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Missing observations are always a challenging problem that we have to deal with in diseases that require follow-up. In hospital
records for vesicoureteral reflux (VUR) and recurrent urinary tract infection (rUTI), the number of complete cases is very low
on demographic and clinical characteristics, laboratory findings, and imaging data. On the other hand, deep learning (DL)
approaches can be used for highly missing observation scenarios with its own missing ratio algorithm. In this study, the effects
of multiple imputation techniques MICE and FAMD on the performance of DL in the differential diagnosis were compared.
The data of a retrospective cross-sectional study including 611 pediatric patients were evaluated (425 with VUR, 186 with rUTI,
26.65% missing ratio) in this research. CNTK and R 3.6.3 have been used for evaluating different models for 34 features
(physical, laboratory, and imaging findings). In the differential diagnosis of VUR and rUTI, the best performance was obtained
by deep learning with MICE algorithm with its values, respectively, 64.05% accuracy, 64.59% sensitivity, and 62.62% specificity.
FAMD algorithm performed with accuracy = 61:52, sensitivity = 60:20, and specificity was found out to be 61.00 with 3
principal components on missing imputation phase. DL-based approaches can evaluate datasets without doing preomit/impute
missing values from datasets. Once DL method is used together with appropriate missing imputation techniques, it shows
higher predictive performance.

1. Introduction

The unique guidelines have been developed for the differen-
tial diagnosis of diseases based on the literature and new
research results. These guidelines for diseases are prepared
by both evaluating multivariable mathematical model results
and clinical experiences. In this study, the prediction perfor-
mances of different statistical approaches for differential
diagnosis (which is very difficult to predict) were compared
in the presence of high incomplete data ratio on vesicouret-
eral reflux- (VUR-) recurrent urinary tract infection (rUTI)
database.

1.1. The Importance of VUR/rUTI Differential Diagnosis.
Vesicoureteral reflux is a congenital urinary tract anomaly
of urine from the bladder to the kidney which is diagnosed
mostly after an episode of recurrent urinary tract infection
[1, 2]. VUR affects 1-2% of children [3] and depending on
age is much higher among children with rUTI (15-70%)
[4]. VUR should be considered in children who have urinary
tract anomalies diagnosed by fetal ultrasonography and who
have recurrent UTI. VUR was detected in 25-40% of pediat-
ric patients with primary or recurrent UTIs [5]. When chil-
dren with VUR have recurrent urinary tract infections,
reflux nephropathy and renal dysfunction are more common
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[6]. About one-third of children with UTI are found to have
VUR. rUTI is a finding of VUR and causes delay of VUR
diagnosis due to differential diagnosis problem. This process
can result in kidney damage. Therefore, it is important to
make the diagnosis early.

Imaging methods are used for diagnosis in cases where
VUR is suspected. Voiding cystourethrography (VCUG) is
the gold standard radiographic exam to diagnose VUR [7].
Moreover, renal/bladder ultrasound (RBUS) which is a non-
invasive procedure is generally used as an initial screening
test to assess VUR. But diagnostic accuracy of RBUS is con-
troversial because RBUS has been reported with low sensitiv-
ity and specificity for diagnosing VUR in children with UTI
in some studies. Generally, the diagnostic value of ultrasound
with clinical and laboratory findings is not evaluated in many
studies [8–11].

The presence of renal scarring changes the management of
VUR. Early diagnosis of VUR should be performed to prevent
the development of renal scar, and prognosis of the patient
should be well monitored. Additionally, the accuracy of early
diagnosis and prognostic monitoring methods should be
known.

Recently, some different analytical methods such as an
artificial neural network (ANN) together are used to deter-
mine the accuracy of diagnostic tests and differential diag-
noses with classical approaches. Classical approaches and
some machine learning approaches lead to misinterpreta-
tions when incomplete data structures are encountered.
Therefore, in cases where the differential diagnosis is very
important and incomplete observations are inevitable
(such as differential diagnosis of VUR and rUTI), it is
important to increase the predictive power by using methods
together such as deep learning with multiple imputation
techniques [12].

1.2. Statistical Approaches for Differential Diagnosis. The dis-
covery of information from big data has gained importance
due to the development of computer technologies. Due to
the size of data and the variety of this data, classical statistical
approaches could not solve the problems of the researchers.
Therefore, machine learning and deep learning methods
have been popular in the medical field for researchers in
recent years.

Computerized algorithms have been created to ingest
rectangular datasets. In these datasets, rows represent obser-
vations and the columns represent variables. Matrices of
these datasets contain elements whose values are real num-
bers. In many datasets, due to some reasons, some of the ele-
ments of the matrix are not observed. That leads to a
dilemma for the analyst who is using techniques that require
a full data matrix. An analyst must make a decision about the
actual reason underlying unobserved variables. The easiest
way to provide this condition is to delete these observations
for analysts. It is almost impossible to obtain data without
loss observation in real life. The use of case-wise deletion
has led to large errors in the variance and covariance of the
estimates. The use of mean imputation for missing values
leads to large errors in variance estimates when variables
have linear relationships. Conversely, iterative imputation

provides the lowest errors and ANN and SVR are ranked
the lowest in data error reported [13].

Generally, missing data creates various problems, espe-
cially during the data preprocessing phase. First of all, the
absence of data reduces statistical power, which means the
possibility of rejecting the null hypothesis when the test is
false. Then, lost data can cause bias in estimating mass
parameters. Third but not last, there is a risk that the sample
will be less representative. Each of these problems will cause
the validity of the data obtained in difficult conditions to be
questioned. It will also cause the results of the research to
be unreliable [14]. Many statistical approaches have been
proposed to prevent missing data from causing such prob-
lems. The use of these approaches in classical statistical
hypothesis testing is common. However, how deep observa-
tion analysis, which is one of the new generation machine
learning methods, affects the predictive performance of the
missing observation has not been investigated sufficiently.
A comprehensive study will guide researchers, especially for
real clinical trials.

Missing data has always been a tough challenge in clinical
studies too. Decision-making processes based on accurate
information are highly dependent on the completeness of data
from the information source that can be obtained. However,
real-world data tends to be incomplete, noisy, and inconsis-
tent. In some cases, data could be lost, corrupted, or recorded
incompletely, which affects the quality of the data negatively.
Machine learning frameworks such as support vector
machines (SVM), artificial neural networks (ANN), random
forest (RF), and principal component analysis (PCA) cannot
be used for decision-making and data analysis if the dataset
is highly incomplete. Therefore, evaluating the data with the
right methods to cope with the missing observations is very
important in order to make correct inferences [15].

Medical records are major sources for epidemiological
and clinical research. However, it is almost impossible to
obtain datasets without missing values in the real clinical
applications. Missing data presents major challenges to
research by reducing viable sample size and introducing
potential biases through patient/case selection or imputation
[16, 17]. Also, evaluation of missing values in the dataset with
appropriate methods is important for the reliability of the
results of the research. Depending on various reasons, miss-
ing values occur in the datasets. These are defined as missing
completely at random (MCAR), missing at random (MAR),
and missing not at random (MNAR) [18].

To illustrate these three definitions, let us consider a data-
set of patients collected in a hospital. When a physician
decides not to measure the patients’ body temperature
because he/she can already see that the temperature is too
high, then we have the MNAR scenario—the decision of
not measuring the parameter depends on its actual value.
On the other hand, if the temperature is systematically mea-
sured, but sometimes data registration process malfunctions
(independently on the measured values), then we have the
MCAR scenario. Finally, when the physician has a habit of
not measuring the temperature of patients with high blood
pressure (and blood pressure is always registered), then we
have a MAR scenario [19].
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Previously, when many missing data are observed in the
data, the rate of missing observation is tried to be reduced
by deleting the observation or by simple assignment tech-
niques. As computational resources have increased, complex
multiple imputation techniques have become applicable.
Multiple imputation has a number of advantages over these
other missing data approaches. Multivariate imputation by
chained equations (MICE) algorithm is frequently used in
hybrid missing datasets. High prediction performances are
obtained by imputation of missing values in categorical and
continuous data with the use of this method [20].

One of the other frequently used imputation techniques
in mixed data is the factor analysis of mixed data (FAMD)
algorithm. In this method, the number of components that
may be suitable for the data is determined and the imputa-
tion of missing values is assigned [21].

Zhang conducted his study by using MIMIC-II data-
base involving >30000 patients and he generated 150
patients with simulation. There were roughly 30% missing
values in the lactate variable. The MICE technique was
used for the simulated dataset [22]. Schmitt et al. com-
pared six methods for missing data imputation in their
study. Comparison was performed on four real datasets
of various sizes (from 4 to 65 variables), under a missing
completely at random (MCAR) assumption. Mean pro-
duced the largest number of hits with more than 21000
results, followed by MICE, SVD (singular value decompo-
sition), and KNN (k-nearest neighbour) (17600, 14500,
and 12700, respectively) [23].

Fisher’s Iris data, Pima Indian data, Prostate cancer data,
and wine datasets were used for comparison of imputation
methods using mean, median, KNN, IRMI (Iterative Robust
Model-based Imputation), FAMD, and HotDeck algorithms.
FAMD had similar percentages of the observations correctly
classified regardless of the amount of missingness in the
data [24].

Leha et al. used to predict pulmonary hypertension
based on a broader set of echocardiographic data with little
reliance on estimated RAP (right atrial pressure) compared
to an existing formula with noninferior performance via five
(random forest of classification trees, random forest of
regression trees, lasso penalized logistic regression, boosted
classification trees, and support vector machines) machine
learning algorithms [25]. Before applying the ML algo-
rithms, missing values were imputed using the “iterative
FAMD algorithm” and extract components were obtained
explaining most of the variance [21]. ML algorithms pro-
vided high prediction accuracy with random forest of regres-
sion trees (AUC 0.87).

Apart from these studies, deep learning- (DL-) based
approaches have become one of the most popular methods
of recent years due to the increase in computer technologies
and providing solutions to problems that researchers con-
sider impossible in data. DL-based approaches can analyze
the dataset without doing preomit/impute missing values
from dataset [26, 27]. In this study, the effects of multiple
imputation techniques MICE and FAMD on the perfor-
mance of deep learning algorithm in the differential diagno-
sis for VUR and rUTI were compared.

2. Materials and Methods

2.1. Materials. In this retrospective cross-sectional study, 611
pediatric patients who had been admitted to Ege University,
Faculty of Medicine Pediatric Nephrology, Outpatient Clinic
and Tepecik Education and Research Hospital in Turkey,
were included. Informative data about the patients were
obtained from hospital records and patient files. The conver-
sion of records into data was carried out by pediatric
nephrologists in the research study team, and a database
was created by the same team. Therefore, data collection
and database have a consistent information [28]. The vari-
ables determined by the nephrologists for the study were pre-
sented in Table 1.

2.2. Methods. In this study, MICE and FAMD multiple
assignment methods against deep learning algorithm estima-
tion performance in missing data were evaluated for the dif-
ferential diagnosis of VUR and rUTI, which are the most
confused and difficult to distinguish in the clinic. Data store
starts once patient’s laboratory or USG test is performed only
at the request of the clinician. In order to diagnose VUR or
rUTI, the physician evaluates physical findings, imaging,
and laboratory examinations of all patients. Therefore, miss-
ing values in the patient’s files satisfy the MCAR or MAR
preassumptions.

2.2.1. MICE. Disregarding incompleteness or handling the
data unsuitably may bias study results, decrease power and
efficiency, and alter important risk/benefit relationships.
Hence, classical techniques like single imputations are gener-
ally inappropriate due to the loss of precision and risk of bias
[29]. Multiple imputations by multivariate imputation by
chained equations method (“MICE”) are a powerful and sta-
tistically valid method for creating imputations in large data-
sets which include both categorical and continuous variables.
Also, MICE is one of the most frequent methods used to
replace missing data values in a dataset under certain
assumptions about the data missingness mechanism [30,
31]. MICE has come out in the statistical literature as one
principled method of addressing missing data, called “fully
conditional specification” or “sequential regression multiple
imputations.” MICE works under the assumption that given
the variables used in the imputation procedure, the missing
data are missing at random (MAR), which means that the
probability that a value is missing depends only on observed
values and not on unobserved values [30]. But implementing
MICE when datasets are not appropriate for MAR or MCAR
could result in biased estimates.

The steps of MICE process are as follows.

Step 1. A simple imputation such as “mean” is performed for
each missing value in the dataset. These “mean” imputations
can be thought of as “place holders.”

Step 2. The “place holder”mean imputations for one variable
(“var”) are set back to missing.
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Step 3. The observed values from the variable “var” in Step 2
are regressed on the other variables in the imputation model,
and “var” is the dependent variable in a regression model.
The remaining variables are independent variables in the
regression model. These regression models work under the
same assumptions that one would make when performing
linear, logistic, or Poisson regression models outside of the
context of imputing missing data.

Step 4. Then, missing values for “var” are replaced with pre-
dictions (imputations) from the regression model. When
“var” is subsequently used as an independent variable in the
regression models for other variables, both the observed
and these predicted (imputed) values will be used.

Step 5. Steps 2–4 are then repeated for each variable that has
missing data. The cycling through each of the variables con-
stitutes a “cycle.” At the end of one cycle, all of the missing
values have been replaced with predictions from regressions.

Step 6. Steps 2–4 are repeated for a number of cycles, with the
imputations being updated at each cycle [32].

The MICE algorithm can impute mixes of continuous,
binary, unordered categorical and ordered categorical data.
MICE is very flexible in multiple imputation procedures,
and it can be used in a broad range of settings. Because mul-
tiple imputations involve creating multiple predictions for
each missing value, the analyses of multiply imputed data
consider the uncertainty in the imputations and yield accu-
rate standard errors [32]. On a simple level, if there is not
much information in the observed data (used in the imputa-
tion model) regarding the missing values, the imputations
will be very variable, leading to high standard errors in the
analyses. In contrast, if the observed data are highly predic-
tive of the missing values, the imputations will be more con-
sistent across imputations, resulting in smaller, but still
accurate, standard errors (Figure 1) [33].

2.2.2. FAMD. Factor analysis of mixed data (FAMD) is a
principal component method which balances the influence
of all the variables that are continuous and categorical in
the construction phase of the dimensions of variability. It
can be identified as a harmonization of PCA (principal com-
ponent analysis) and MCA (multiple correspondence

Table 1: The variables used in deep learning and multiple imputation techniques.

Clinical variables Laboratory variables USG variables

Diagnosis(VUR/rUTI) ud-density(c) USG-R-grade (ordinal:0,1,2)

Sex(cat: male/female) b-leukocyte(c) USG-L-grade(ordinal: 0,1,2)
Age(c) ud-nitrite(cat:Y/N) USG-R/L hydronephrosis (cat: Y/N)

Fever(cat: Y/N) ud-l.esterase(cat: Y/N) USG-bladder wall thickening(cat: Y/N)
Emesis(catty/N) ud-protein(cat: Y/N) USG-bladder diverticulum(cat: Y/N)

Incontinence(cat: Y/N) us-erythrocyte(cat: Y/N) USG-ureter dilatation R/L (cat: Y/N)

Stomachache(cat: Y/N) us-leukocyte(cat: Y/N)
Urgency(cat: Y/N) ud-leukocyte(cat: Y/N)
Frequent urination(cat: Y/N) us-bacteria (cat: Y/N)

Dysuria(cat: Y/N) ud-erythrocyte(cat)
Restlessness(cat: Y/N) b-thrombocyte(c)
Anorexia(cat: Y/N) b-urea(c)
UTI in history(cat: Y/N) b-creatinine(c)
Prolonged neonatal jaundice(cat: Y/N)
Scar(cat: Y/N)
All categorical variables are defined as binary (cat: Y/N, yes/no, and sex, cat: male/female). c: continuous variable; cat: categorical variable; rUTI: recurrent
urinary tract infection; ud: urine dipstick; us: urine sediment; USG: ultrasonography; b: blood; R: right; L: left; u-le: urine-leukocyte esterase.

Incomplete
 dataset 

Imputed dataset Results of analysis

Final results
Pool ()

With ()

Dataframe

Mice ()

Figure 1: Multiple imputation via MICE package.
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analysis). The aim of using these methods is to find similari-
ties between individuals, the relationships between variables
(here continuous and categorical variables), and to link the
study of the individuals with that of the variables. These
methods reduce the dimensionality of the data and provide
the subspace that best represents the dataset. Continuous
variables of the dataset are scaled to unit variance, and the
categorical variables are transformed into a disjunctive data
table and then scaled using the specific scaling of MCA. This
procedure provides balancing of the influence of both contin-
uous and categorical variables in the analysis. FAMDmethod
allows one to study the similarities between individuals con-
sidering different types of variables and to study the relation-
ships between all the variables. It also ensures graphical
outputs, representation of the individuals, the correlation cir-
cle for the continuous variables and representations of the
categories of the categorical variables, and also specific
graphs to visualize the associations between both types of
variables [21].

The steps of the FAMD algorithm are as follows.
We represent using I as the number of individuals, N1

the number of continuous variables, N2 the number of
categorical variables, and N =N1 +N2 the total number
of variables.

Step 1. Coding the categorical variables using the indicator
matrix of dummy variables. In XIxJ matrix, continuous vari-
ables are shown with ðxjÞ1≤j≤N1

and dummy variables are

shown with ðxjÞN1+1≤j≤J
. The total number of column is J =

N1 +∑N
n=N1+1qn, where qn is the number of categories of the

variable n.

Step 2. This step is defined as the weighting step and each
continuous variable (xj) is divided by its standard deviation
ðsjÞ. Thus, standardized values are obtained. Also, each
dummy variable is divided by

ffiffiffiffi

pj
p

, where pj denotes the

proportion of individuals that take the category j ðj =N1 +
1,⋯,NÞ:

Step 3. FAMD consists in performing a PCA on the weighted
matrix XD−1/2

∑ . In this weighted matrix, D∑ is defined as s2x1,
⋯, s2xN1

, pN1+1,⋯, pj,⋯, pJ . XD−1/2
∑ −G, singular value

decomposition (SVD) of the matrix with GIxJ the matrix with
each row equals to the vector of the means of each column of
XD−1/2

∑ . The first S dimensions of variability are preserved as
in any principal component methods.

The specific weighting implies that the distances between
two individuals i and i′ in the initial space are as follows:

d2 i, i′
� �

= 〠
N1

n=1

xin−xi ′n

� �2

s2xn
+ 〠

J

j=N1+1

1
pj

xij − xi′ j
� �2

: ð1Þ

Weighting by 1/s2xn keeps that units of continuous vari-
ables do not influence the (square) distance between individ-
uals (Figure 2) [34, 35].
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Figure 2: FAMD factor map. Analyzing mixed data [36].
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2.2.3. Deep Learning.Having missing values is a much known
problem in statistical analysis. Most of the statistical methods
cannot be directly applied on an incomplete dataset due to
their mathematical assumptions. Deep learning-based
approaches can evaluate the datasets without doing preomi-
t/impute missing value from dataset [37].

Deep learning is an artificial intelligence function that imi-
tates the workings of the human brain for processing data and
creating patterns for use of decision-making. Deep learning is
a subset of machine learning in artificial intelligence (AI) that
has a network architecture. These networks are capable of
learning data with unsupervised approach from unstructured
or unlabeled format. During the training process, algorithms
use unknown elements in the input distribution to extract fea-
tures, group objects, and discover useful data patterns. Much
like training machines for self-learning, this occurs at multiple
levels, using the algorithms to build the models.

Deep learning requires the use of many hidden neurons
and layers with new trainingmodels as an architectural advan-
tage (Figure 3). The use of a large number of neurons allows a
comprehensive representation of the available raw data. Add-
ing more hidden layers to the neural network allows hidden
layers to capture nonlinear relationships. When the neural
network is optimally weighted, there is effective high-level rep-
resentations of obtained raw data or images [38, 39].

Deep learning models have important hyperparameters
such as learning rate, batch size, and epoch. Finding the best
configuration of these hyperparameters in a high dimensional
space directly affects the performance of the estimations.

(1) Gradient Descent. This optimization technique is widely
used in the training of machine learning algorithms. The main
purpose of training machine learning algorithms is to adjust
the weights “w” of variables (inputs) to minimize loss or cost.
This cost “J ðwÞ” represents the performance of the model and
optimal parameters may obtain by minimizing the cost func-
tion (Figure 4).

(2) Learning Rate. Gradient descent algorithms multiply the
gradient (slope) by a scalar known as the learning rate to
determine the next point, and weights are updated during
training according to the learning rate.

(3) Batch Size and Epoch. One “epoch” is completed when an
entire dataset is passed forward and backward through the
neural network exactly one time.

The “batch” size is defined as a hyperparameter of gradi-
ent descent that controls the number of training samples to
work through before the model’s internal parameters are

Deep learning Deep autoencoder [40]

Input Output
Encoder Decoder

Sigmoid

relu

Z

X X'

VUR
Not VUR

Feature extraction + classification

Figure 3: Deep learning. Deep autoencoder [40].

Loss function plot Learning rates

Cost
J(w)

Cost
J(w)

Initial weight

Gradient

Large
learning rate

Small
learning rate

Global cost minimum

Weight (w) Weight (w)

Figure 4: Hyperparameters of deep learning algorithm [41].
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updated. The number of iterations is equivalent to the num-
ber of batches needed to complete one epoch. When a dataset
includes 500 cases split into minibatches of 50 cases, it will
take 10 iterations to complete a single epoch [41].

2.2.4. CNTK. Depending on the increasing data sources and
the size of the data in the medical field, classical statistical
approaches were insufficient in the analysis of large and com-
plex structured data. The need for computer-aided systems
that can evaluate clinical, laboratory, imaging, and genetic
data together for the diagnosis and prognosis of diseases as
well as analyze complex databases for planning healthcare
services has increased. CTNK (Microsoft Cognitive Toolkit)
provides that it enables the researcher to estimate the diagno-
sis and prognosis very quickly in databases with large and
complex relationships. CNTK is a deep learning framework
developed by Microsoft Research. CNTK describes neural
networks as a series of computational steps via a directed
graph [42]. Several industry-leading low-level deep learning
libraries (Microsoft Cognitive Toolkit (CNTK), Tensorflow,
Caffe, Torch, and MXNet) are used to support GPU acceler-
ation. Besides the support of languages such as CNTK,
Python, and C ++, it is highly optimized with efficient
resource consumption. We have used CNTK for getting the
advantages of fully cloud-capable environment. In the train-
ing phase of the DL model, the CNTK GPU library was used
with 1000 layers, 10 minibatches, 100 epochs, and 0.0001
learning rate.

2.2.5. Performance Measures. In this study, the performance
of algorithms was evaluated with sensitivity, specificity, and
accuracy. Definitions of the concepts are explained by confu-
sion matrix Table 2.

When a disease is proven present in a patient, the given
diagnostic test also indicates the presence of disease. In this
case, the result of the diagnostic test is considered true posi-
tive (TP). Also, if a disease is proven absent in a patient, the
diagnostic test suggests the disease is absent as well, the test
result is true negative (TN). Unfortunately, no medical test
is perfect. When the diagnostic test indicates positive the
presence of disease in a person who is healthy, the test result
is false positive (FP). In addition, when the result of the diag-
nosis test suggests that the disease is absent for a patient with
disease for sure, the test result is false negative (FN).

Sensitivity, specificity, and accuracy are identified in
terms of TP, TN, FN, and FP.

(i) Sensitivity = TP/ðTP + FNÞ ðNumber of true
positive assessmentÞ/ðNumber of all positive
assessmentÞ

(ii) Specificity = TN/ðTN + FPÞ ðNumber of true
negative assessmentÞ/ðNumber of all negative
assessmentÞ

(iii) Accuracy = ðTN + TPÞ/ðTN + TP + FN + FPÞ ð
Number of correct assessmentsÞ/ðNumber of all
assessmentsÞ [43, 44]

2.2.6. Statistical Analysis. Statistical analyses were performed
using CNTK and R 3.6.3.10-fold cross-validation technique
was used to evaluate predictive models by partitioning the
original sample into a training set to train the model and a
test set to evaluate it. In 10-fold cross-validation, the original
sample was randomly partitioned into 10 equal-sized sub-
samples. Of the 10 subsamples, two subsamples were

Table 2: Confusion matrix.

Diagnostic
test

Gold standard
Positive Negative Row total

Positive TP FP
TP+FP (total number of subjects

with positive test)
Positive predictive
value TP/(TP+FP)

Negative FN TN
FN+TN (total number of subjects

with negative test)
Negative predictive
value TN/(FN+TN)

Column
total

TP+FN (total number of
subjects with given condition)

FP+TN (total number of subjects
without given condition)

N=TP+TN+FP+FN (total
number of subjects in the study)

Sensitivity TP/(TP+FN) Specificity TN/(FP+TN)

TP: true positive; TN: true negative; FN: false negative; FP: false positive.

Table 3: 10-fold cross-validation results on CNTK.

Accuracy SD Sensitivity SD Specificity SD

Deep learning-original dataset 57.65 4.18 58.09 4.09 57.32 7.32

FAMD-ncomp= 2 58.55 3.58 58.99 3.99 59.52 5.62

FAMD-ncomp= 3 61.52 1.08 60.20 0.99 61.00 1.32

FAMD-ncomp= 6 58.85 0.10 55.89 0.16 65.92 0.26

FAMD-ncomp= 10 57.5 0.14 54.4 0.20 63.90 0.29

MICE 64.05 4.38 64.59 0.09 62.62 6.12

ncomp: number of component; SD: standard deviation.
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retained as the validation data for testing the model, and the
remaining 8 subsamples were used as training data.

Parameter optimization is performed for FAMD-
multiple missing imputation technique for the number of
components. Optimization analysis showed that the number
of components should be maximum 10. We have reported
the results for different number of components: 2, 3, 6, and
10 for better representation of importance of optimization.

The values of sensitivity, specificity, and accuracy which
are obtained fromDL, MICE, and FAMDwith DL were com-
pared in Table 3.

2.2.7. Ethics. Ethical approval for this study was obtained from
the Board of Ethical Committee of Ege University (Protocol
No. 13-6.1/56; the date of approval: 29.07.2013). Patients have
given informed consent for participation in the study.
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Figure 5: Missing ratio of variables in original (not imputed) dataset. UTI: urinary tract infection; ud: urine dipstick; us: urine sediment; USG:
ultrasonography; b: blood; R: right; L: left; AP: anterior-posterior; u-le: urine-leukocyte esterase.
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3. Results

In this study, the data of 425 (69.6%) VUR and 186 (30.4%)
rUTI children from the patient records were evaluated retro-
spectively. Performance without preimputation and imputed
with MICE and FAMDmethods was evaluated for the differ-
ential diagnosis of VUR/rUTI. The missing ratio of variables
in the dataset is presented in Figure 5. As we reported, data
has many variables which have more than 30% missing
observation. We observed high missing ratio level for most
of the USG records (Figure 5).

Correlations between continuous variables were pre-
sented in Table 4. Low grade correlations were found
between measurements.

Descriptive statistics of original (not preimputed) and
imputed ((MICE and FAMD) datasets were presented at
Table 5. FAMD algorithm was applied to the dataset for 2,
3, 4, and 10 components. CNTK was used for evaluating dif-
ferent models for 34 features (physical findings, laboratory,
and imaging findings). Deep neural network implementation
was finalized with 128 hidden layers and L1 and L2 = 0:001
selection. Epoch value is 5 and numbers of iterations are
800 for final training model. Testing/training sample ratio
is 20/80 for the entire analysis. 10-fold cross validation results
were presented in Table 3. Accuracy, sensitivity, and specific-
ity results of deep learning were, respectively, 57.65, 58.09,
and 57.32. FAMD algorithm’s best performance results were
found, respectively, 61.52, 60.20, and 61.00. In the differential
diagnosis of VUR and rUTI, the best performance was
obtained with MICE algorithm; its values were, respectively,
64.05 accuracy, 64.59 sensitivity, and 62.62 specificity
(Table 3).

4. Discussion

In this study, hospital records of children with VUR and
rUTI, who were followed up in tertiary hospitals, were used.
There were missing variables of up to 38% in different vari-
ables in the dataset due to reasons such as the lack of infor-
mation in the retrospective hardcopy records of patients
with long follow-up and the lack of examinations performed
prior to admission to these centers.

Healthcare records contain a lot of missing values which
imposes difficulties for researchers who plan to model these
datasets. Clinical datasets, especially for laboratory measure-
ments, and imaging records often contain missing values

[45]. These shortcomings bring difficulties to capture the pat-
terns in clinical datasets.

Machine learning frameworks such as support vector
machines, artificial neural networks, random forest, and
principal component analysis cannot be directly used for
decision-making/data analysis if the dataset is incomplete.
Therefore, we must preprocess the data before modeling
phase.

In some cases, instead of dealing with missing values,
researchers consider removing missing observations from
the data. Removing missing observations may end with loss
of information and biased assessments in results. Another
approach is to use appropriate classical or multiple imputa-
tion techniques for missing observations.

A general assumption that is often made when using
these imputation methods is that the data is missing
completely at random or missing at random. Similar
approaches were used in a simulation study on substance
abuse and a study examining electronic health records [46,
47]. It is important to be able to evaluate data using tech-
niques that allow or handle missing observations.

In missing data analysis literature, researchers performed
the similar methodologies that we have used. Reported
results are very similar across the different domains, disease
OR data collection methods. Researchers usually impute
their data with MICE and FAMD techniques, which are fre-
quently used methods for hybrid (mixed) data [20, 21, 48].
Multiple imputations for missing data make it possible for
the researcher to obtain approximately unbiased estimates
of all the parameters from the random error. Multiple impu-
tations for missing data allow the researcher to obtain good
estimates of the standard errors.

Zhang has examined the relationship between lactate
level and mortality using the MIMIC dataset; he set the miss-
ing value ratio to 30%. He reported that MICE had the high-
est approximation to the real/expected distribution of data.
Also, he advised that using MICE imputation varieties of
expressions can be executed including univariate analysis
and multivariable regression models [22]. We have con-
cluded the similar highest accuracy with MICE in our study.
This similarity should be considered for the upcoming clini-
cal database/trail outcomes. We recommended performing
MICE as a baseline missing imputation approach for every
study. On the other hand, Schmitt et al. tested 4 different
missing imputations at various size datasets: small (breast
cancer1-breast cancer2) and large (E-coli, Iris) and MICE
brought the second-highest git. The dataset that we analyzed

Table 4: Correlations between continuous variables.

Age b-leukocyte b-thrombocyte b-urea b-creatinine ud-density

Age 1

b-leukocyte -0.176985 1

b-thrombocyte -0.154943 0.086716 1

b-urea 0.303343 -0.067059 -0.035233 1

b-creatinine -0.001593 -0.039199 -0.033116 0.050520 1

ud-density 0.278367 -0.075667 -0.158854 0.195563 0.064533 1

b: blood; ud: urine dipstick.
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did not allow us to compare the results because of the high
missing observation for SVD and KNN.

If we compare our studies’ results with Hunt’s study
(containing prostate cancer, wine, Fisher’s Iris, and Pima
Indian dataset), FAMD with ‘ncomp=3’s prediction result
is very close with MICE performance on DL training [24].

This shows us to validate the FAMD performance usually
close to MICE on highly incomplete clinical data. Major
assumption of this conclusion is “ncomp” optimization and
selection. This phase is very critical for reaching out the high-
est prediction accuracy.

One of the methods that has become immensely popular
in recent years is deep learning. With DL models, researchers
can use all existing data without adding synthetic reputations
unlike machine learning algorithms. On the other hand, it is
possible to make more accurate estimates and obtaining
results with fast, reliable, and repeatable analysis [49]. When
using DL, the use of a large number of neurons ensures
extensive representation of the available raw data, even if
there are missing observations in the dataset. When the stud-
ies in the literature are evaluated, although deep learning
techniques are frequently used in recent studies, there is no
study in which missing imputation techniques and their per-
formance are evaluated together. When multiple imputations
were made, a 5% performance increase was observed com-
pared to the estimation made only with the deep learning
algorithm. In cases where the differential diagnosis is very
difficult like VUR/rUTI, this increase is very important
clinically.

During deep learning analysis, we have tried to keep the
number of layers as high as possible. The main purpose of
this choice was to create the network on GPU compute
instance, with the highest efficiency. It is used at the highest
level since it is not intended to make comparisons for the
number of layers. Likewise, the number of minibatches was
kept at the level of 10, which is at the level allowed by our
computed environment. The other parameter, “epoch,” once
we reviewed the studies in the relevant literature, the number
of epoch was observed between 10 and 100. In this study, we
used the highest possible value of 100, which is within our
technical capabilities. Although it is generally accepted that
the accuracy value will increase as epoch value increases, we
would like to state that this value is used in the highest possi-
ble scenario for our study. When artificial neural network
studies are observed, we aimed to get the lowest value used
for the learning rate. Therefore, the value of 0.0001, which
will affect the estimation results, was used in the test dataset.
As it is well known, high selection of the learning rate may
cause overfitting; therefore, this preference has been made
by our research group. On the other hand, we have reported
the optimum values that we used for all these parameters that
can set a template for many researchers rather than compar-
ing all the parameters with different levels. These values may
change in other studies; therefore, we have tried to use the
optimal values for our dataset. We have observed that there
are optimal values that can be applied for such clinical dataset
like ours. Unfortunately, optimal values have not been
reported in similar clinical trials on literature. We hope that
this study’s parameter selection on deep learning models will

be used as an example for other clinical studies. As in all
other machine learning studies, like this study, it is foreseen
to have similar missing value rates in order to generalize
the prediction results. However, the deep learning method
does not require deep data preprocessing operations. The
major scientific value of the study is showing the usability
of DLs with the fastest and accurate way. We hope that clin-
ical studies will be analyzed with different deep learning
parameter ranges in future studies.

5. Conclusions

It has been known for many years that the rate of missing
observation is a major problem in real clinical trials. The
techniques applied in most of the studies on this research
area are to exclude one or more variables from analysis or
to apply some statistical transformations to existing data.
Thanks to the different method we applied in our study,
researchers may consider the benefits of GPU-based missing
data imputation methods. As it is known, clinical data have
different characteristics for each disease, every new drug,
and every new treatment method. Therefore, we have limited
our conclusions and results just for the application data as we
used on the study title. That was one of the limitation aspects
of our study and we focused to highlight this very clearly. We
hope that we will have an opportunity to apply this approach
on different clinical datasets: medical image genomics or
electronic medical records.

In conclusion, unlike machine learning techniques, deep
learning allows estimation with incomplete datasets. It is sug-
gested that the deep learning algorithm should be used
together with appropriate imputation techniques for
hybrid-type datasets for achieving the highest accuracy rates.

Data Availability
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rules. It is appropriate to present the text as stated in the
article.
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