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Oral microbiota and host innate immune response in
bisphosphonate-related osteonecrosis of the jaw

Smruti Pushalkar1, Xin Li1, Zoya Kurago2, Lalitha V Ramanathapuram2, Satoko Matsumura1, Kenneth E Fleisher3,
Robert Glickman3, Wenbo Yan4, Yihong Li1 and Deepak Saxena1

Bacterial biofilms have emerged as potential critical triggers in the pathogenesis of bisphosphonate (BP)-related osteonecrosis of the

jaw (ONJ) or BRONJ. BRONJ lesions have shown to be heavily colonized by oral bacteria, most of these difficult to cultivate and presents

many clinical challenges. The purpose of this study was to characterize the bacterial diversity in BRONJ lesions and to determine host

immune response. We examined tissue specimens from three cohorts (n530); patients with periodontal disease without a history of BP

therapy (Control, n510), patients with periodontal disease having history of BP therapy but without ONJ (BP, n55) and patients with

BRONJ (BRONJ, n515). Denaturing gradient gel electrophoresis of polymerase chain reaction (PCR)-amplified 16S rRNA gene

fragments revealed less bacterial diversity in BRONJ than BP and Control cohorts. Sequence analysis detected six phyla with

predominant affiliation to Firmicutes in BRONJ (71.6%), BP (70.3%) and Control (59.1%). Significant differences (P,0.05) in

genera were observed, between Control/BP, Control/BRONJ and BP/BRONJ cohorts. Enzyme-linked immunosorbent assay (ELISA)

results indicated that the levels of myeloperoxidase were significantly lower, whereas interleukin-6 and tumor necrosis factor-alpha

levels were moderately elevated in BRONJ patients as compared to Controls. PCR array showed significant changes in BRONJ patients

with downregulation of host genes, such as nucleotide-binding oligomerization domain containing protein 2, and cathepsin G, the key

modulators for antibacterial response and upregulation of secretory leukocyte protease inhibitor, proteinase 3 and conserved helix–

loop–helix ubiquitous kinase. The results suggest that colonization of unique bacterial communities coupled with deficient innate

immune response is likely to impact the pathogenesis of ONJ.
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INTRODUCTION

Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is most

frequently defined as current or previous treatment with a bispho-

sphonate, exposed bone in the maxillofacial region for more than 8

weeks and no history of radiation therapy to the jaws.1 BP drugs, most

extensively, the potent nitrogen containing bisphosphonates are used

for the treatment of osteoporosis and skeletal complications in cancer

and multiple myeloma.2 The risk factors include drug therapy (e.g.,

antiresorptive therapy, chemotherapy),3 local factors (such as infec-

tion, dental extraction and poor oral hygiene)1,4 and/or systemic

comorbidities.5 Patient management is further complicated as the

recommendations have focused on avoiding dental extractions,5–6

while other reports suggest that ONJ may be triggered by infection.7

Hence, BRONJ remains a significant concern and may have broader

health impact due to exponential increase in the number of reported

cases, and incidences more common with nitrogen-containing BPs,

which aptly will rise over coming years.8–10 Understanding the risk and

pathogenesis of BRONJ has been confounded by occurrence of osteo-

necrosis associated with non-bisphosphonate antiresorptive therapy

and chemotherapy.10–15

There are many hypotheses for the pathogenesis of BRONJ that can

be broadly classified; the inside-out theory describing bone changes

and the outside-in theory describing effects on bone by surrounding

tissues. Proposed mechanisms involved in BRONJ pathogenesis could

include ischemia, reduced bone turnover, anti-angiogenic effect, BP

toxicity to bone, BP toxicity to soft tissue, microcracks, inflammation,

compromised immune response and infection.16–23

The oral cavity comprises of more than 750 bacterial species existing

as mixed biofilm communities.19–20,24 The presence of bacterial bio-

films, most commonly, Actinomyces at BRONJ sites, has been demon-

strated by histomorphometric and histological studies.6,10,25–29 Our

previous studies, for the first time, using 16S rRNA sequencing, have

shown the presence of polymicrobial communities, both cultivable

and uncultivable, in a broader perspective in the soft tissues19 and
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jaw bone24 sites of BRONJ lesions which otherwise, could go undetec-

ted by histomorphometric or histopathological analyses. Nevertheless,

the ubiquitous influence of bacterial biofilms at the site of BRONJ

lesions may impact the pathogenesis of BRONJ.

The purpose of this study was (i) to characterize the bacterial diver-

sity in BRONJ lesions using 16S rRNA-based approaches; and (ii) to

determine the host antibacterial immune response using tissue-based

enzyme-linked immunosorbent assay (ELISA) and polymerase chain

reaction (PCR) arrays. We hypothesize that BRONJ is associated with

diminished immune response.

MATERIALS AND METHODS

Subjects and specimen collection

A total of 30 patients, 73% female and 27% male, with a mean age of

(62.2615.4) years, undergoing oral surgery treatment at New York

University College of Dentistry, were recruited for this study. The study

was approved by the Institutional Review Board of New York University

and subjects agreed to participate by signing informed consent. This

study had three patient cohorts: patients with BRONJ (BRONJ group,

n515); patients with periodontal disease who had a history of BP ther-

apy (BP group, n55) and patients with periodontal disease (Control

group, n510) (Supplementary Table S1). BRONJ lesions were classified

into stages I–III as described by Ruggiero et al.1 About 67% of BRONJ

lesions were spontaneous while the remaining occurred after dental

extractions. All the cancer patients had a history of chemotherapy.

The BRONJ subjects selected for microbiome sequencing study were

not on antibiotics for about 3 months prior to sample collection, to

preclude the bias of antibiotic effects on bacterial colonization in BRONJ

lesions. Each of the soft tissue samples associated with the necrotic bone

in BRONJ lesions and of the periodontium from the Control and BP

groups were collected in two sterile plastic tubes and transported on dry

ice. The sample tubes with N-tris(hydroxymethyl)-amino methane

(Tris)-ethylenediaminetetraacetic acid (EDTA) buffer were stored at

220 6C while the other having RPMI with gentamycin were processed

as described below (see the section on ‘Tissue-based ELISA’).

Bacterial DNA extraction and PCR amplification

Randomly selected 15 tissue samples, five from each group, were sus-

pended in 500 mL of sterile phosphate-buffered saline, vortexed for

30 s and subsequently sonicated for 5 and 10 s, respectively. For diges-

tion, Proteinase K (2.5 mg?mL21) was added and incubated overnight

at 55 6C. Bacterial genomic DNA from the samples was purified as

described previously19 and stored at 220 6C till further analysis.

For cloning, DNA samples (20 ng?mL21) were amplified with universal

primer set, 8F and 1492R and for DGGE assay, nested PCR targeting V4–

V5 16S region was performed using eubacterial primers, prbac1 with 40-

nucleotide GC clamp at 59 end and prbac2 as described previously.24,30–31

Denaturing gradient gel electrophoresis assay

The nested PCR amplified products were analyzed for sequence poly-

morphism on 40%–60% linear DNA denaturing gradient polyacryla-

mide gel, 0.8 g?L21 alongside species-specific markers using DCode

system (Bio-Rad, Hercules, CA, USA) for 16 h at 58 6C and 60 V in 13

Tris-acetate-EDTA buffer, pH 8.5.19,30 The gels were stained with

ethidium bromide solution (0.5 mg?mL21) for 15 min and the images

digitally captured using Alpha Imager 3300 system (Alpha Innotech

San Leandro, CA, USA).

Cluster and statistical analyses of denaturing gradient gel

electrophoresis microbial profiles

Denaturing gradient gel electrophoresis (DGGE) fingerprints were

analyzed with Fingerprinting II Informatix Software (Bio-Rad,

Hercules, CA, USA) and interpreted statistically.30 The gels were nor-

malized with standard DGGE markers and background subtracted

using mathematical algorithms based on spectral analysis of overall

densitometric curves. The similarity index was calculated by Dice

coefficient and dendrogram constructed from average matrix by

Ward analysis. The differences were determined using Mann–

Whitney U test and Chi-square test. Statistical analysis was performed

using SPSS software version 17.0 (SPSS, Chicago, IL, USA).

16S rRNA cloning and sequence analysis

PCR amplified products were ligated to pCR4-TOPO vector and trans-

formed into E. coli TOP10 cells using TOPO-TA cloning kit according

to manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA). From

each sample, 48 to 96 clones were picked and sequenced.19 The

sequences were aligned and analyzed as described earlier.31 Chimeras

were eliminated by greengenes chimera check program.32 Sequences

with 350 to 900 bases were identified against 16S rRNA reference

dataset of Human Oral Microbiome Database (version 10.1).33 The

assigned phylogenetic threshold for sequences with o98% similarity

was till species level, while those with ,98% similarity were classified

till genus level. Three libraries, namely Control, BP and BRONJ were

constructed for clonal analysis. Chi-square test was used to compare

phylogenetic differences between two libraries. The terminologies, ‘spe-

cies’ refers to named cultivated species and unnamed cultivated taxon,

whereas ‘phylotype’ refers to uncultivable or yet-uncultured species.

Species diversity and richness estimation

The richness estimators, Chao1 and abundance-based coverage esti-

mator (ACE) and rarefaction curves, rank abundance and diversity

indices, Shannon (H9) and Simpson (12D) as well as Good’s percent

coverage were computed as described previously.19,31

Tissue-based ELISA

Twelve BRONJ and 5 Control tissue specimens were examined for the

levels of myeloperoxidase (MPO), tumor necrosis factor (TNF)-alpha

and interleukin-6 (IL-6), important indicators of antimicrobial response.

The samples were processed (Supplementary Information: ‘Materials

and methods’) and the supernatants from the lysates were stored at

280 6C. Further, ELISA was performed according to manufacturer’s

(R&D Systems, Minneapolis, MN, USA) instructions (Supplementary

Information: ‘Materials and methods’). Each data point is the mean of

triplicate measurements of each factor. Long dash is the mean for each

group. The two groups were compared using unpaired two-tailed t-test.

SuperArray screening

The tissue samples from a subset patient population with BRONJ

(n53) and no BRONJ controls without BP (n52) were used to study

the innate immune mechanisms to bacterial pathogens using Human

Antibacterial Response RT2 Profiler PCR Array System (PAHS-148Z;

SABiosciences, Qiagen, Valencia, CA, USA) (Supplementary Information:

‘Materials and methods’). Data analysis was performed using the web

portal http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php.

The positive value signifies upregulation, whereas the negative value

indicates downregulation of genes.

RESULTS

To decipher the relationship between bacterial colonization and host

antibacterial response in BRONJ patients, we evaluated the total bac-

terial profile (cultivable and uncultivable) based on 16S rRNA gene

assays. Subsequently, a subset of the same tissue samples was selected
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to determine the expression of genes involved in antibacterial response

using ELISA and further confirmed with PCR arrays.

Diversity and abundance of specific oral bacteria in BRONJ

The total bacterial diversity in the three cohorts, five each from

Control, BP and BRONJ groups, was differentiated using DGGE fin-

gerprints (Figure 1). The intensity profiles were compared based on

band position, after gel normalization with species-specific marker.

Each band represented one or more bacterial species. The number of

bands observed in tissue samples from three different cohorts ranged

from 31 to 36 (mean: 32.862.5) in Control, 28 to 30 (mean: 2960.7)

in BP and 25 to 34 (mean: 29.663.2) in BRONJ cohort (Figure 1a).

The non-parametric Mann–Whitney U test for testing equality of

means indicated significant intergroup differences (P,0.05), between

Control/BP cohorts (P50.044) and Control/BRONJ cohorts (P50.007).

Cluster analysis of DGGE fingerprints of the three cohorts was per-

formed using Dice coefficient and the dendrogram revealed three

separate clusters each representing Control, BP and BRONJ cohorts

(Figure 1b). The above results suggest that DGGE bacterial finger-

printing can be used as a preliminary rapid assessment tool for iden-

tifying patient at a higher risk of BRONJ.

We further examined 14 tissue samples, five each from Control and

BRONJ cohorts and four from BP cohort for phylogenetic affiliations

by cloning and sequencing. From a total of 887 sequences, 389
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sequences were characterized. Based on sequence length cutoff of

,350 bases, 498 (,56%) sequences and 2% chimeras were eliminated.

The phylogenetic affiliations for 371 (42%) sequences of 350–900

bases were assigned by Human Oral Microbiome Database. Thirty

sequences (3%) with ,98% similarity were considered as unclassified

sequences. Of 341 (39%) sequences with .98% similarity, 312

sequences (36%) showed homology to cultivable species and 29

(3%) to uncultured phylotypes.

Bacterial diversity in all the three cohorts was characterized into

six phyla represented by Actinobacteria, Bacteroidetes, Firmicutes,

Fusobacteria, Proteobacteria and TM7 (Figure 2a). The species of phy-

lum Firmicutes were highly prevalent in all the three cohorts but ele-

vated in BRONJ subjects (71%). Also, Fusobacteria was predominant

in BRONJ cohort. BP cohort showed the presence of Actinobacteria

in higher numbers as compared to Control and BRONJ. Phyla,

Proteobacteria, Bacteroidetes and TM7 had higher prevalence in

Control than in BP and BRONJ. Significant differences in percentage

relative distribution at phylum level were observed between Control/

BRONJ cohorts (Chi-square test, P,0.05).

In total, 11 classes, 15 order, 29 families and 48 genera were identified

(Supplementary Figures S1–S3 and Figure 2b). There were significant

differences in these phylogenies between Control/BP, BP/BRONJ and

Control/BRONJ cohorts (Chi-square test, P,0.05). Class Mollicutes was

present in BP and BRONJ cohorts while absent in Control cohort, while

Gammaproteobacteria was exclusive to BRONJ cohort. Genus Strep-

tococcus was highly prevalent in all the three cohorts. The predominant

genera in the Control group were Veillonella (19.7%), Peptostrepto-

coccus (8.6%), Lactobacillus (7.3%), TM7[G-1] (6.3%), Actinomyces

(4.4%), Mogibacterium (3.9%), Porphyromonas (3.6%) and Scardovia

(1.8%). However, in BP cohort, Atopobium (8.7%), Rothia (6.3%),

Pseudoramibacter (4.2%), Shuttleworthia (4.2%), Afipia (3.1%),

Bacteroidetes[G-8] (3.1%), Delftia (3.1%), Veillonellaceae[G-1] (2.5%),

Solobacterium (1.5%) and TM7[G-5] (1.5%) were observed. Genera

with higher frequency in BRONJ cohort were Parvimonas (18.3%),

Fusobacterium (4%), Eubacterium[11][G-6] (3.1%), Gemella (2.1%),

Leptotrichia (1.7%) and Selenomonas (1%). Dialister (2.8%) and

Bulleidia (1.1%) were present in BP and BRONJ cohorts but pre-

dominant in BRONJ patients. Genera exclusive to BRONJ were

Xanthomonas (3.8%), Lachnospiraceae[G-7] (2.1%), Eubacterium[11]

[G-1] (2.1%), Bifidobacterium (2%) and Bacteroidetes[G-2] (1.7%). A

relative dysbiosis was observed in gram-positive and gram-negative bac-

teria in the three cohorts (Figure 2c). Gram-negative microbiota was

higher in Control (30.8%) than in BRONJ (17.2%) and BP (15.8%),

whereas gram-positive predominate the BP and BRONJ cohorts.
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Figure 2 Taxonomic distribution of microbiota in the tissues of Control, BP and BRONJ cohorts. (a) Phylum level [significant differences were observed in relative

distribution (%) of phyla between Control/BRONJ cohorts (P,0.05, Chi-square test)]; (b) genus level [significant differences were observed in relative distribution (%)
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Of the 91 total bacterial species/phylotypes identified in this study,

50 belonged to Control cohort, whereas 39 and 43 were found in BP

and BRONJ cohorts respectively. Table 1 depicts some of the predom-

inant, common and exclusive species/phylotypes detected in the three

cohorts. Parvimonas micra, Streptococcus anginosus, Atopobium rimae,

Peptostreptococcus stomatis and Eubacterium[11][G-6] nodatum were

present in higher numbers in BRONJ lesions. Streptococcus constella-

tus, Bifidobacterium dentium, Eubacterium infirnum, Selenomonas spu-

tigena and uncultivable phylotypes, Actinomyces sp. oral taxon 525 and

Lachnospiraceae[G-7] sp. oral taxon 086 were exclusive to BRONJ

cohort.

Chao1 and ACE richness estimators, diversity indices and evenness

for three cohorts were calculated (Supplementary Table S2). The

BRONJ cohort showed less species richness as compared to Control

and BP cohorts. Good’s coverage was 72%, 61% and 90% for Control,

BP and BRONJ cohorts, respectively. In case of BRONJ cohort, the

decrease in rate of phylotype detection as depicted in the rarefaction

curves indicated that majority of the diversity in the libraries have been

identified (Supplementary Figure S4). The library size of BP and

Control cohorts was insufficient and additional clones are required

to be screened for the curve to reach asymptote. Rarefaction curves

also showed less diversity in BRONJ cohort than in Control and BP

cohorts. This observation was reflected in Shannon-Weaver and

Simpson diversity indices of the three libraries (Supplementary

Table S2).

Antibacterial host response in BRONJ patients

We hypothesize that the unique bacterial colonization in BRONJ is

associated with a compromised antimicrobial response. To test this

possibility, tissue-based ELISA performed on BRONJ and Control

tissues, revealed that, the mean MPO levels in Controls were signifi-

cantly higher than in BRONJ (P50.02) (Figure 3a), whereas the levels

of IL-6 (Figure 3b) and TNF-alpha (Figure 3c) were similar (no sig-

nificant differences) in both the groups. This may not be surprising as

Table 1 List of bacterial species/phylotypes found common to and

exclusive in the tissues of three cohorts of patients, Control, BP and

BRONJ

Bacterial species/phylotypes

Common in cohort(s) Exclusive in cohort(s)

Control/BP Control

Streptococcus gordonii TM7[G-1] sp. oral taxon 353**

Veillonella dispar Streptococcus sanguinis

Streptococcus sp. oral taxon 071** Lautropia mirabilis

Rothia dentiocariosa Veillonella parvula

Streptococcus oralis Filifactor alocis

TM7[G-1] sp. oral taxon 348** Actinomyces sp. oral taxon 171*

Streptococcus cristatus Granulicatella adiacens

Streptococcus pneumoniae Kingella oralis

Peptostreptococcaceae[XIII][G-1]

sp. oral taxon 113**

Porphyromonas sp. oral taxon 395**

Prevotella sp. oral taxon 472*

Control/BRONJ BRONJ

Peptostreptococcus stomatis Streptococcus constellatus

Lactobacillus gasseri Bifidobacterium dentium

Streptococcus vestibularis Eubacterium[11][G-1] infirmum

Fusobacterium nucleatum ss vincentii Actinomyces sp. oral taxon 525**

Scardovia sp. oral taxon 195* Lachnospiraceae[G-7] sp. oral taxon 086**

Actinomyces israelii Bacteroidetes[G-2] sp. oral taxon 274*

Lactobacillus fermentum Selenomonas sputigena

Lactobacillus paracasei Prevotella denticola

BP/BRONJ BP

Parvimonas micra Atopobium sp. oral taxon 199*

Streptococcus anginosus Veillonellaceae[G-1] sp. oral taxon 155*

Streptococcus intermedius

Dialister invisus

Fusobacterium nucleatum ss. animalis

Streptococcus mutans

TM7[G-1] sp. oral taxon 346**

TM7[G-1] sp. oral taxon 349**

Solobacterium moorei

Control/BP/BRONJ

Pseudoramibacter alactolyticus

Streptococcus mitis

Mogibacterium timidum

Atopobium rimae

Eubacterium[11][G-6] nodatum

Gemella morbillorum

Streptococcus sinensis

BP, bisphosphonate; BRONJ, bisphosphonate-related osteonecrosis of the jaw.

*Unnamed cultured phylotype.

**Currently uncultured phylotype.
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cohorts by ELISA. BRONJ, bisphosphonate-related osteonecrosis of the jaw;

ELISA, enzyme-linked immunosorbent assay; IL, interleukin; MPO, myeloperox-

idase; TNF, tumor necrosis factor.
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IL-6 production is governed by many cells in response to any inflam-

mation and has little impact on antimicrobial activity.

To determine the expression of various antimicrobial genes, we

used 84 different inflammatory response genes PCR Array System

(Human Antibacterial Response RT2 Profiler). We observed that, of

the 84 inflammatory mediators tested, 34 genes were significantly

upregulated, whereas 11 genes were significantly downregulated in

BRONJ samples (Figure 4). Supplementary Table S3 demonstrates

the fold difference in the levels of few selected genes that may represent

appreciable response of the host immune system. The expression pro-

file of secretory leukocytes protease inhibitor (SLPI), proteinase 3

(PRTN3), conserved helix-loop-helix ubiquitous kinase (CHUK) and

several interleukins was higher, whereas nucleotide-binding oligo-

merization domain (NOD2), cathepsin G (CTSG) and MPO genes were

significantly downregulated in patients with BRONJ (Supplementary

Table S3).

Thus, the expression pattern of MPO, IL-6 and TNF-alpha in neu-

trophil-dominated dental infection (BRONJ and Controls) as

observed by ELISA (Figure 3) was consistent with our PCR array

analysis results (Figure 4).

DISCUSSION

Microbial infections are hypothesized as one of the factors impacting

the pathogenesis of BRONJ. To our knowledge, this is the first report,

describing the relationship between microbial colonization and host

antibacterial immune response in patients with BRONJ. Complex

microbial consortia, specifically in the oral cavity, provide an interface

that initiates and perpetuates the infectious attack on host tissues and

are resistant to host defenses and antibacterial agents.34–35

The DGGE bacterial fingerprints were found to be diverse among

Control, BP and BRONJ cohorts and clustered separately signifying

the presence of distinct bacterial flora in that particular cohort. The

bacterial phyla prevalent in the tissues of BRONJ patients by 16S sequen-

cing, were consistent with our earlier study on bone samples of BRONJ24

as well as with recent study on saliva samples of BRONJ patients.36 Our

result indicated Streptococcus to be highly prevalent, and is the only

genus, that extensively exhibits intra- and intergeneric co-aggregation,

binding to other early colonizers, such as Actinomyces, Capnocytophaga,

Eikenella, Prevotella, Propionibacterium and Veillonella, as well as to host

molecules. On the other hand, Fusobacterium, a gram-negative bacteria

found in all the three cohorts, usually act as a bridge between early

colonizers and late colonizers, like Eubacterium and Porphyromonas

which may explain its presence at all sites. These late colonizers co-

aggregate with Fusobacterium but not with one another.37 Lactobacilli,

Streptococci and Actinomyces spp. were predominantly found in Control

cohort, and are known fermenters of carbohydrates primarily to lactate,

showed high correlation to increased Veillonella levels, perhaps for its

affinity for lactate consumption.38

P. micra, S. anginosus, A. rimae, P. stomatis and Eubacterium[11][G-6]

nodatum dominated the BRONJ lesions. P. micra39 and A. rimae40 are

strongly associated with polymicrobial infections mainly endodontic

infections or periodontitis in humans and S. anginosus with abscess

formation.41 P. stomatis, aciduric and weakly saccharolytic bacteria pro-

duces fermented products, such as acetic, butyric, isobutyric, isovaleric

and isocaproic acids.42 Eubacterium are major asaccharolytic bacteria

present in oral lesions playing a crucial role in root canal and periodontal

pockets infections.43–44 Dialister invisus observed in BP and BRONJ

cohorts, and Prevotella denticola, exclusively found in the mucosal tissues

of BRONJ cohort, are known putative endodontic pathogens have been

detected in our previous study in the bone samples of BRONJ patients.24

S. sputigena was exclusively detected in BRONJ cohort. Species from

genera, Fusobacterium, Streptococcus, Actinomyces and Selenomonas,

found in this study have been previously identified histomorphometri-

cally,28 as well as in our molecular study24 in the bone samples of BRONJ

patients.

Several unnamed cultured and yet-uncultured phylotypes were

unique to BP and BRONJ cohorts as seen in Table 1. Interestingly,

the cultured phylotype, Atopobium sp. oral taxon 199 found exclusively

in mucosal tissues of BP was also observed in bone samples of

BRONJ.24 This suggests that certain oral bacteria primarily adhere

and colonize the host tissues45, further perpetuating deep to bony

surface as a result of BP accumulation onto the jawbone. A recent

study showed that the bone BP levels were higher in BRONJ patients

as compared to the Controls on BP therapy without BRONJ and the

increase was proportional to the duration of BP therapy, type of BP

and to age, weight and race of the patient.46 The predominance of

gram-negative bacteria in the Control cohort is understandable, as it

comprised of patients with advanced periodontal disease.47–48

Bacterial biofilms are constantly adjusting to the dynamics of oral

microenvironment leading to dysbiosis or restructuring from gram-

negative to gram-positive oral biofilms as observed in BP and BRONJ

cohorts. The adhesin proteins ‘MSCRAMM’ mediates the initial

attachment of gram-positive bacterial strains to host tissues, and these

interactions are critical to establish infection49–50 in BRONJ, early

dental implant failure and/or other bony conditions.20,24,26,28–29,51–52

It is speculated that the cationic nitrogen-containing domain of BPs

interacts with the amino-terminal of these adhesin molecules and

hence BRONJ is rare with non-nitrogen BPs. Kassolis et al.53 showed

that BRONJ lesions with biofilms can remain in edentulous marrow

spaces for more than a year after tooth extraction and mucosal heal-

ing. We have shown that systemic antibiotics failed to restrict bacterial

colonization or promote effective healing of lesions after the onset of

BRONJ.19 Combinatorial treatments, surgery together with long-term

preoperative antibiotic regime have proven to be effective in BRONJ

patients than short-term treatment.18
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Control patients generated by PCR array. BRONJ, bisphosphonate-related
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Protection of the host from pathogenic colonization and invasion

requires robust innate immunity. BP affects monocyte migration and

macrophage recruitment14,23 essential for tissue repair and antimicro-

bial activity.54–55 The bacterial infection elicits the host immune

response by stimulating the release of pro-inflammatory cytokines

and chemokines. Our results indicated that the mediators of infection

and inflammation such as antimicrobial peptides (SLPI, PRTN3,

MPO, CTSG), cytokines (IL-12A, IL-12B), inflammatory response

(IL-6, IL-8, CD14, NOD2, TNF-alpha) and signal transduction

(CHUK) factors were differentially altered. Acute, neutrophil-domi-

nated responses are characterized by high levels of a potent microbi-

cidal factor, MPO,56 a clinically important marker of neutrophil

activation and also produced by macrophages. Monocytes, macro-

phages and other cells make IL-6, which protect the host cell from

apoptosis. In response to microbial products, monocytes and macro-

phages release TNF-alpha, which activates many antimicrobial path-

ways critical for host defense.57 In fact, the use of TNF-alpha

antagonists makes patients susceptible to infections.57 Thus, low

MPO and moderate activity of TNF-alpha and IL-6 in the BRONJ

lesions is consistent with a diminished host antimicrobial response.

Our findings substantiate the role of microbes and their ability to

circumvent the host immune response in BRONJ progression. MPO

affects tissue directly by releasing reactive oxygen species along with

other pro-inflammatory cytokines (TNF-alpha, IL-1, IL-6, IL-8 and

granulocyte-macrophage colony-stimulating factor (GM-CSF)) from

macrophages.58 NOD2 has direct antibacterial effect and is a sensor for

recognizing intracellular pathogens leading to induction of cytokines

and antimicrobial peptides.59 Also, the upregulated levels of SLPI are

indicators of progression of microbial infections. Bacterial lipopoly-

saccharides induce SLPI production either directly by macrophages or

by IL-1b, TNF-alpha, IL-6 and IL-10.60 Besides antibacterial defense,

the neutrophil-derived serine proteases PRTN3 have been implicated

in inactivation of progranulin, an anti-inflammatory factor and pro-

moting neutrophil activation and inflammation.61

Multiple factors may contribute to deficient immune response in

BRONJ patients, such as the age of the patient, sclerotic bone changes,

cancer and chemotherapy. Ten percent of patients undergoing chemo-

therapy for solid tumors develop infections62 and certain types of

chemotherapy may exacerbate BRONJ lesions.63 The compromised

immune response will lead to the collapse of indigenous commensal

oral microbiota and increase the risk of pathogenic infections. As we

know that the co-evolution and co-existence between the host and

microbiota is mutual, in which the microbiota contributes to host

physiological processes and, in turn, the host provides niches and

nutrients for microbial survival.64 The dysfunction in this complex

interplay between the host immune system and the microbiota elicits

infections. Favot et al.65 showed that BP perturbs neutrophils migra-

tion with decrease in reactive oxygen species production in patients

with BRONJ and in those after post-pamidronate therapy as com-

pared to the controls, thus decreasing the neutrophil recruitment

detrimental to fight the ongoing infection.

To conclude, the dysbiosis in oral microbiota and alterations in the

mediators of immune response in BRONJ patients may create an

environment for colonization of opportunistic pathogens, such as

Parvimonas, Peptostreptococcus, Fusobacterium, Eubacterium, Dialister

and Gemella on BP-bound bone and promote necrosis. Certain bac-

terial communities, specifically, Dialister, Prevotella and Atopobium

found in this study, were not just confined to soft tissue but have been

detected deep into the necrotic bone.24,28 Despite the fact that BP

effects on bone remodeling process, these bacteria have shown to elicit

inflammatory and acute, neutrophil-dominated response which could

further impair this process.66 The study has limitation of having small

and non-homogenous patient cohort, but with the type of oral dis-

order, it is difficult to procure homogeneous patient population. The

findings provide novel insight into host-microbiotal interactions in

patients with BRONJ. Future study designs with larger sample popu-

lation are required to validate the involvement of specific microbial

species and biofilm characteristics, which may aid in risk assessment

and therapeutic management of BRONJ.
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