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Advances in fluorescence microscopy approaches have made it relatively
easy to generate multi-dimensional image volumes and have highlighted
the need for flexible image analysis tools for the extraction of quantitative
information from such data. Here we demonstrate that by focusing on sim-
plified feature-based nuclear segmentation and probabilistic cytoplasmic
detection we can create a tool that is able to extract geometry-based infor-
mation from diverse mammalian tissue images. Our open-source image
analysis platform, called ‘SilentMark’, can cope with three-dimensional
noisy images and with crowded fields of cells to quantify signal intensity
in different cellular compartments. Additionally, it provides tissue geometry
related information, which allows one to quantify protein distribution with
respect to marked regions of interest. The lightweight SilentMark algorithms
have the advantage of not requiring multiple processors, graphics cards or
training datasets and can be run even with just several hundred megabytes
of memory. This makes it possible to use the method as a Web application,
effectively eliminating setup hurdles and compatibility issues with operating
systems. We test this platform on mouse pre-implantation embryos, embryo-
nic stem cell-derived embryoid bodies and mouse embryonic heart, and
relate protein localization to tissue geometry.

This article is part of a discussion meeting issue ‘Contemporary
morphogenesis’.
1. Introduction
One of themain areas of focus in developmental biology is how tissue complexity
is generated and howdiverse cell types are consistently organized into a complete
organism. A common challenge in the field is the three-dimensional spatial analy-
sis of protein distribution within tissues and cells [1,2]. The function of a protein
can vary depending on the cellular compartment it is localized to and differential
expression of proteins across tissues during development is important in patter-
ing those tissues. Cutting edge optical microscopy and image analysis tools are
now routinely used for spatial analysis of developing tissues from various organ-
isms [3–9]. Given the variability of different tissues, existing software often must
be optimized to work for specific cases. For example, full cell segmentation tools
likeMorphoGraphX [3] or Packing Analyzer [10] work extremely well with samples
such as plants and Drosophila, where high-quality fluorescence signals and low
noise make it possible to segment complete cell shapes.

As the signal-to-noise ratio of the image drops or features become indistinct, it
becomesmore difficult to accurately segment and analyse individual cells. One of
themost reliable solutions that is still widely used ismanual segmentation [11,12],
because humans are adept at feature recognition. However, manual outlining
is time consuming, which is particularly a problem for volume or time-lapse
data. To automate image segmentation, there has been a shift towards machine
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learning segmentation approaches. A notable example isRACE
[9], which uses machine learning for tissue segmentation into
individual cells. Arguably, this is one of the most successful
approaches yet for automated segmentation, especially from
membrane signals. However, it is still often impossible to cor-
rectly segment cells based on their three-dimensional outlines
alone, because of limitations in image quality.

Dealing with multiple spatial and fluorescence variables
raises additional challenges in terms of signal normalization,
which is crucial in correcting for variations due to image acqui-
sition or optical heterogeneity within tissues. A commonly
used approach involves taking ratios of nearby cellular
compartments, such as nuclei and cytoplasm. This has been
previously used for example in investigating the Hippo path-
way, where YAP localization could be quantified by taking
the ratio of nuclear and cytoplasmic fluorescence while at the
same time normalizing the raw signals [13].

Even in cases where image quality prevents reliable
segmentation, image data often contain a great deal of useful
quantitative information. To extract such information, we have
developed a sampling-based approach to measure nuclear,
cytoplasmic and plasma membrane fluorescence levels. Impor-
tantly, the localization of these samples within the image
volume is retained, which can then be used for detailed statisti-
cal analysis of the spatial distribution of the detected proteins.
This approach works across the scale of individual cells to
entire tissues. At the level of the cell, it allows us to quantify
relative protein levels in different cellular compartments,
while at the level of the tissue it allows us to identify cell popu-
lations based on relative protein expression, statistically test
the difference between these populations and analyse how
their location within the tissue correlates with protein levels.

Our approach employs well-defined features such as nuclei
to perform partial but robust segmentation using well-
established techniques [6,14].Alternatively,well-resolvedmem-
brane signals or manually defined regions can also be used. If
nuclei are used as points of reference, nearby voxels are used
to sample nearby nuclear and cytoplasmic regions, identified
based on nuclear stain intensity. Simultaneous sampling of
different cell compartments allows one to normalize the data
with respect to experimental variation and tissue optical hetero-
geneity. Regions of membrane sampling are located by using a
combination of detected nuclei positions and intensity of a
membrane stain.Membrane signal quantification can be further
improved by using commercially available software such as
IMARIS to manually outline membrane regions, which are then
automatically partitionedbyour software into contacting (baso-
lateral), exposed (apical) and junctional domains. Since the
spatial distribution of proteins is of particular interest to devel-
opmental biologists, we have also incorporated the ability to
define points or regions of interest in the image volume, so
that the relative positions of these sampled regions with respect
to these points of interest can be recovered.

We have implemented this approach as a software package
called ‘SilentMark’, designed for general use. The package is a
standalone GUI-based application written in Matlab, available
at https://process.innovation.ox.ac.uk/software/p/13299a/
silentmark-academic/1. The core algorithm has also been
implemented in Python as a Web application and is hosted
in the analysis section at https://dropletgenomics.com. Some
limitations of our sampling-based approach are that it does
not provide information on cell shape, or the total sum of flu-
orescence, or facilitate cell tracking. However, the unique
aspect is that it allows one to process routine lower-quality
images, investigate multiple cell compartments and quantify
the spatial distribution of fluorescence within cells and tissues.
Here we demonstrate the use of our algorithm on mouse pre-
and post-implantation embryos, as well as mouse embryonic
stem cell-derived embryoid bodies.
2. Results and discussion
To quantify protein levels in different cellular compartments
and determine the relative proportion of the plasmamembrane
in different domains (apical, junctional and basolateral), we
developed a sampling-based algorithm named ‘SilentMark’,
implemented in Matlab and Python. The overall strategy relies
on detecting well-resolved tissue elements, such as nuclei or
membranes, and then analysing their closest environment to
take samples of subcellular region fluorescence. Depending on
which cell marker is available, the first step is to detect well-
resolved objects such as nuclei or membranes, after which
their closest environment is analysed. Care has been taken
to implement efficient algorithms for three-dimensional convo-
lution and searching, which enables work with images
containing millions of voxels.

(a) Nucleus-based fluorescence sampling
Available nuclear detection techniques differ in their accuracy,
throughput and noise tolerance. One of the fastest and most
robust methods for spherical object detection is based on the
Hough transform [14], which is a tensor voting technique for
themost probable circle positionswithin an image. The original
algorithm is developed for two-dimensional image analysis.
However, it can be extended for three-dimensional measure-
ments by slicing the image into sections, analysing them as
separate images and then deconvolving into three-dimensional
objects, as done previously [9]. In this case, confocal image
stacks were analysed as separate images to detect circular
nuclear cross-sections, the coordinates of which were then
merged to generate a three-dimensional point cloud of nuclear
centres of mass (figure 1a). Using these nuclear coordinates as
reference points, a region from the confocal image is cropped
around each detected point and classified according to
the intensity of the nuclear stain as either a cytoplasmic or
nuclear region. The fluorescence from both regions is then
averaged, with cytoplasm pixels being weighted according to
their distance from the detection point (figures 1b and 4a,b).
This was done to represent the probability that pixels closer
to the nucleus are more likely to belong to the same cell as the
nucleus. The fluorescence levels along with the nuclear coordi-
nates were recorded and this formed the basis of segmentation
and quantification.

If amembrane stainwas available in addition to the nuclear
stain, it was possible to add another fluorescence reading
for exposed and contacting membrane regions, which is
particularly useful for looking at membrane-localized proteins.
To detect the outside surface, the membrane fluorescence
marker was thresholded and the outer pixels were assigned
to the closest nucleus as an exposed membrane sample. To
detect the contacting membrane samples, a line was drawn
between two neighbouring nuclei, and the highest intensity
region for membrane fluorescence along the line was desig-
nated as a contacting membrane sample and was assigned
to both nuclei.

https://process.innovation.ox.ac.uk/software/p/13299a/silentmark-academic/1
https://process.innovation.ox.ac.uk/software/p/13299a/silentmark-academic/1
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https://dropletgenomics.com
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Figure 1. Schematic illustrating strategy for detecting the coordinates of the nuclear centre of mass (a) and for extracting nuclear and cytoplasmic fluorescence
based on nuclear coordinates (b).
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(b) Membrane-based fluorescence sampling
In cases where nuclear markers are not available as a reference,
membrane fluorescence, if available, can be used to create
the points of reference for subsequent analysis. To detect
membrane regions in space, a three-dimensional stack was
processed using contrast-limited adaptive histogram normali-
zation and Gaussian blur to reduce noise. Following this, a
three-dimensional Canny edge detector [15] was applied to
find membrane edges, to which spheres were fitted using an
outlier-tolerant RANSAC algorithm. The detected membranes
were represented by a location of the fitted sphere and a vector
representing membrane curvature and direction (figure 2a).
This information would then be the starting point for sampling
membrane and cytoplasmic fluorescence intensities. The
advantage of this method is that it looks for fragments of
membranes, which is more tolerant to noise than other
approaches that rely on total membrane segmentation. These
detected membrane regions can now be used as sampling
masks for membrane and cytoplasmic fluorescence. The
mask considers a narrow region in space around the detected
point to sample membrane fluorescence and draws a normal
to the membrane surface to sample cytoplasm on either side.
These masks are used on three-dimensional image stacks to
analyse membrane and cytoplasmic fluorescence distribution
in space (figure 2b). Membrane signal quantification can be
improved by using commercially available software IMARIS to
manually outline membrane regions, which SilentMark then
automatically partitions into contacting, exposed and junc-
tional domains (figure 4d ), where proteins are likely to play
different roles.
(c) Development of SilentMark software
We have developed these sampling-based algorithms into a
software package designed for general use. The package
is a standalone application, based on a GUI designed on
Matlab. The algorithm has also been implemented in Python
as a Web application. It accepts three-dimensional images as
stacks of TIFF files or the Zeiss confocal microscopy ‘.lsm’
format. The user is required to enter two intuitive and robust
parameters—an estimate of the diameter of the nuclei and an
estimate of nuclear channel brightness for thresholding. These
two minimal parameters allow one to work with different
types of tissues and image qualities. All the remaining par-
ameters needed for the analysis are derived and optimized by
the software.

The software will output a list (CSV format) of detected
objects (nuclei or membrane fragments), each of which will
have a measure of nuclear and cytoplasmic fluorescence as
well as membrane fluorescence, if it is labelled. The data will
also contain object coordinates to describe spatial protein distri-
bution, automatically calculated distance to exposed surface
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Figure 2. Schematic illustrating the membrane fragment detection algorithm (a) and analysis of membrane and cytoplasmic fluorescence based on membrane
fragment detection (b).
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and distance to regions of interest, if they are designated
manually in three dimensions. This information can then be
processed with statistical software tools for further analysis.

(d) Method validation with CAD images
To validate this probabilistic sampling-based approach, we
first used computer-generated three-dimensional images to
compare the accuracy of our automated sampling-based
approaches against standard manual outlining (using IMARIS;
figure 3). Mock-up tissues composed of several spherical
objects representing cells were created on Google SketchUp
and converted to a stack of images, which were then filled
with pixels of known brightness. Unsurprisingly, manual out-
lining was the most accurate method of image segmentation
and, in addition to quantifying fluorescence intensity, could
also be used to estimate the proportion of ‘exposed’ cell surface,
that is, cell surface not in contactwith surrounding cells. In gen-
eral, intensity measurement errors were below 10%, except for
feature detection relying on membrane fragments. The most
likely source of error for membrane-based feature detection
came from the detection algorithm while fitting spheres,
which is responsible for identifying both membrane segment
position and orientation.

(e) Method validation with pre-implantation embryos
The mouse pre-implantation embryo is a model system where
cell fate is strongly influenced by tissue geometry [16,17].
The underlying basis for cell-type specification in the
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Figure 4. Quantifying lineage determinants during mouse pre-implantation development. (a) Sampling algorithm for detecting three subcellular regions; (b) three-
dimensional rendering of different sampling regions. Red and green are exposed and contacting membranes, respectively; grey is cytoplasm; and cyan is nucleus.
(c) Three-dimensional rendering of a mouse embryo (grey, actin; red, YAP; cyan, DAPI); (d ) 8-cell embryo in which cell membranes have been manually segmented
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pre-implantation embryo has been studied in great depth and
this large amount of existing information makes it ideal for
validating our analytical approach.

During the process of the first cell fate decision in mam-
mals, the protein YAP shuttles between the cytoplasm
(where it is inactive) and the nucleus (active), in a tightly
regulated manner. The differential localization of YAP
protein in outside and inside cells ultimately determines
cell fate in this context, and the ratio of nuclear to cytoplasmic
YAP reflects the position of cells. In outside cells, YAP is in
the nucleus, where it can interact with nuclear TEAD4 to
drive the expression of tissue-specific genes such as Cdx2
to give rise to the trophectoderm. In inside cells, YAP is
excluded from the nucleus and these cells go on to become
the pluripotent inner cell mass [18–20].

To estimate the errors resulting from the sampling-
based approach (figure 4a), we used manual cell outlining
(figure 4d ) to create a ground-truth dataset of pre-
implantation embryos stained for YAP (figure 4b,c), (n = 67
embryos, comprising 20 2-cell, 15 8-cell, 17 16-cell, 12
32-cell and three 64-cell embryos; examples in figure 5 and
electronic supplementary material, movie S1). For nuclear
and cytoplasmic fluorescence measurements, mean error
was lower than 5% (figure 4e), which indicates a low bias
during the automated sampling. Most of the errors result
from poor contrast of nuclear stain (which particularly
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occurs deeper into the tissue), as this makes it harder to
correctly classify voxels as nuclear or cytoplasmic. Another
source of errors is sampling outside the tissue, as the software
does not calculate bounding tissue surfaces.

We used our automated sampling-based approach to
explore the relationship between YAP and CDX2 levels and
the extent to which this correlates with a blastomere’s position,
asmeasuredbyexposure to the outside or distance of a cell from
the surface. We used embryos stained for YAP, CDX2 and
DAPI. Published single-cell RNA-seq data on mouse
pre-implantation embryos [21] (GEO accession: GSE45719)
indicate that Cdx2 becomes upregulated at the 8-cell stage
(figure 4f, N = four 2-cell, four 8-cell, four 16-cell and three
32-cell embryos). Our analysis shows that at the 8-cell stage,
blastomeres begin to show signs of segregating into two popu-
lations, with high or low nuclear to cytoplasmic YAP ratios
(figure 4g and example in figure 5; N = 20 2-cell, 15 8-cell,
17 16-cell, 12 32-cell and three 64-cell embryos). More robust
segregation of these two populations occurs at the 16-cell
stage, approximately 12 h after Cdx2 transcript appearance at
the 8-cell stage. Analytical detail makes it possible to demon-
strate that populations are separated gradually, as YAP
translocates to the cytoplasm in inside cells (figure 4h and elec-
tronic supplementarymaterial, figure S1). It is also evident, that
the CDX2–YAP correlation is stronger at the 32-cell stage than
the 16-cell stage (figure 4i and example in figure 5; N = seven
8-cell, nine 16-cell and six 32-cell embryos). This is consistent
with the presence of additional stabilizing mechanisms for
robust lineage specification [22,23].
( f ) Method validation with embryonic stem cell-derived
embryoid bodies

Similar tomouse pre-implantation embryos, mouse embryonic
stem cell aggregates also display inside–outside patterning
during embryoid body (EB) formation in vitro [24]. The outer
layer of cells forms an endoderm-like layer around an inner
core that is epiblast-like. These aggregates tend to be composed
of crowded cells (figure 6a,b) and represent a more challenging
task for both manual and automated segmentation or
sampling approaches. To test its capabilities, we applied our
sampling-based image approach to investigate endoderm for-
mation during EB differentiation. We stained EB for the
endoderm marker GATA6 (figure 6b), which specifically
stains outside cells, and quantified the relative levels of nuclear
GATA6 expression with respect to the surface of EB (n = 6).
Quantitative statistical analysis (figure 6c) shows preferential
GATA6 expression at the outer layer of the EB (distance to
outer surface is smaller than two cell radii).
(g) Method validation with embryonic hearts
While mouse pre-implantation embryos present an ideal case
for testing automatic image segmentation, because it is
possible to also manually outline the cells for comparison,
they do not necessarily represent a typical mammalian
tissue. A more representative mammalian tissue is the
embryonic heart (figure 6d–g), with a larger number of cells
and closely spaced nuclei.



0 2.0 4.0 6.0 8.0 10.0
normalized distance from cell surface

(cell radii)

G
A

TA
6 

ra
tio

, l
n(

N
/C

)

1 2 3

–1.0

–0.5

0

0.5

1.0

1.5

2.0

–1.0

F-actin
DAPI

F-actin
NKX2-5

F-actin
SRF

F-actin
NKX2-5

–0.5

0

0.5

1.0

1.5

2.0

–0.5

0

0.5

1.0

1.5

2.0

2.5

head
heart

he
ad

he
ar

t

head region
heart region

–2 –1 0 1 2 3
NKX2-5 ratio, ln(N/C)

SR
F 

ra
tio

, l
n(

N
/C

)

–2 –1 0

(a) (b)

(c)

(h)

(d) (e)

(f) (g)

Figure 6. Automated quantitative analysis of differentiated mouse stem cell-derived embryoid bodies and mouse embryonic heart. (a,b) Optical sections of a differ-
entiating mouse stem cell EB stained with DAPI (a, cell nuclei) and GATA6 (b, marking outer endoderm layer). (c) GATA6 localization in the EB as a function of distance
from exposed surface (n = 6 EBs). The approximately single-cell-wide outer layer is distinct from the remaining EB. (d–f ) Optical section of an embryonic heart stained
for F-actin (magenta in all panels, showing cell outlines), DAPI (d, grey, all cell nuclei), NKX2-5 (e, grey nuclei in cardiac crescent) and SRF (grey nuclei in cardiac
crescent). (g) Maximum intensity projection of image volume of embryonic heart, with F-actin in magenta and NKX2-5 in grey. The green dots and line are regions
of interest marking the head folds and cardiac crescent, respectively. (h) Localization and correlation of SRF and NKX2-5 transcription factors, with boxplots comparing
proteins in different embryo regions. The blue and red dots were clustered by the Clara algorithm based on SRF and NKX2-5 levels and their distance from the heart and
head folds. p-values are less than 0.001 (t-test). Scale bar in panel (a) represents 50 µm and in panel ( f ) 100 µm. N/C, ratio of nuclear to cytoplasmic fluorescence.

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190560

7

To test the ability of our image analysis approach for this
problem, we examined the localization of NKX2-5 and SRF,
two transcription factors important for cardiomyocyte differen-
tiation [25] in 8.0 days post coitum embryos (figure 6e,f ). In order
to represent protein levels of these two transcription factors, we
used a ratio of nuclear to cytoplasmic fluorescence (N/C), as the
latter is expected to represent background signal for internal
normalization. To reduce the dynamic range of the measure-
ments and normalize the distribution of the values, we used a
natural logarithm of the ratio. In addition to these normalized
fluorescence measurements, we also measured cell distance to
two regions, the head folds and cardiac crescent, manually
designated using our software (green dots and line in figure 6g).

The four variables formed a dataset, which was clustered
using partitioning around medoids (PAM, R ‘Clara’ package)
[26]. The method was chosen over other clustering approaches
[27] owing to computational efficiency in dealing with large
datasets. The analysis verified as expected that both proteins
were preferentially expressed in the heart region and there
was a region-specific correlation between nuclear levels of
NKX2-5 and SRF (figure 6h).

In summary, we have presented a sampling-based three-
dimensional image analysis approach, designed for relative
quantification of protein levels in microscopy images of com-
plex tissues. Our approach is the first to simultaneously
quantify nuclear, membrane and cytoplasmic fluorescence,
while also marking regions of interest to extract spatial infor-
mation relating to the quantified signals. Automation of
analyses enabled by our program will enable high-throughput
quantification and statistical analysis of spatial protein organiz-
ation. As three-dimensional microscopy is versatile and
widespread, we expect that our publicly available open-source
software will be useful not only for developmental biology
but also more broadly, in the context of cell biology.
3. Methods
(a) Mouse strains, husbandry and embryo collection
All animal experiments were carried out according to UK Home
Office project licence PPL 30/3155 and 30/2887 compliant with
the UK Animals (Scientific Procedures) Act 1986 and approved by
the local Biological Services Ethical Review Process. All mice were
maintained in a 12 h L : 12 h D cycle. Noon of the day of finding a
vaginal plug was designated 0.5 dpc (days post coitum). To obtain
embryos, C57BL/6 males were crossed with CD1 females (Charles
River). Embryos of the appropriate stage were dissected in M2
medium (Sigma-Aldrich) at room temperature. Pre-implantation
embryos were collected by oviduct and uterus flushing.
(b) Embryonic stem cell culture
Embryonic stem cellswere cultured in T-25 flasks coatedwith 0.1%
w/v gelatin and used at passage no. 50–60. Cell culture medium
consisted of 90% DMEM medium (Gibco), 10% fetal calf serum
(FCIII, Hyclone), 1 mM sodium pyruvate, 1 mM non-essential
amino acidmix, 0.1 mM beta-mercaptoethanol, 2 mM L-glutamine
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and 1000 U ml−1 leukaemia inducible factor (LIF). Cells were pas-
saged every 2 days and seeded at approximately 400 000 cells per
T-25 flask. Embryoid bodies were formed by aggregating cells in
hanging drops and culturing for 2 days before fixation.

(c) Antibodies
Vectashield with DAPI (H-1200) was purchased from Vector
Laboratories, phalloidin atto647 was purchased from Sigma
(65906-10MMOL). Mouse anti-YAP monoclonal (sc-101199) and
goat anti-Nkx2-5(N-19) (sc-8697) polyclonal antibodies were
purchased from Santa Cruz Biotechnology Rabbit anti-CDX2
(no. 3977S) monoclonal and rabbit anti-pERM(T567) (no. 3149P)
monoclonal antibodies were purchased from Cell Signaling. Rat
anti-uvomorulin/E-cadherin (U3254-100UL) monoclonal anti-
body was purchased from Sigma. Rabbit anti-SRF (PA5-27307)
polyclonal antibody was purchased from Thermo Fisher. We
used the following secondary antibodies from Life Technologies:
goat anti-rabbit AlexaFluor 488 (A11008), donkey anti-goat Alexa-
Fluor 488 (A11055), donkey anti-mouse AlexaFluor 555 (A31570),
donkey anti-rabbit AlexaFluor 647 (A31573).

(d) Immunofluorescence on pre-implantation embryos
and embryoid bodies

Embryos and EBs were fixed for 20 min at room temperature in
4% paraformaldehyde (PFA). Samples were then washed three
times in PBT-0.1% (phosphate-buffered saline with 0.1%
Tween) for 10 min, permeabilized in PBT-0.25% for 40 min and
washed again in PBT-0.1%. The tissues were transferred to a
blocking solution for 1 h at 4°C. Primary antibodies were then
added to the solution and incubated overnight at 4°C. The
embryos were washed in PBT-0.1% and incubated for 1 h at 4°
C in PBT-0.1% with the secondary antibodies, then subsequently
washed two times in PBT-0.1% for 15 min and mounted in
Vectashield with DAPI at least 6 h prior to imaging.

(e) Immunofluorescence on post-implantation embryos
Dissected embryos were fixed for 1 h at room temperature in
4% PFA. The embryos were then washed three times in PBT-0.1%
for 15 min, permeabilized in PBT-0.25% for 40 min and washed
again three times in PBT-0.1%. The embryos were transferred to
blocking solution overnight at 4°C. Primary antibodies were then
added to the solution and incubated at 4°C. The embryos were
washed three times in PBT-0.1% and incubated overnight at 4°C
in PBT-0.1% with the secondary antibodies, then subsequently
washed three times in PBT-0.1% for 15 min and mounted in
Vectashield with DAPI at least 24 h prior to imaging.
( f ) Software and statistics
The software and graphical user interface were written in
MATLAB (v. 2015b, Mathworks) and compiled using the in-built
compiler for Mac OSX and Windows operating systems (https://
process.innovation.ox.ac.uk/software/p/13299a/silentmark-aca-
demic/1). The algorithm has also been implemented in Python as
aWeb application (hosted by Droplet Genomics at http://droplet-
genomics.com). Source code for SilentMark is available upon
request. Three-dimensional image visualization was done using
VOLOCITY software (Perkin Elmer), and IMARIS software (v 6.1) was
used for manual cell outlining and analysis. R statistics package
alongside ‘cluster’ library was used for automatic normalized
cluster detection (PAM algorithm) and cell population analysis.

The first step of the algorithm is nuclei or membrane detection.
This initial two-dimensional segmentation step can be done using
a variety of approaches (including convolutional neural nets), but
we found Hough circle detection to be the most efficient and
robust. Detected nuclear or membrane feature coordinates on
two-dimensional stacks are then convolved into three-dimensional
space to build an interconnected graph. The second step then relies
on efficient spatial searching, which segments stack voxels based
on this graph. Delaunay triangulation was used for this search
algorithm.Once the voxels are assigned to nearest nuclear ormem-
brane centres, normalized intensity of nuclear ormembrane stain is
used to classify them as cytoplasmic. Then the algorithmmeasures
all fluorescence markers in the voxels designated by type (nuclear,
cytoplasmic or membrane).
Ethics. All animal experiments were carried out according to UK
Home Office project licence PPL 30/3155 and 30/2887 compliant
with the UK Animals (Scientific Procedures) Act 1986 and approved
by the local Biological Services Ethical Review Process.
Data accessibility. The software and graphical user interface were written
in MATLAB (v. 2015b, Mathworks) and compiled using the in-built
compiler for Mac OSX and Windows operating systems (available
at https://process.innovation.ox.ac.uk/software/p/13299a/silent-
mark-academic/1).
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