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Abstract

Mouldable hydrogels that flow upon applied stress and rapidly self-heal are increasingly utilised 

as they afford minimally invasive delivery and conformal application. Here we report a new 

paradigm for the fabrication of self-assembled hydrogels with shear-thinning and self-healing 

properties employing rationally engineered polymer-nanoparticle interactions. Biopolymer 

derivatives are linked together by selective adsorption to nanoparticles. The transient and 

reversible interactions between biopolymers and nanoparticles enable flow under applied shear 

stress, followed by rapid self-healing when the stress is relaxed. We develop a physical description 

of polymer-nanoparticle gel formation that is utilised to design biocompatible gels for minimally-

invasive drug delivery. Owing to the hierarchical structure of the gel, both hydrophilic and 

hydrophobic drugs can be entrapped and delivered with differential release profiles, both in vitro 

and in vivo. The work introduces a facile and generalizable class of mouldable hydrogels 

amenable to a range of biomedical and industrial applications.

Introduction

Hydrogels comprise an important class of material well-suited for a range of applications on 

account of their high water content and highly tunable mechanical properties.1–4 Many 

hydrogel systems utilise covalent crosslinking approaches,5 including radical processes 

initiated by light,6,7 temperature,8 and pH.9 These covalently crosslinked hydrogels form 

robust, tough and elastic materials; however, they can be limited by the irreversibility of 

their crosslinks. Mouldable hydrogels that can be formed and processed prior to use and 
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subsequently applied in a conformal manner provide attractive alternatives to covalent 

hydrogels for many applications, including local drug delivery applications in the body, cell 

carriers for tissue engineering, bone fillers, or hydraulic fracturing fluids. To serve these 

applications, mouldable hydrogels must exhibit viscous flow under shear stress (shear-

thinning) and rapid recovery when the applied stress is relaxed (self-healing). Additionally, 

it is extremely beneficial if the high shear viscosity is low (η ≤ 1 Pa s @ γ̇ ~100 s−1) for 

facile application through high gauge needles. These properties enable minimally invasive 

implantation in vivo though direct injection or catheter-based delivery, contributing to a 

rapid gain in interest in their application for controlled drug delivery.10

Self-assembly via non-covalent crosslinking provides a route to fabricate mouldable and 

injectable hydrogels with shear-thinning and self-healing properties arising from strong, yet 

transient and reversible crosslinks.2,10 Several systems have been reported utilising natural 

host-guest or receptor-ligand pairs, such as (strep)avidin with biotin,11,12 leucine zipper13,14 

and ‘dock-and-lock’15,16 protein structures prepared with genetic engineering techniques, or 

with synthetic macrocyclic host molecules, such as cyclodextrins17,18 or 

cucurbit[n]urils.19–23 In each of these examples, self-assembly of functional materials via 

non-covalent, intermolecular interactions with dynamic and reversible macroscopic 

behaviour was exploited. However, the shear-thinning and self-healing hydrogels presented 

to date are limited by poor mechanics and slow self-healing or require challenging, costly 

and poorly scalable synthesis of macromolecular components through protein engineering or 

complex, multi-step functionalisation chemistries.

Crucial requirements to the biomedical translation of mouldable and injectable hydrogels are 

facile and mild formation, modular modification and finely tunable control over mechanical 

properties, as well as rapid self-healing upon injection. Within the field of self-assembly, 

polymer-nanoparticle interactions have arisen as a simple route to assemble tunable and self-

healing polymeric materials without the need for complex synthetic approaches or 

specialised small-molecule binding partners.24,25 For example, complementary affinity 

between polymers (molecular binders) and the surface of hard nanoparticles (clay 

nanosheets/silicates) has been utilised to fabricate high-water-content and mouldable 

hydrogels.24,26–28 More recently, nanoparticle adsorption to polymer gels has been exploited 

to achieve strong, rapid adhesion between disparate gels.25 Moreover, a similar phenomenon 

has been exploited to enhance the bulk mechanical properties of polysaccharide-based 

physically crosslinked hydrogels by incorporating drug-loaded poly(lactic-co-glycolic acid) 

(PLGA) microspheres into the hydrogel formulation.29,30

Inspired by these elegant approaches, we synthesise shear-thinning and self-healing 

hydrogels in a mild, modular and scalable fashion based solely on interactions between 

cellulose derivatives and nanoparticles for biomedical applications. Herein, we report the 

preparation and application of hydrogels driven by non-covalent interactions between 

hydroxypropylmethylcellulose derivatives (HPMC-x) and core-shell nanoparticles (NPs) 

(Fig. 1). Transient and reversible interactions between the NPs and HPMC chains govern 

polymer-nanoparticle (PNP) hydrogel self-assembly, allowing for flow under applied stress 

and complete recovery of their structural properties when the stress is relaxed. PNP 

hydrogels are formulated with PEG-b-PLA NPs to enable dual loading of a hydrophobic 
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molecule into the PEG-b-PLA NPs and a second, hydrophilic molecule into the aqueous 

bulk of the gel. PEG-b-PLA PNP hydrogels are biocompatible and afford differential release 

of multiple compounds in vivo following subcutaneous implantation.

Results

Polymer-nanoparticle hydrogels

Initially, polymer-nanoparticle (PNP) hydrogels were formed by mixing aqueous solutions 

of hydroxypropylmethylcellulose (HPMC; Mn ~ 700 kDa) and commercially available 

carboxy-functionalised polystyrene nanoparticles (PSNPs; DH ~ 50 nm; 1 wt% HPMC : 10 

wt% PSNPs) under ambient conditions (Fig. 2a). These gels formed rapidly upon mixing, 

exhibiting a shear storage modulus of G′ = 140 Pa. For these studies, the storage modulus (G

′) was used as a measure of hydrogel strength, and the tanδ, which is the ratio of the loss 

modulus (G″) over the storage modulus (tanδ = G″/G′), was used as a measure of hydrogel 

elasticity. HPMC was chosen as the primary polymer for preparation of PNP hydrogels on 

account of its high solubility, molecular weight, functionality, and biocompatibility.31 

PSNPs enable a systematic investigation of the effect of NP number and NP diameter (DH ~ 

50 to 500 nm), with uniform surface properties, on PNP gel formation. Hydrogel formation 

is exclusive to the presence of both PSNPs and HPMC as PSNPs (10 wt%) and HPMC (1 wt

%) solutions alone are each low viscosity liquids. Cryogenic transmission electron 

microscopy (TEM) indicates that the nanoparticles remain homogeneously dispersed in the 

gel state, suggesting that gel formation is driven by polymer-nanoparticle interactions and 

not agglomeration (Fig. S8). Moreover, HPMC combined with commercially available silica 

NPs (Ludox TM-50; d ~ 22 nm; 1 wt% HPMC : 10 wt% NPs) failed to form a gel. These 

data indicated that selective adsorption of HPMC chains to PSNPs enables cross-linking and 

gel formation.

Efficient crosslinking necessitates strong affinity between the nanoparticles and the polymer 

chains, i.e. the free energy gain (ε) resulting from adsorption of a polymer chain to the 

surface of a nanoparticle should be greater than or comparable to the thermal energy (kBT ). 

Additionally, the average number of interactions per polymer chain (m̄) and particle (w̄) 

must be greater than 2 to achieve percolation of the network. Moreover, in order to favour 

polymer bridging of multiple nanoparticles (as opposed to polymer wrapping around 

individual particles), the nanoparticle diameter should be comparable to, or less than, the 

persistence length (lP) of the polymer strands. When these criteria are met, nanoparticles act 

as crosslinkers between the polymer chains, whilst the polymer chains bridge many different 

particles, enabling hydrogel formation. The modulus (G) of the PNP hydrogels can be 

related to the number of polymer-nanoparticle interactions per unit volume (n) and the 

energy associated with each interaction (αkBT ) using theoretical tools analogous to those 

developed for covalent hydrogels: G ≈ n · αkBT.32

Based on this physical picture of PNP hydrogels, we hypothesised that hydrophobic 

modification of HPMC (yielding HPMC-x) could be exploited to increase the energy 

associated with each PNP interaction (αkBT ), thereby increasing the modulus of the gel 

given the same number of interactions per unit volume. Modification should facilitate 

favorable interactions between the hydrophobic moiety on the HPMC chain and the 
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hydrophobic core of the PSNPs, thereby enhancing the adsorption energy of the HPMC to 

the NPs. HPMC was readily functionalised using commercially available isocyanates 

(including hexyl, adamantyl, and dodecyl isocyanate; Supplementary Table 1) in a one-step 

reaction performed at ambient temperature using dibutyltin dilaurate (TDL) as a catalyst.33 

PNP gels were then formulated with HPMC-x, where x refers to hexyl (C6), adamantyl (Ad), 

or dodecyl (C12) functionality, and PSNPs (DH ~ 50 nm; 1 wt% HPMC-x : 10 wt% PSNPs). 

PNP gels formed with either HPMC-C6 or HPMC-Ad possessed similar properties to 

unmodified HPMC gels. However, PNP gels formed with HPMC-C12 were roughly three 

times stronger (G′ = 400 Pa), indicating an increased interaction energy between the C12 

moieties and the PSNPs (Fig. 2a). These observations are particularly appealing as the 

rheology of the HPMC-C12 polymer at 1 wt% is characteristic of a low viscosity fluid, 

despite conjugation of hydrophobic moieties (Supplementary Figure 3) and the polymer’s 

ability to form hydrogels are higher concentrations.34

Additionally, we investigated the effect of nanoparticle number and size on PNP gel 

formation. We hypothesised that gel modulus would scale directly with the number of NPs 

and that particle sizes below a critical diameter, expected to be comparable to the persistence 

length of the polymer (lP ~ 90 nm for HPMC) in order to facilitate bridging between 

particles, would favour gel formation. The number of nanoparticles in the PNP gels was 

modulated by formulating PNP solutions with decreasing fractions of PSNPs (1 wt% 

HPMC-C12 : 10, 5, or 1 wt% PSNPs with DH ~ 50 nm). The shear storage modulus (G′) 

decreased, as predicted, with fewer NPs, and consequently, decreasing number of polymer-

nanoparticle interactions per unit volume (n) (Fig. 2b).

Next, we screened PNP gel formation with PSNPs of various sizes (DH ~ 50, 75, 100, 200, 

and 500 nm; 1 wt% HPMC-C12 : 10 wt% PSNPs). We observed that robust gels formed 

with particle diameters equal to or less than 100 nm, whereas larger particles failed to 

produce gels (Fig. 2c). These observations support our hypothesis that DH ≤ lP favour gel 

formation; yet, this set of experiments was confounded by the fact that as particle diameter 

increases for a given loading, the particle number decreases. To further elucidate the effect 

of particle size on PNP gel formation, we formulated a PNP gel composed of HPMC-C12 (1 

wt%) and both 50 nm PSNPs (5 wt%) and 500 nm PSNPs (1, 3 and 5 wt%). As large 

particles are titrated into the PNP gels, a monotonic decrease in material properties was 

observed (Fig. 2d), highlighting the importance of the critical particle size in PNP gel 

formulations.

Strain dependent oscillatory rheology (Fig. 2e) of the HPMC-C12 PNP gels (1 wt% HPMC-

C12 : 10 wt% 50 nm PSNPs) displayed an extremely broad linear viscoelastic region in 

addition to network failure at high strains, indicating a wide processing regime and shear-

thinning behaviour. The frequency dependence of the storage and loss oscillatory shear 

moduli (G′ and G″, respectively) confirmed hydrogel-like behaviour as G′ is dominant 

across the whole range of frequencies observed (0.1 – 100 rad/s; Fig. 2f). Step-strain 

measurements were then performed to investigate the recovery of material properties 

following network rupture at high strains (a critical parameter for injectability). A high 

magnitude strain (ε = 500 %) was applied to break the hydrogel structure, followed by a low 

magnitude strain (ε = 0.5 %) to monitor the rate and extent of recovery of bulk properties 
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(Fig. 3a). These materials exhibit exceptionally fast and complete recovery of properties in a 

matter of a few seconds after stress-induced flow. Moreover, the rate and extent of recovery 

is unchanged over several cycles of breaking and reforming, highlighting the reversible and 

robust nature of the non-covalently crosslinked hydrogel structure (Fig. 3b).

The rheology of PNP gels supports the physical picture of gel assembly. Polymer adsorption 

to core-shell nanoparticles drives PNP formation. Gel properties are influenced by the 

energetic favourability of adsorption (enhanced by hydrophobicity of the HPMC), number 

of polymer-nanoparticle interactions, as well as the diameter of the nanoparticles. Moreover, 

the transient and reversible nature of polymer adsorption to the nanoparticles imparts the 

PNP gels with shear-thinning and rapid self-healing properties. When the hydrogel is 

strained, chains adsorbed to the particles are under tension and detach from the particle 

surface in order to relax this tension. In this manner, polymer–nanoparticle interactions 

retard failure and ensure strong crosslinking as the energy dissipated during the stress-

induced desorption is much greater than ε ~ kBT. Additionally, these interactions allow the 

gel to flow with sufficient applied stress (shear-thinning) as polymers desorb and slide past 

one another. Upon relaxation of the applied stress, the gel rapidly re-forms (self-healing) as 

polymers adsorb to particles in a new configuration.

PNP hydrogels from biodegradable nanoparticles

With robust design principles in hand, we sought to develop PNP gels composed of 

biocompatible and biodegradable nanoparticles. Poly(ethylene glycol)-block-poly(lactic 

acid) (PEG-b-PLA) core-shell NPs have been employed as drug delivery vehicles in a range 

of in vivo applications35,36 and presented a promising candidate for PNP gels as they can be 

formed with DH ~ 100 nm in a reproducible and scalable manner. PEG5k-b-PLA20k block 

copolymers were prepared via organocatalytic ring opening polymerisation utilising 1,8-

diazabicylo-undec-7-ene (DBU) as a catalyst (Fig. 1c).37 Core-shell NPs (DH ≈ 100 nm 

according to dynamic light scattering) were prepared by nano-precipitation of the 

amphiphilic diblock copolymer from DMSO (a good solvent for both blocks) into water (a 

selective solvent for the hydrophilic PEG block).38 These synthetic protocols are facile, 

rapid and are easily scaled.

As before, mixing aqueous solutions of HPMC-C12 and PEG-b-PLA NPs produced a PNP 

hydrogel (HPMC-C12 1 wt% : PEG-b-PLA NPs 10 wt%) with analogous mechanical 

properties (Fig. 4a and b). The presence of the PEG corona on the NPs dramatically reduced 

the inherent affinity between the HPMC and the NPs, resulting in a 30-fold increase in shear 

storage modulus with conjugation of C12 moieties (Fig. 4a). Thus, strong adhesion between 

HPMC-x polymers and PEG-b-PLA NPs, and consequent hydrogel formation, requires the 

presence of a sufficiently long hydrophobic tail. Moreover, decreasing the size of the PEG 

corona on the NPs by employing block copolymers with a shorter PEG chain (PEG2k-b-

PLA16k) led to enhanced polymer-nanoparticle interactions and stronger materials 

(Supplementary Figure 6). Furthermore, the dynamic nature of the non-covalent interactions 

is retained in these materials, affording similar stress-induced flow properties and material 

recovery as for hydrogels formulated with PSNPs (Fig. 4c and d). The shear-thinning 

behaviour on these materials was further investigated with steady shear measurements 
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(Supplementary Figure 7), which indicated a large change in the viscosity (Δη ~ 103 Pa s) 

from low (γ̇ ~ 0.1 s−1) to high (γ̇ ~ 100 s−1) shear rates, a beneficial property for facile 

injection through high gauge needles.

In vitro controlled drug release

As PNP hydrogels composed of PEG-b-PLA NPs contain both hydrophilic and hydrophobic 

domains, we hypothesised that dual encapsulation and controlled release of therapeutics was 

possible with these materials (Fig. 5a). Moreover, as the PEG-b-PLA NPs constitute a 

structural component of the gel, we sought to characterise the gel’s ability to impart 

differential release characteristics to multiple cargo. We first encapsulated fluorescein-

labeled bovine serum albumin (BSA-FITC), a model protein therapeutic, into the aqueous 

phase of the hydrogels by dissolving it into the HPMC-C12 solution prior to hydrogel 

formation. The BSA was completely retained within the hydrogels upon formation and the 

release of the BSA into water (an infinite sink) was monitored using UV-vis spectroscopy. 

The release profile (Fig. 5b) appeared to be first-order and governed by Fickian diffusion.39 

Modeling of the release data according to the Ritger-Peppas equation40 confirmed 

diffusional albumin release (k = 0.031±0.001 %/h; Fig. 5c).

In stark contrast to these observations, a model hydrophobic drug compound, Oil Red, 

which was encapsulated into the PEG-b-PLA NPs during the nanoprecipitation process38 

prior to hydrogel formation, were released from the hydrogels with an entirely different 

profile (Fig. 5d). This model drug demonstrated a small burst release (<10%), followed by 

zero-order release (k = 2.0±0.6 ×10−4 %/h), attributable to erosion-based release. Indeed, 

when the release supernatant is observed by DLS, nanoparticles of a similar DH are 

observed, indicating that intact particles release from the gel through an erosion-based 

mechanism (Fig. 5e). Thus, PNPs exploit PEG-b-PLA NPs as a structural component of the 

material as well as a carrier motif allowing for multiple therapeutics to be encapsulated 

simultaneously and released with differential profiles. Previous studies with similar 

nanocomposite drug delivery systems, employing drug-loaded poly(lactic-co-glycolic acid) 

(PLGA) nanospheres as mechanical enhancers of physical hydrogel blends, have 

demonstrated release of both hydrophilic (1 to 4 days) and hydrophobic (up to 30 days) 

species in vitro via similar mechanisms.30

In vivo implantation and controlled drug release

Having synthesised injectable hydrogels with unique drug delivery profiles, we sought to 

characterise the in vivo utility of PNP gels (1 wt% HPMC-C12 : 10 wt% PEG-b-PLA NPs). 

First, adult C57BL/6 mice were injected subcutaneously with PNP hydrogels and a 

phosphate buffered saline (PBS) bolus as a control. While the PBS bolus dissipated in less 

than an hour, the PNP hydrogel, which reformed immediately upon injection, remained 

intact at 7 days (Supplementary Figure 9) The injected materials were harvested after 3 and 

7 days and histological anaylsis (Fig. 6) demonstrated mild infiltration of the material by 

neutrophils at day 3, which were replaced primarily by macrophages at day 7. The material 

was beginning to be cleared by macrophages at this time, with no evidence of multi-

nucleated giant cells or lymphocytes, no indication of fibrosis, and no signs of inflammation 

Appel et al. Page 6

Nat Commun. Author manuscript; available in PMC 2015 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



or damage in the adjacent tissue (additional histological analysis is contained in 

Supplementary Figures 10 and 11).

Based on the favourable biocompatibilty of the gels, PNP gels were formulated with a model 

hydrophobic therapeutic (Texas Red® -DHPE; TR) loaded into PEG-b-PLA NPs and a 

model hydrophilic protein therapeutic, Alexa Fluor® 680-conjugated BSA (BSA-AF), 

loaded into the aqueous bulk of the gel, to investigate their in vivo release characteristics. 

Adult SKH1E (hairless) mice were injected subcutaneously with these dual-“therapeutic”-

loaded PNP gels and the release was monitored via intravital fluorescence imaging (Fig. 7a). 

It was not possible to quantitatively investigate the release rate of the model therapeutics 

from the hydrogel in vivo on account of photobleaching of the TR dye and changing PNP 

hydrogel size on account of its mouldability. Yet, a consistent release pattern was observed 

in the SKH1E mice (n = 5) wherein the BSA accessed more of the animal than the TR. With 

a cut-off value of 20% relative intensity, fluorescent analysis revealed that the BSA was 

present ~ 10 mm from the injection site whereas the TR remained within ~ 4 mm of the 

injection site. (Fig. 7b–d). Control experiments with BSA-AF alone (bolus injection) and 

BSA-AF with HPMC-C12 (Supplementary Figure 13) indicate that BSA release is governed 

primarily by interactions between BSA and HPMC-C12 and not hydrogel network 

constraints. Furthermore, control experiments with TR-loaded particles alone 

(Supplementary Figure 14) highlight that PNP hydrogels enable simultaneous release of 

both hydrophobic and hydrophilic molecular cargo in vivo from a single gel.

Discussion

In summary, we have prepared shear-thinning injectable hydrogels utilising polymer-

nanoparticle interactions between hydrophobically-modified cellulose derivatives (HPMC-x) 

and nanoparticles (NPs). Transient and reversible hydrophobic forces between the NPs and 

HPMC chains govern the self-assembly of hydrogels, enabling them to flow under applied 

shear stress and facilitating complete recovery of their material properties in a matter of 

seconds when the stress is relaxed. Moreover, biocompatible hydrogels formulated with 

PEG-b-PLA NPs enable dual loading of a hydrophobic molecule into the PEG-b-PLA NPs 

and a second, hydrophilic molecule into the aqueous bulk of the gel. Owing to the 

hierarchical structure of the gel, molecular delivery is controlled both by Fickian diffusion 

and erosion-based release affording differential release of multiple compounds from a single 

material, in vitro and in vivo. The biocompatibility of these materials and the differential 

release of multiple loaded model therapeutics was demonstrated in vivo. Overall, this 

manuscript demonstrates a class of injectable hydrogels for controlled drug delivery 

applications with facile synthesis and minimally invasive implantation in vivo.

Methods

Instrumentation and Materials
1H NMR (400 MHz) spectra were recorded using a Bruker Avance QNP 400. Chemical 

shifts are recorded in ppm (δ) in H2O with the internal reference set to δ = 4.80 ppm. ATR 

FT-IR spectroscopy was performed using a Perkin-Elmer Spectrum 100 series FT-IR 

spectrometer equipped with a universal ATR sampling accessory. Gel permeation 
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chromatography (GPC) was carried out in either tetrahydrofuran (THF) on divinylbenzene 

columns or in H2O on glucose-modified divinylbenzene columns, both utilizing a Malvern 

Viscotek™ TDA 305 triple detection system. Samples were filtered over 0.2 μm PTFE 

(THF) or PVDF (H2O) filters before injection using a 1.0 mL/min flow rate. Molecular 

weights and polydispersities were determined by comparing to either PMMA (THF) or 

dextran (H2O) standards. Dynamic light scattering (DLS) measurements were performed 

with a Malvern Instruments Zetasizer Nano-ZS.

Rheological characterisation was performed using a TA Instruments AR-G2 stress 

controlled rheometer fitted with a Peltier stage set to 37 °C. Dynamic oscillatory strain 

amplitude sweep measurements were conducted at a frequency of 10 rad/s (unless otherwise 

noted). Dynamic oscillatory frequency sweep measurements were conducted at a 2% strain 

amplitude (unless otherwise noted). All measurements were performed using a 20 mm 4° 

cone geometry and analyzed using TA Instruments TRIOS software.

Cryogenic scanning electron microscopy (CryoSEM) images of PNP gels where acquired 

using a Zeiss NVision 40 (Carl Zeiss SMT, Inc.) field emission scanning electron 

microscope at an acceleration voltage of 2 kV. To prepare samples for imaging 

approximately 100 μL of gel was transferred to a sample stub and then plunged into a slushy 

(liquid and solid) nitrogen bath. The samples where next transferred to an EM VCT100 

vacuum cryo-transfer system (Leica Microsystems, Inc.) to selectively remove surface water 

(vitreous ice) by controlled specimen sublimation. The frozen sample were then further 

fractured with a sharp blade and sputter coated with a thin layer of platinum and palladium 

metals prior to imaging.

Cryogenic transmission electron microscopy (CryoTEM) images where acquired using a 

JEOL 2100 FEG microscope (Jeol Inc. Peabody, MA) equipped with an Gatan 2kx2k 

UltraScan CCD camera at an acceleration of 200 kV and at magnification ranges of 10,000–

30,000x. To prepare samples for imaging, approximately 3 μL of nanoparticle suspensions 

was transferred to a lacey copper grid (coated with continuous carbon). Next, using a Gatan 

Cryo Plunge III the grids where blotted with great care to remove any excess liquid without 

causing damage to the carbon layer. The prepared grids where then mounted on a Gatan 626 

cryo-holder equipped in the TEM column. The specimen and holder tips were next cooled 

down using liquid nitrogen, and subsequently transferred to the CryoTEM for imaging.

Monomethoxy-poly(ethylene glycol) (PEG; 5 kDa) was purchased from Aldrich and was 

purified by azeotropic distillation with toluene. Lactide (LA) was purchased from Aldrich 

and dried in a desiccator over P2O5 prior to use. Carboxy-functional poly(styrene) 

nanoparticles (PSNPs) were purchased from Phosphorex and used as received. All other 

materials were purchased from Aldrich and used as received.

General synthesis of HPMC-x polymers

HPMC (1.0 g) was dissolved in N-methylpyrrolidone (NMP; 45 mL) by stirring at 80 °C for 

1 h. Once the solution had cooled to room temperature, a solution of 1-hexylisocyanate, 1-

adamantylisocyanate, or 1-dodecylisocyanate (0.5 mmol) and triethylamine (2 drops) was 

dissolved in NMP (5 mL) and added to the reaction mixture, which was then stirred at room 
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temperature for 16 h. This solution was this precipitated from acetone and the polymer was 

recovered by filtration, dried under vacuum at room temperature for 24 h and weighed, 

yielding the functionalised HPMC as a white amorphous powder (0.96 g, 96%). FT-IR: ν̃ = 

1685, 1601, 1367 cm−1.

PEG-b-PLA synthesis

PEG (0.25 g, 4.1 mmol) and 1,8-diazabicycloundec-7-ene (DBU; 10.6 mg, 10 μL, 1.0 mol% 

relative to LA) was dissolved in DCM (1.0 mL). Lactide (LA; 1.0 g, 6.9 mmol) was 

dissolved in DCM (3.0 mL) with mild heating. The LA solution was then added rapidly to 

the PEG/DBU solution and was allowed to stir rapidly for 10 min. The reaction mixture was 

then quenched by addition of acetone (7.0 mL) and the PEG-b-PLA copolymer was 

recovered by precipitation from cold diethyl ether, collected by filtration, and dried under 

vacuum to yield a white amorphous polymer (1.15 g, 92%). GPC (THF): Mn (PDI) = 25 kDa 

(1.09).

PEG-b-PLA NP preparation

A solution of PEG-PLA in DMSO (40 mg/mL) was added dropwise to water (10× v/v) 

under a high stir rate. NPs were purified by ultracentrifugation over a filter (MWCO 30 

kDa) followed by resuspension in water to a final concentration of 150 mg/mL. NP size and 

dispersity were characterised by dynamic light scattering (DLS) with a Malvern Zetasizer 

Nano-ZS.

PNP gel preparation

PNP gels were prepared by first dissolving HPMC polymers in water (30 mg/mL) with 

stirring and mild heating. Nanoparticles were either purchased or prepared according to 

literature procedures38 and were concentrated to 15 wt% solutions. HPMC polymer solution 

(150 μL) and NP solution (300 μL) were then added together and mixed well by vortex 

(some samples were mildly centrifuged to remove bubbles arising from mixing).

PNP gel characterisation

Rheological characterisation was performed using a TA Instruments AR-G2 controlled 

stress rheometer fitted with a Peltier stage. All measurements were performed using a 40 

mm 2° cone geometry and analysed using TA Instruments TA Orchestrator software. 

CryoSEM images where acquired using a Zeiss NVision 40 (Carl Zeiss SMT, Inc.) field 

emission scanning electron microscope at an acceleration voltage of 2 kV. CryoTEM images 

where acquired using a JEOL 2100 FEG microscope (Jeol Inc. Peabody, MA) equipped with 

an Gatan 2kx2k UltraScan CCD camera at an acceleration of 200 kV and at magnification 

ranges of 10,000–30,000x.

In vitro release

Two experiments were designed to investigate encapsulation and release of a hydrophobic 

molecule (Oil Red dye; OR) and a hydrophilic molecule (Bovine Serum Albumin; BSA). 

For the first experiment, hydrogels were prepared as mentioned above except with FITC-

labeled BSA dissolved alongside the HPMC polymer, resulting in a final concentration of 
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BSA of 1 wt% in the hydrogel. For the second experiment, OR-loaded PEG-PLA NPs were 

prepared by co-nanoprecipitation of OR with PEG-PLA block copolymer. These NPs were 

then used to prepare hydrogels as above. Hydrogel of either type (200 μL) was placed into a 

1.5 mL centrifuge tube and deionised water (1.3 mL) was added on top of the hydrogel. This 

setup was placed into an incubator at 37 °C and 1 mL of the aqueous supernatant solution 

was replaced with fresh deionised water at predetermined time intervals. The collected 

aqueous solutions were analyzed for solute concentration based on calibration curves 

prepared using either OR or FITC-Albumin absorbance. All experiments were performed in 

triplicate.

In vivo biocompatibility studies

All animal procedures were performed according to MIT Animal Care and Use Committee 

approved protocols. For biocompatibility studies, adult male C57BL/6 mice (8 weeks old) 

were injected subcutaneously on the back with PNP gels (200 μL; HPMC-C12 1 wt% : PEG-

b-PLA NPs 10 wt%) using a 26G syringe. At 3 and 7 days following administration, mice 

were euthanised and the hydrogel and surrounding tissue was harvested (3 mice per time 

point). Tissue was fixed for 24 hours in formalin and cross-sections of the skin and 

underlying material (~ 40 μm in thickness), embedded in paraffin, were stained with 

standard haematoxylin and eosin (H&E) or Mason’s trichrome.

In vivo release studies

PNP gels were prepared with BSA-AF (10 μM in the final gel; Life Technologies) loaded 

into the aqueous phase and Texas Red® -DHPE encapsulated within the PEG-b-PLA NPs 

([TR] = 10 μM in the final gel). Control hydrogels, containing only one of the fluorescent 

compounds, were similarly prepared. Adult male SKH1E mice (8 weeks old) were injected 

subcutaneously on the back with PNP gels (200 μL; HPMC-C12 1 wt% : PEG-b-PLA NPs 

10 wt%) using a 26G syringe. For in vivo imaging, 8-week old male hairless SKH1-E mice 

were first maintained on an alfalfa-free diet for two weeks prior to administration to limit 

background fluorescence. Mice were anesthetised using inhaled isoflurane, and 200 μL was 

injected subcutaneously into the rear right flank of the animal using a 26G syringe. 

Treatment groups consisted of the hydrogel with the combined fluorophores (n=5), the 

control hydrogel with TR only (n=2), the control hydrogel with BSA-AF only (n=2), a bolus 

injection of TR-loaded NPs (n=3), an injection of BSA-AF with HPMC-C12 (n=3), and a 

bolus injection of BSA-AF in PBS (n=1). Imaging was conducted on an IVIS® Spectrum in 

vivo imaging system with a heated stage and an inhaled isoflurane manifold. Fluorescent 

images were collected at several time-points over the following week, using filter sets of 

570/620 (Texas Red) and 675/720 (AF-680) with a 1.5 cm subject height using small 

binning and an F-stop of 1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Fabrication of PNP hydrogels from HPMC derivatives and nanoparticles
a. Schematic representation of the preparation of polymer-nanoparticle (PNP) hydrogels 

utilising non-covalent interactions between core-shell nanoparticles (NPs) and b. 
hydrophobically-modified hydroxypropylmethylcellulose (HPMC-x; C6 - hexyl, Ad - 

adamantyl, C12 - dodecyl). c. The NPs can be composed of either poly(styrene) (PS; non-

degradable) or poly(ethylene glycol)-block-poly(lactic acid) (PEG-b-PLA; biodegradable). 

d. Cryogenic scanning electron microscopy images of PNP gels composed of PSNPs (d ~ 50 

nm) demonstrate a homogeneous distribution of NPs within the gel structure, indicating that 

the network is held together by multivalent, dynamic polymer-nanoparticle interactions (as 

illustrated; polymer chains - greyscale, nanoparticle - orange).
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Figure 2. Rheological characterisation of PNP hydrogels from HPMC derivatives and 
nanoparticles
Oscillatory rheological properties of hydrogels from a. HPMC-C12 (1 wt%) with PSNPs (10 

wt%) of various sizes, b. HPMC-C12 with PSNP (50 nm) at various loadings, and c. HPMC-

x bearing various functionality (0.5 mmol/g; 1 wt%) with PSNPs (50 nm; 10 wt%). All 

values collected at ω = 10 rad/s, ε = 2%, 25°C. d. Oscillatory rheological properties of 

hydrogels from HPMC-C12 (1 wt%) with PSNPs of two different sizes: 50 nm (5 wt%) and 

500 nm (1, 3 and 5 wt%). The large particles (DH ≫ lP) contribute to a dramatic decrease in 

the mechanical properties of the PNP gels, even though more particles are being added to 

the formulation and thus contributing to an increase in the number of polymer-nanoparticle 

interactions per unit volume (n). e. Strain-dependent (ω = 10 rad/s, 25°C) and f. frequency-

dependent (ε = 2%, 25°C) oscillatory shear rheology of HPMC-C12 (1 wt%)/PSNP (10 wt%) 

hydrogels.
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Figure 3. Shear-thinning and self-healing behaviour of PNP hydrogels
a. Step-strain measurements of HPMC-C12 (1 wt%)/PSNP (10 wt%) hydrogels over three 

cycles (ω = 10 rad/s, 25°C) with b. overlayed zoom of the recovery of material properties 

after each cycle.
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Figure 4. Rheological characterisation of biodegradable PNP hydrogels
a. Oscillatory rheological properties of hydrogels from HPMC-x bearing various 

functionality (0.5 mmol/g; 1 wt%) with PEG-b-PLA NPs (10 wt%; ω = 10 rad/s, ε = 2%, 

37°C). b. Frequency-dependent (ε = 2%, 37°C) oscillatory shear rheology of HPMC-C12 (1 

wt%)/PEG-b-PLA NPs (10 wt%) hydrogels. c. Step-strain measurements of HPMC-C12 (1 

wt%)/PEG-b-PLA NPs (10 wt%) hydrogels over three cycles (ω = 10 rad/s, 37°C) with d. 
overlayed zoom of the recovery material properties after each cycle.
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Figure 5. In vitro controlled delivery by differential mechanisms simultaneously
a. Schematic representation of two stage release of therapeutic cargo. b. Drug release 

profiles Bovine Serum Albumin (BSA; hydrophilic) from hydrogels showing the cumulative 

proportion of “drug” released (Mt/M∞; the cumulative fractional mass released at time t; n = 

3; data presented as mean ± s.e.m.). c. Fitting of the release data clearly indicates that the 

BSA is releasing from the hydrogel by Fickian diffusion with a diffusional release 

coefficient, k, of 0.031±0.001 %/h. d. Drug release profile of Oil Red (OR; hydrophobic) 

from hydrogels prepared with OR-loaded PEG-b-PLA NPs (n = 3; data presented as mean ± 

s.e.m.). In this case, OR is released exclusively by erosion from the hydrogel surface (k = 

2.0±0.6 ×10−4 %/h) following a small burst release (< 10%). e. Dynamic light scattering 

(DLS) characterisation of PEG-b-PLA NPs (as prepared before hydrogel formation) and the 

supernatant following erosion of PNP hydrogels (i.e. after release of NPs) supporting the 

proposed erosion-based release mechanism.
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Figure 6. In vivo biocompatibility
Histological anaylsis of haematoxylin stained samples taken after 3 days (a. 2× and c. 40×) 

and 7 days (b. 2× and d. 40×) in vivo. In each image, the interface between biological tissue 

and PNP gel is denoted with a dotted line. Scale bar = 2000 μm (2×) and 100 μm (40×).
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Figure 7. In vivo dual-therapeutic release
a. Intravital fluorescence imaging of the release of TR (top) and BSA-AF (bottom) from a 

single material. Plots of relative intensity of model therapeutic fluorescence vs. distance 

from the center of the hydrogel implant (n = 5) at b. 1h and c. 12h. d. Radius of release at 

20% relative fluorescence intensity over time (n = 5).
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