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Abstract 

Background:  This study aimed to screen the feature modules and characteristic genes related to ulcerative colitis 
(UC) and construct a support vector machine (SVM) classifier to distinguish UC patients.

Methods:  Four datasets that contained UC and control samples were obtained from the Gene Expression Omni-
bus database. Differentially expressed genes (DEGs) with consistency were screened via the MetaDE method. The 
weighted gene coexpression network (WGCNA) was used to distinguish significant modules based on the four 
datasets. The protein–protein interaction network was established based on intersection genes. Enrichment analysis 
of Gene Ontology (GO) biological processes (BPs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment were established based on DAVID. An SVM combined with recursive feature elimination was also applied 
to construct a disease classifier for the disease diagnosis of UC patients. The efficacy of the SVM classifier was evalu-
ated through receiver operating characteristic curves.

Results:  Twelve highly preserved modules were obtained using the WGCNA, and 2009 DEGs with significant consist-
ency were selected using the MetaDE method. Sixteen significantly related GO BPs and 12 KEGG pathways were 
obtained, such as cytokine-cytokine receptor interaction, cell adhesion molecules, and leukocyte transendothelial 
migration. Subsequently, 41 genes were used to construct an SVM classifier, such as CXCL1, CCR2, IL1B, and IL1A. The 
area under the curve (AUC) was 0.999 in the training dataset, whereas the AUC was 0.886, 0.790, and 0.819 in the 
validation set (GSE65114, GSE37283, and GSE36807, respectively).

Conclusions:  An SVM classifier based on feature genes might correctly identify healthy people or UC patients.

Keywords:  Ulcerative colitis, Weighted gene coexpression network analysis, Feature genes, Protein–protein 
interaction
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Background
Ulcerative colitis (UC) is an inflammatory intestinal dis-
ease characterized by easy recurrence and chronic persis-
tence [1]. The lesion site is mainly confined to the large 
intestine mucosa and submucosa. Mucosal inflammation 

at the onset site has diffuse distribution and extends to 
the rectum. The main clinical manifestations are abdomi-
nal pain, diarrhea, and mucinous pus bloody stool. It is 
easy to cause intestinal fibrosis and increase colon can-
cer risk [2]. Medical circles at home and abroad hope to 
make achievements in UC treatment, but its etiology is 
still unclear and its pathogenesis is complex, so it is listed 
as one of the modern refractory diseases by the World 
Health Organization [3, 4].
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With the development of high-throughput microarray 
technology, the identification of genomic variation has 
been promoted, which will help to understand the patho-
genesis of potential biomarkers in many diseases [5]. 
Kang et al. [6] reported that the diagnosis of UC is usu-
ally delayed, but the relationship between delayed diag-
nosis and prognosis of UC has not been widely studied. 
Biasci et al. [3] reported that genes from the best classifi-
ers are optimized by quantitative polymerase chain reac-
tion (qPCR) and the best qPCR classifier is distinguished 
using further machine learning, which could evaluate the 
prognosis of newly diagnosed UC patients. In previous 
years, research has identified many molecular markers 
that could help in the early diagnosis of UC. For exam-
ple, Zhang et  al. [7] reported that IL6, PTPRC, CXCL8, 
IL1B, and MMP9 might be the key genes that could pro-
vide vital markers for the early diagnosis and treatment 
for UC. Zhu et al. [8] found several genes associated with 
the development of UC, such as MMP1, REG1A, and 
AQP8. Yan et al. [9] found 11 mutated genes differentially 
expressed in UC samples, such as APC, APOB, MECP2, 
NCOR2, and USP48. All these reports suggested that fea-
ture genes might play an important role in the diagnosis 
of UC.

Thus, in this study, the weighted gene coexpression net-
work (WGCNA) was used to distinguish stable modules 
from four datasets. Then, the protein–protein interac-
tion (PPI) network was constructed through differentially 
expressed genes (DEGs) in stable modules. A support 
vector machine (SVM) combined with recursive feature 
elimination (RFE) was also applied to construct a disease 
classifier for the disease diagnosis of UC patients.

Methods
Screening of expression profile data
“Ulcerative colitis” and “Human” were used as keywords 
to search all publicly uploaded expression profile data 
from the National Center for Biotechnology Information 
Gene Expression Omnibus database (http://​www.​ncbi.​
nlm.​nih.​gov/​geo/). This study contained four datasets: 
GSE65114 (n = 28; 16 UC and 12 control), GSE36807 
(n = 22; 15 UC and 7 control), GSE37283 (n = 20; 15 
UC and 5 control), and GSE59071 (n = 108; 97 UC and 
11 control). The selection standards of datasets were as 
follows: [1] the dataset was a gene expression profile, [2] 
the samples are solid samples of intestinal tissue from UC 
patients, and [3] the samples contained control samples. 
Microarray raw data (GPL570, CEL files) from the four 
datasets were obtained from the Affymetrix platform 
(Santa Clara, CA, USA), which were processed for back-
ground correction (MAS) and quantile normalization 
using Affy package in R3.4.1 version 1.60.6 (http://​www.​

bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​affy.​html) 
[10].

Meta‑analysis of DEGs
Unlike methods of screening DEGs in previous stud-
ies, the meta-synthesis algorithm was adopted to screen 
DEGs with consistency in multiple datasets. The meta-
analysis aimed to cite multiple studies, collect multi-
ple experimental datasets, and screen for reliable genes. 
However, the four datasets in this study were obtained 
from different patient samples and experimental detec-
tion. There may be different degrees of bias in the dataset; 
thus, MetaQC (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​
MetaQC/​index.​html) was first used to carry out objective 
quality-control on the datasets combined with principal 
component analysis (PCA) two-dimensional map and 
standardized mean rank to evaluate and screen datasets.

DEGs were then screened by MetaDE.ES in the 
MetaDE package (https://​cran.r-​proje​ct.​org/​web/​packa​
ges/​MetaDE) [11]. To evaluate gene expression consist-
ency, the heterogeneity of the four datasets was checked 
through the τ2, Q value, and Qpval values (judgment 
criteria: when the value of the statistic τ2 is 0), it indi-
cates that each research object is homogeneous and 
unbiased; the statistic Q obeys the χ2 test with a degree 
of freedom of k-1; when Qpval > 0.05, it indicates that 
each research object is homogeneous and unbiased). 
τ2 = 0 and Qpval > 0.05 were selected as homogeneity test 
parameters, whereas false discover rate (FDR) < 0.05 was 
as the threshold for differential gene expression. DEGs 
with consistency in different groups were detected using 
the MetaDE method with the cutoff criterion of p < 0.05. 
FDR was obtained through multiple test corrections. 
FDR < 0.05 indicated a significant difference. Each indi-
vidual dataset was calculated separately to express the 
fold change. Genes were kept consistent by combining 
with log2FC orientation in each dataset.

Significant gene module based on the WGCNA
In this study, GSE59071 was used as the training dataset 
and GSE65114, GSE36807, and GSE37283 were used as 
the validation datasets. WGCNA package version 1.61 
(https://​cran.r-​proje​ct.​org/​web/​packa​ges/​WGCNA/​
index.​html) [12] in R3.4.1 was applied to select the signif-
icant gene module associated with UC in the four data-
sets. The WGCNA algorithm is implemented according 
to the steps of defining adjacency function, dividing gene 
modules, and evaluating module stability. The threshold 
of gene module partition and screening is that the gene 
module contains at least 100 genes with a cut height of 
0.995. Genes in the important modules were selected as 
the object for further analysis.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.bioconductor.org/packages/release/bioc/html/affy.html
http://www.bioconductor.org/packages/release/bioc/html/affy.html
https://cran.r-project.org/web/packages/MetaQC/index.html
https://cran.r-project.org/web/packages/MetaQC/index.html
https://cran.r-project.org/web/packages/MetaDE
https://cran.r-project.org/web/packages/MetaDE
https://cran.r-project.org/web/packages/WGCNA/index.html
https://cran.r-project.org/web/packages/WGCNA/index.html
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Screened DEGs were mapped to each WGCNA mod-
ule to calculate the fold enrichment ratio and the p value 
of target DEGs in each WGCNA module using the hyper-
geometric algorithm. The formula is f(k,N,M,n) = C(k,M) 
* C(n-k,N-M) / C(n,N) [13], where N represents all genes 
referred to the analysis of the WGCNA algorithm, M 
is the gene number in each module obtained by the 
WGCNA algorithm, n is the number of obvious DEGs, 
and k is the DEG number mapped to the corresponding 
modules. The significant enrichment parameters fold 
enrichment and enrichment significance p values of the 
target significant DEGs were calculated in each WGCNA 
module. The threshold was set as p < 0.05 and fold enrich-
ment > 1. Finally, DEGs markedly enriched in the sta-
ble WGCNA module obtained from the screening were 
compared to consistent and significant DEGs selected in 
the previous step, and the intersection part was taken. 
Enrichment analysis of Gene Ontology (GO) biological 
processes (BPs) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment were established 
based on DAVID version 6.8 (https://​david.​ncifc​rf.​gov/) 
[14, 15] with a cutoff of p < 0.05.

PPI network construction
STRING version 10.5 (https://​string-​db.​org/) [16] was 
applied to search for the interaction between gene prod-
ucts and proteins used for constructing the PPI network. 
The gene interaction network was visualized through 
Cytoscape version 3.6.1 (http://​www.​cytos​cape.​org/) [17]. 
The KEGG pathways of DEGs that constitute the interac-
tion network were analyzed based on DAVID.

Screening of key genes related to UC
All KEGG pathways associated with UC were searched 
from the Comparative Toxicogenomics Database 2019 

Table 1  The information in GSE65114, GSE36807, GSE37283 and 
GSE59071 datasets

UC: Ulcerative colitis; CTRL: control

ID Platform Total sample 
number

UC CTRL

GSE65114 GPL16686 28 16 12

GSE36807 GPL570 22 15 7

GSE37283 GPL13158 20 15 5

GSE59071 GPL6244 108 97 11

Fig. 1  (A) PCA principal component plan. MetaQC quality-control chart of GSE65114, GSE36807, GSE37283, and GSE59071 datasets. Horizontal and 
vertical axes indicate the first and second principal components in the PCA, respectively, whereas 1 to 4 represent the four corresponding datasets. 
(B) Heatmap of DEGs with significant consistency

https://david.ncifcrf.gov/
https://string-db.org/
http://www.cytoscape.org/
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Table 2  Preservation information of nine co-expression modules in GSE65114, GSE36807, GSE37283 and GSE59071 datasets

DEGs: differentially expressed genes

ID Color Module size Preservation infor #DEGs Enrichment infor

Z-score p Value Enrichment fold [95%CI] Phyper

Module 1 Black 266 10.0865 5.10E−14 78 1.468 [1.116–1.914] 4.97E−03

Module 2 Blue 441 18.1473 8.50E−27 116 1.317 [1.053–1.637] 1.34E−02

Module 3 Brown 433 11.0851 3.50E−13 115 1.329 [1.062–1.655] 1.08E−02

Module 4 Green 386 11.0543 7.30E−46 40 0.519 [0.363–0.725] 4.20E−05

Module 5 Greenyellow 105 0.3610 7.40E−02 14 0.668 [0.351–1.177] 1.72E−01

Module 6 Grey 2037 8.0314 1.00E−200 259 0.637 [0.549–0.737] 3.47E−10

Module 7 Magenta 130 2.2262 4.10E−03 17 0.655 [0.368–1.095] 1.15E−01

Module 8 Pink 170 1.9442 1.60E−03 15 0.442 [0.241–0.753] 1.19E−03

Module 9 Purple 115 5.0647 1.60E−06 3 0.131 [0.0265–0.392] 2.07E−06

Module 10 Red 278 14.0746 2.60E−13 100 1.801 [1.405–2.294] 3.17E−06

Module 11 Turquoise 585 12.9525 2.50E−38 145 1.241 [1.016–1.509] 3.28E−02

Module 12 Yellow 392 15.9048 1.10E−15 164 2.095 [1.715–2.551] 8.57E−13

Fig. 2  (A) Power selection graph of the adjacency matrix weight parameter. The horizontal axis indicates the weight parameter power; the vertical 
axis indicates the square of the correlation coefficient between log(k) and log[p(k)] in the corresponding network. The red line represents the 
standard line where the square of the correlation coefficient reaches 0.9. (B) Schematic diagram of the average gene connectivity under different 
power parameters. The red line represents the value of the average connectivity of network nodes under the power parameter value of the 
adjacency matrix weight parameter in (A). (C) Correlation graph of the expression levels on the training and validation datasets. (D) Training and 
validation dataset node connection correlation graph
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update (http://​ctd.​mdibl.​org/) [18], which were compared 
to the pathways in the PPI network. A PPI network of 
KEGG pathways directly related to UC and screened key 
genes involved in the UC pathways was constructed.

Construction of the sample‑type recognition classifier
In the GSE59071 training dataset, the RFE, R3.4.1 caret 
package version 6.0–76 (https://​cran.r-​proje​ct.​org/​web/​
packa​ges/​caret) [19, 20], was applied to screen optimized 
feature gene combinations. The gene combination with 
the highest sample recognition accuracy in 100-fold 
cross-validation was selected as a feature gene combina-
tion [21]. The SVM [21] function in the e1071 package 
of R3.4.1 version 1.6–8 (https://​cran.r-​proje​ct.​org/​web/​
packa​ges/​e1071) was used to establish the SVM classifier 
for further analysis. The effectiveness of the SVM classi-
fier was evaluated in the training dataset and three vali-
dation datasets. pROC package version 1.12.1 (https://​
cran.r-​proje​ct.​org/​web/​packa​ges/​pROC/​index.​html) [22] 

in R3.4.1 was applied to obtain sensitivity, specificity [23], 
and area under the curve (AUC) [24].

Results
Screening of DEGs with significant consistency 
by meta‑analysis
First, we perform data standardization on each of the 4 
datasets, which was shown in Additional file 1: Table 1. 
A total of 16,337 genes were obtained from the four data-
sets. MetaQC quality-control inspection was conducted 
on the four datasets (Table 1). The PCA principal com-
ponent plan is shown in Fig. 1A, indicating that the four 
datasets are evenly distributed. The sum of PC1 and PC2 
was 80.90%, and these indexes met the data quality test-
ing standards that should be included in subsequent anal-
ysis. Subsequently, 2009 DEGs with obvious consistency 
were screened from the four datasets for the next analy-
sis (Additional file 2: Table 2). In Fig. 1B, DEGs screened 

Table 3  GO functional and KEGG pathway enrichment analysis of 718 overlapping genes

Category Term Count p Value FDR

Biology process GO:0,006,955 ~ immune response 78 8.620E−18 2.280E−14

GO:0,006,952 ~ defense response 62 7.320E−12 9.700E−09

GO:0,006,954 ~ inflammatory response 40 2.470E−10 2.180E−07

GO:0,009,611 ~ response to wounding 53 4.300E−10 2.850E−07

GO:0,032,963 ~ collagen metabolic process 11 4.540E−08 2.410E−05

GO:0,050,865 ~ regulation of cell activation 25 5.980E−08 2.640E−05

GO:0,042,330 ~ taxis 23 2.040E−07 6.750E−05

GO:0,006,935 ~ chemotaxis 23 2.040E−07 6.750E−05

GO:0,044,236 ~ multicellular organismal metabolic process 11 8.820E−07 2.600E−04

GO:0,051,249 ~ regulation of lymphocyte activation 21 9.650E−07 2.560E−04

GO:0,002,694 ~ regulation of leukocyte activation 21 5.860E−06 1.412E−03

GO:0,002,683 ~ negative regulation of immune system process 14 1.550E−05 3.412E−03

GO:0,007,155 ~ cell adhesion 51 1.690E−05 3.448E−03

GO:0,022,610 ~ biological adhesion 51 1.730E−05 3.276E−03

GO:0,006,968 ~ cellular defense response 12 1.780E−05 3.140E−03

GO:0,050,864 ~ regulation of B cell activation 11 1.990E−05 3.297E−03

KEGG pathway hsa04514:Cell adhesion molecules (CAMs) 18 2.450E−06 1.990E−04

hsa04060:Cytokine-cytokine receptor interaction 27 4.490E−06 3.640E−04

hsa04660:T cell receptor signaling pathway 14 2.590E−05 2.098E−03

hsa00910:Nitrogen metabolism 6 5.340E−05 4.325E−03

hsa04670:Leukocyte transendothelial migration 14 5.670E−05 4.592E−03

hsa04062:Chemokine signaling pathway 18 1.140E−04 9.204E−03

hsa04512:ECM-receptor interaction 10 2.510E−04 2.031E−02

hsa04640:Hematopoietic cell lineage 10 2.880E−04 2.333E−02

hsa04630:Jak-STAT signaling pathway 14 4.730E−04 3.828E−02

hsa04650:Natural killer cell mediated cytotoxicity 12 5.660E−04 4.588E−02

hsa04210:Apoptosis 9 5.680E−04 4.604E−02

hsa04672:Intestinal immune network for IgA production 6 6.030E−04 4.885E−02

http://ctd.mdibl.org/
https://cran.r-project.org/web/packages/caret
https://cran.r-project.org/web/packages/caret
https://cran.r-project.org/web/packages/e1071
https://cran.r-project.org/web/packages/e1071
https://cran.r-project.org/web/packages/pROC/index.html
https://cran.r-project.org/web/packages/pROC/index.html
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from four different datasets were consistent in the degree 
of difference and direction of maladjustment.

Identification of vital WGCNA modules
This study aimed to distinguish UC-related modules 
through the WGCNA. GSE59071 was the training data-
set, whereas GSE65114, GSE36807, and GSE37283 were 
the validation datasets. Both training and validation 
datasets had a high positive correlation, and the correla-
tion significance p values were < 0.05, a very significant 
positive correlation, indicating that the data are compa-
rable (Fig.  2). Gene correlation coefficients were calcu-
lated from the four datasets. The correlation coefficients 

between GSE59071 and GSE65114, GSE36807, and 
GSE37283 were 0.81, 0.52, and 0.52, with p < 1e-200 
among the three datasets. These data expressed good 
homogeneity of DEGs in the four datasets (Additional 
file 3: Table 3).

Twelve modules were screened through the WGCNA 
with a cut height of 0.995, and the amount of genes in 
each gene network was 25 as a criterion (Fig. 3A). Genes 
were colored based on the module color in the training 
dataset (Fig. 3).

The preservation Z score analysis was used to evaluate 
the stabilization of the 12 modules (Table 2). The Z scores 
of nine modules (black, blue, brown, green, gray, purple, 
turquoise, red, and yellow) were observed to be > 5 with 
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p < 0.05. This result expressed that the nine modules were 
stable. Correlation analysis was performed between each 
stable module and UC characterization, as shown in 
Fig. 4. For example, black, gray, and yellow modules were 
positively related to UC, whereas turquoise, green, and 
yellow modules were negatively correlated with UC.

A total of 1066 overlapping genes were screened 
through the comprehensive analysis of MetaDE and 
WGCNA (Fig. 5A; Table 2). Moreover, 78, 116, 115, 100, 
145, and 164 overlapping genes from black, blue, brown, 
red, turquoise, and yellow modules were screened, 
respectively, whose fold enrichment were all > 1 and their 
p values were < 0.05 (Fig.  5B, Additional file  4: Table  4). 
Sixteen GO BPs and 12 KEGG pathways were screened, 
such as immune response, cytokine-cytokine receptor 
interaction, cell adhesion molecules (CAMs), and so on 
(Table 3).

Construction of the PPI network
The PPI network was established based on 718 overlap-
ping genes. A total of 809 paired PPI interactions were 
obtained in this PPI network (Additional file 5: table 5). 
The network contained 329 nodes and 809 connection 
edges, as shown in Fig.  6. The KEGG pathway enrich-
ment analysis was conducted on gene nodes that con-
stitute the interaction network, and nine pathways with 
significant enrichment correlation were obtained, such as 
cytokine-cytokine receptor interaction, CAMs, leukocyte 
transendothelial migration, and so on (Table 4).

Screening of important genes related to UC
A total of 157 KEGG pathways related to UC were 
selected by searching the UC database (Additional file 6: 
table 6). Nine overlapping pathways were obtained com-
pared to KEGG pathways related to PPI interactions 
(Table 4), such as cytokine-cytokine receptor interaction, 
CAMs, leukocyte transendothelial migration, chemokine 
signaling pathway, extracellular matrix (ECM)-receptor 
interaction, T-cell receptor signaling pathway, Jak-STAT 
signaling pathway, natural killer cell-mediated cytotox-
icity, and pathways in cancer. These KEGG pathways 
involved many genes involved in cytokine-cytokine 
receptor interaction (CXCL1, CCR2, IL1B, and IL1A), 
ECM-receptor interaction (COL4A2, COL4A1, COL6A3, 
COL3A1, and COL1A2), pathways in cancer (STAT5A 
and SP11), and leukocyte transendothelial migration and 
chemokine signaling pathway (ITK).

Construction of the sample‑type recognition classifier
A sample-type classifier was constructed based on 84 
gene expression levels in the pathway network con-
structed in the GSE59071 training dataset. From the 
RFE analysis, when the number of genes is 41, it has 
the highest accuracy of 0.965, which was used to estab-
lish an SVM classifier, such as CXCL1, CCR2, IL1B, 
IL1A, COL4A2, COL4A1, COL6A3, COL3A1, COL1A2, 
STAT5A, SP11, and ITK (Fig. 7, Additional file 7: table 7). 
Receiver operating characteristic (ROC) curves were 
applied to verify the efficacy of the SVM classifier (Fig. 8). 
The AUC was 0.999 in the GSE59071 dataset, whereas the 
AUC was 0.886, 0.790, and 0.819 in the validation dataset 
(GSE65114, GSE37283, and GSE36807, respectively).

Discussion
In this study, 12 highly preserved modules were screened 
through the WGCNA. A PPI network was also con-
structed based on 718 overlapping genes. Besides, an 
SVM classifier combined with RFE was applied to explore 
the characteristic genes and pathways. From the RFE 
analysis, when the number of genes is 41, it has the high-
est accuracy of 0.965. The AUC was 0.999 in the training 
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dataset, whereas the AUC was 0.886, 0.790, and 0.819 
in the validation dataset (GSE65114, GSE37283, and 
GSE36807, respectively).

SVM is one of the most accurate methods among all 
well-known data mining algorithms. It is a two-class 
classification algorithm that can support linear and 

nonlinear classification. In this study, an SVM classifier 
was constructed to identify UC patients. Previous stud-
ies have reported that SVM could identify UC patients. 
For example, Ding et  al. [24] used the SVM to classify 
healthy people or those with inactive colitis with a sen-
sitivity of 83.5% and 97.1%, respectively. Watanabe et al. 
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[25] used the SVM to evaluate the progress of UC-related 
neoplasms with an accuracy of 86.8% and 98.1%, respec-
tively. Compared to previous studies, the SVM classi-
fier constructed has better performance and potential 
applications.

An SVM classifier was established based on 41 genes 
involved in cytokine-cytokine receptor interaction 
(CXCL1, CCR2, IL1B, and IL1A), ECM-receptor inter-
action (COL4A2, COL4A1, COL6A3, COL3A1, and 
COL1A2), pathways in cancer (STAT5A and SP11), and 
leukocyte transendothelial migration and chemokine 

signaling pathway (ITK). Previous reports have indicated 
the vital role of gene-environment interaction in UC-
related disease. Boshagh et al. [26] found that CXCL1 is 
involved in the pathogenesis of UC. CXCL1 may be used 
as a therapeutic target for UC, although more studies 
using human samples are required. CCR2, a chemokine 
receptor, may influence the body by maintaining and 
expanding chronic inflammation due to the timely 
removal or neutralization of invading agents. Pei et  al. 
[27] found that PC3-secreted microprotein chemoat-
tracted Ly6C monocytes in a CCR2-dependent manner 

Fig. 7  Feature genes were screened via RFE analysis



Page 10 of 12Han et al. BMC Gastroenterol          (2021) 21:415 

by in situ chemotaxis and adoptive transfer experiments, 
which is an important molecule in UC. Previous studies 
have distinguished the interleukin-1 receptor antagonist 
gene allele 2 (IL-1RN*2) as a biomarker of susceptibil-
ity in UC [28]. Carter et al. [29] reported that IL-1RN*2 
was related to decreased IL-1ra protein and IL-1RN 
mRNA levels in the colonic mucosa by determining the 
IL1A and IL1B genotypes. A previous study reported 
that somatic mutations and altered pathways are one 
of the reasons why UC turns into cancer [30]. Besides, 
Yan et  al. [9] found that COL6A3 referred to apoptosis, 
and the phosphatidylinositol 3-kinase/Akt pathway is 

associated with nonsilent recurrent somatic mutations in 
UC. COL3A1 is a profibrogenic extracellular matrix gene. 
Wu [31] also indicated that COL3A1 was upregulated at 
the active/chronic inflammatory stages. Genetic variants 
in the region are associated with UC. Besides, Stadnicki 
et al. [32] found that ITK is significantly decreased in UC 
compared to noninflammatory controls. This report sug-
gested that the release of ITK during inflammation plays a 
role in UC. Although there are few studies focused on the 
association between COL4A2, COL4A1, COL1A2, and 
SP11 and UC, this finding will provide a theoretical basis 
for future research on therapeutic targets for UC. This 
work expressed that CXCL1, CCR2, IL1B, IL1A, COL4A2, 
COL4A1, COL6A3, COL3A1, COL1A2, STAT5A, SP11, 
and ITK may be potential markers for UC.

The surgical management of UC remains a difficult 
challenge, depending on the patient’s status (whether 
urgent, emergent, or elective) [33]. However, the defini-
tion of the best timing and procedure for each patient is 
the key for the management of UC patients [34]. Thus, 
the finding of novel biomarkers is important for man-
aging the time and procedure for UC patients. Lai et al. 
[35] indicated that six hub genes, including CXCR2 and 
CXCR1, were regarded as potential biomarkers for the 
classification of UC. Similarly, this study also found 11 
key biomarkers related to UC that might be helpful to 
determine the timing and procedure for UC patients. 

Table 4  The significantly associated KEGG pathways with the 
feature genes obtained by machine learning

Term Count p Value

hsa04060:Cytokine-cytokine receptor interaction 24 6.840E−05

hsa04514:Cell adhesion molecules (CAMs) 15 2.900E−04

hsa04670:Leukocyte transendothelial migration 13 1.150E−03

hsa04062:Chemokine signaling pathway 17 1.214E−03

hsa04512:ECM-receptor interaction 10 3.326E−03

hsa04660:T cell receptor signaling pathway 11 5.800E−03

hsa04630:Jak-STAT signaling pathway 13 1.077E−02

hsa04650:Natural killer cell mediated cytotoxicity 11 2.308E−02

hsa05200:Pathways in cancer 20 2.981E−02
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However, verification of these hub genes would need fur-
ther experiments that involve UC patient samples.

Conclusions
An SVM classifier based on feature genes could accu-
rately identify healthy people or UC patients. This study 
may provide new insights into the molecular mechanism 
of UC.
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