122 probes with mQTL p < 53 10�8) and surpassed the HEIDI test (pHEIDI > 0.01 withR10 SNPs). For all Bonferroni-significant

DNAmethylation probes, we then performed SMRusingDNAmethylation as exposure andBCT-NPDpairs as outcome, to determine

if DNAmethylation was also directly associated (Bonferroni corrected pSMR < 5.373 10�7; and pHEIDI > 0.01 withR10 SNPs) with the

same pairs of BCTs and NPDs. We considered genes and regulatory elements with consistent evidence for significant associations

across all SMR analyses to be noteworthy. Additionally, we applied the same three types of SMR analyses in regions of Bonferroni-

significant local genetic correlation (p < 9.23 3 10�8), focusing on the subset of BCT-NPD pairs that also had negligible (p > 0.05)

genome-wide rg.

We also conducted parallel SMR analyses using brain-based cis-eQTL53 and mQTL summary data53 as sensitivity analyses, using

the same analytic process as described above (but limited to the specific NPDs instead of pairs of BCTs andNPDs).We concentrated

on functional genes and regulatory elements that were identified with consistent evidence for significant blood-based associations

across the three types of SMR analyses. We considered brain-based SMR associations to be significant if they surpassed both a
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Bonferroni-corrected SMR p value threshold (pSMR < 6.63 3 10�6, i.e., 0:05
7538 qualified cis�eQTL probes, using cis-eQTL as exposure and

GWAS of NPD as outcome; <5.28 3 10�7, i.e., 0:05
94679 qualified mQTL probes, using mQTL as exposure and cis-eQTL as outcome, and

when using mQTL as exposure and GWAS of NPD as outcome) and the HEIDI test (pHEIDI > 0.01 with R10 SNPs).

All SMR analyses were restricted to expression (or DNA methylation) probes with a cis-eQTL (or mQTL) p < 53 10�8, and probes

located in theMHC regionwere excluded. LDwas adjusted according to the 1000Genomes European ref. 94. For SMR analysis using

mQTL as exposure and GWAS as outcome, genes were matched to each DNA methylation site if they were located within a 500Kb

window. For multiple DNA methylation sites associated with the same gene with consistent direction of effect, we calculated the

correlations between each pair of DNAmethylation sites bymeasuring the correlations between SMR effects of their common genes.

We filtered out DNA methylation sites if they were less significant and correlated (R > 0.05) with other DNA methylation sites.

Gene set enrichment analysis (GSEA)
Finally, we performed GSEA to identify biological pathways shared by specific pairs of BCTs and NPDs. We used the ShinyGO tool54

based on the GeneOntology (GO) annotation resource, comprising a hierarchy of biological processes, cellular components andmo-

lecular functions. To maintain power and sensitivity, we applied ShinyGO to candidate gene sets comprising five or more genes

whose expression levels were Bonferroni-significant for both members of specific pairs of BCTs and NPDs, based on SMR analysis

of blood-based and/or brain-based cis-eQTLs (Table S50). We defined significantly enriched pathways as those with R2 pathway-

specific genes and an FDR <5%.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using R 4.0.5, HDL 1.3.8, LDSC 1.0.1, r-HESS 0.5.4, LCV, mtCOJO 1.9.3.2 beta, SMR 1.03,

PLINK 1.9, ShinyGo 0.76 and Ricopili 1118b. All methodological details can be found in the STAR Methods, and all statistical tests

are named as they are used. All statistical tests are two-sided, with the exception of the heterogeneity test among instrumental SNPs

in the MR sensitivity analyses, which were one-sided.
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