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Matrix metalloproteinases (MMPs) have distinctive roles in various physiological and pathological processes such as inflammatory
diseases and cancer.This study explored the performance of eleven scoring functions (D-Score,G-Score, ChemScore, F-Score, PMF-
Score, PoseScore, RankScore, DSX, and X-Score and scoring functions of AutoDock4.1 and AutoDockVina). Their performance
was judged by calculation of their correlations to experimental binding affinities of 3D ligand-enzyme complexes of MMP family.
Furthermore, they were evaluated for their ability in reranking virtual screening study results performed on a member of MMP
family (MMP-12). Enrichment factor at different levels and receiver operating characteristics (ROC) curves were used to assess
their performance. Finally, we have developed a PCA model from the best functions. Of the scoring functions evaluated, F-Score,
DSX, and ChemScore were the best overall performers in prediction of MMPs-inhibitors binding affinities while ChemScore,
Autodock, and DSX had the best discriminative power in virtual screening against the MMP-12 target. Consensus scorings did
not show statistically significant superiority over the other scorings methods in correlation study while PCAmodel which consists
of ChemScore, Autodock, and DSX improved overall enrichment. Outcome of this study could be useful for the setting up of a
suitable scoring protocol, resulting in enrichment of MMPs inhibitors.

1. Introduction

Matrix metalloproteinases (MMPs) are zinc-dependent en-
dopeptidases that play a central role in various physiologi-
cal processes and pathological conditions including cancer
and inflammatory diseases. One of the main problems for
developing a new class of drugs as MMP inhibitors is the
issue of selectivity. This family shares a very similar active
site that makes traditional chemical approach for developing
of selective inhibitors time-consuming. In this case the
computational approaches including molecular docking can
help the medicinal chemistry [1, 2].

As reliability of different scoring functions is very target-
dependent [3], in this study we aimed to evaluate some
available scoring functions in scoring of MMPs-ligands
interactions. Reliability of molecular docking depends on
how the geometry of ligands will be predicted and how
the different pose of a ligand and interaction of different
ligands with receptor will be ranked [4]. The former has
been investigated on a set of 40MMPs complexes [5]. In our

paper we focused on successfully ranking the interaction of
different ligands with MMPs. Scoring functions are used to
estimate the binding affinity of a compound for a receptor in
a reasonable time. These scoring functions can fall into three
categories [6, 7]: (1) empirical scoring functions, including X-
Score [8], F-Score [9, 10], andChemScore [11], (2) knowledge-
based potentials, includingDSX [12] andPMF-Score [13], and
(3) force-field based approaches, including D-Score [14] and
G-Score [15]. Knowledge-based scoring functions observe
interatomic contact frequencies and/or distances in a large
database of protein-ligand complexes 3D structures. The
observed frequency distributions of favorable and unfavor-
able molecular interactions are converted to potentials of
mean force or knowledge-based potentials. The two other
mentioned categories contain scoring methods based on
physical interaction terms.These methods try to estimate the
change in free energy upon ligand binding via decomposition
of free energy into a sum of individual contributions.The first
class of scoring functionswithin this group (force-field based)
directly derives the interaction terms from physicochemical
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theory and does not fit them to experimental data. The
other class (empirical based) tries to find linear statistical
relationship between the binding affinity and a number of
ligand binding terms in a training set of ligand-protein
complexes 3D structures with associated binding affinity data
[4].

Some proposed consensus docking [16, 17] and consensus
rescoring [18] protocols are available. The two consensus
scoring methods so-called rank-by-number and rank-by-
rank that had shown promising results [18] were also tested
in this study. In addition, we suggested another method,
principal component analysis (PCA), for performing a com-
bination of multiple scoring functions to rescore and rerank
the compounds after virtual screening on MMP-12 target.

Thework reported here seeks to address two questions. (1)
How can different scoring functions predict the experimental
binding affinities for MMPs-inhibitor complexes? (2) Do
the well-performed scoring functions have also reasonable
performance in an enrichment study on a member of MMPs
family (MMP-12)?

2. Methods

2.1. Preparation of Protein Test Set for Rescoring Study. The
test set consisted of 100MMPs-ligand complex structures
formed of 10 humanMMPs types.We excluded the structures
with conflictive reported binding affinities.The 3D structures
were taken from PDB (Protein Data Bank) and then under-
went some refinements. Firstly, water and other cocrystal-
ized molecules were removed from the retrieved PDB files.
Then, the protein and corresponding ligand (inhibitor) were
extracted to separate PDB files. The file formats changed
to mol2 as it was a necessary step for some subsequent
analysis. The hydrogens were added to both protein and
ligand molecules. All of the selected PDB structures had
experimentally determined Ki, Kd, or IC50. The logarithm
of Ki, Kd, or IC50 was employed as experimental binding
affinity in our study. The detailed structural information
for each is presented in Supplementary Material available
online at http://dx.doi.org/10.1155/2014/162150. For analysis,
the pAffinity was employed as dependent variable instead of
binding affinity which was defined as below:

pAffinity = −Log (Ki, Kd or IC50) (𝜇M).

Metal ion (catalytic zinc ion) was saved as a part of the
macromolecule. The Gasteiger partial charge was assigned
for ligands. All of the above procedures were done using
the PyMOL (http://www.pymol.org/, The PyMOLMolecular
Graphics System, version 1.2r3pre, Schrödinger, LLC) and
Open Babel Package (version 2.3.1 http://openbabel.org/)
[19].

2.2. Scoring Functions. Various scoring functions have been
evaluated in this study. 11 scoring functions including the
five SYBYL built-in scoring functions (D-Score [14], G-Score
[15, 20], ChemScore [11], F-Score [9, 10], and PMF Score
[13]), two web based scoring functions (PoseScore [21] and
RankScore [21]), two standalone scoring functions (DSX [12]

and X-Score [8]), and scoring functions of AutoDock4.1 [22,
23] and AutoDock Vina [24] were employed in this study.
Furthermore, two consensus scorings were applied on the set.
All of the 11 scoring functions were used to compute binding
scores for ligand-protein interactions. Some of the scoring
functions were not able to compute reasonable binding score
for all of the complexes. It has been discussed earlier that such
an incompatibilitymay be raised by the fact that in some cases
there are clashes between protein and ligand molecules [25].
However, we did not penalize those scoring functions in our
study. The pairwise deletion strategy was used to deal with
missing data.

We employed previously defined consensus scoring
(rank-by-number and rank-by-rank methods [18]) to sum-
marize the results of multiple scoring functions. In rank-by-
rank method, predicted individual rank was calculated as an
average of ranks predicted by all the scoring functions. Rank-
by-number consensus score is an average of the Z-scaled
scores calculated by each of the individual scoring functions.
Individual Z-scaled scoring function values (ZScore) are
computed by

Zscore =
(𝑓

𝑖
− 𝜇)

𝑆

,

(1)

where 𝑓
𝑖
is the scoring value of an individual scoring

function, 𝜇 is the mean value, and 𝑆 is the standard deviation
of this scoring function for entire set.

Finally, the principal component analysis (PCA) was
applied on various set of scores of enrichment study to
evaluate the discrimination power of PCA on our evaluated
set of compounds. PCA is a powerful tool for different
aspects of data evaluation including classification and pattern
recognition. It can simplify and reduce the dimensionality of
multivariate data set while preserving as much of the relevant
information. The principal components (PCs) are linear
combinations of the original variables. The first principal
component (PC1) has the largest possible variance. The
second principal component (PC2) is uncorrelated to the first
one, and it accounts for most of the remaining variance. PCA
model has been employed in our study for discrimination of
actives among decoys in virtual screening results based on
obtained scores from various scoring functions. In case of our
study the PCA was applied to generate linear combination
of different scores and extracted the main variation in the
data as PC1 and subsequent rescoring and reranking of virtual
screening results based on formulated PC1. The contribution
of an individual score to the calculated PC can be described
by its loading value.

2.3. Preparation of Docking Set for the Retrospective Virtual
Screening on MMP-12. The inhibitors molecules of docking
set were prepared basically from the MMP-12 inhibitors
spreadsheet taken from ChEMBL database [26]. Firstly,
inactive and low active molecules (IC50 > 100,000 nM)
were removed from the spreadsheet. Cases with incomplete
information (unitless activity or inexact IC50 values) and
those which did not fully satisfy Lipinski’srule of five were
also excluded from the spreadsheet. The edited spreadsheet
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Figure 1: Scatter plot for the best performed scoring functions. Correlation of each scoring function relative to other scoring functions as
well as experimental binding affinity (pAffinity) is shown.

containing SMILES and bioactivities was imported in Canvas
1.6. Some of the selected inhibitors from the previous step
shared similar scaffolds and it could cause biased results.
To overcome this potential problem finger prints for every
inhibitor were defined by binary fingerprint module. Then,
diversity selection tool was applied to select the most 30
diversified molecules from inhibitor set. The 30 inhibitors
were visually inspected to have different scaffolds. To generate
decoys which physically resemble active set we used the
online-tool of DUD-E [27]. It generated 50 decoys for each
active molecule. In summary, this tool tries to make decoys
with similar physical properties including molecular weight,
calculated logP, number of rotatable bonds, and hydrogen
bond donors and acceptors for each ligandwhile it minimizes
the 2D topological similarities between generated decoys and

corresponding ligand to make them suitable for true negative
control role. 3D conformationswere generated for actives and
decoys and subsequent energy minimization, partial charge
assignment, and ionization were performed.These steps were
done using LigPrep module in Schrödinger. It uses force field
OPL2005 for energy minimization after 2D to 3D conversion
of ligands.

2.4. Docking and Preparation of the Protein for the Retrospec-
tive Virtual Screening on MMP-12. The Glide (Glide, version
5.7, Schrödinger, LLC, New York, NY, 2011) was used for
docking studies. As mentioned above a set of inhibitors and
decoys was docked in MMP-12 (PDB code: 3F17) active site.
For receptor preparation, water molecules were removed,
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Figure 2: ROC curve of (a) Glide-Score, (b) DSX, (c) Autodock, and (d) ChemScore for Glide (HTS) virtual screening results.

hydrogens were added, and protein structure was minimized
using protein preparation wizard [28]. For Glide, two dock-
ing runs were conducted: a docking procedure with high-
throughput virtual screening (HTVS) setting and another one
with standard precision (SP) mode. We used default settings.
Grid box was centered at cocrystalized ligand and was sized
to 14 angstrom.The output files were saved as mol2 format.

2.5. Statistical Analysis. The scoring functions were evalu-
ated via calculation of the linear correlation between pre-
dicted binding affinity scores and experimentally determined
binding affinities. Pearson’s correlation coefficient (𝑅

𝑝
) and

Spearman’s correlation coefficient (𝑅
𝑠
) were used for quanti-

tative assessment of scoring functions predictivity. Pearson’s
correlation coefficient shows the predictivity of scores while

Spearman’s correlation coefficient indicates the predictive
ability of scoring functions to properly rank the ligand-
receptor affinities.

To evaluate the performance of the scoring functions in
discriminating actives among decoys the scoring functions
performance was tested on docked active and decoy com-
pounds. The receiver operating characteristic (ROC) curve
and enrichment factor (EF) were applied to determine the
performance of each scoring function. The increase in area
under the curve (AUC) of ROC curve can be used as an
indicator of improvement in discrimination between true
ligands from decoys. AUC can have a value between 0 and
1, in which AUC = 0.5 means that the method of interest
performed like a random selection in average, while AUC =
1 means the complete discrimination between true and false
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Figure 3: ROC curve of (a) Glide-Score, (b) DSX, (c) Autodock, (d) ChemScore, and (e) PC1 for Glide (SP) virtual screening results.
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cases (active and decoys). EF is defined as the fraction
of active compounds found divided by the fraction of the
screened library:

EF = (
activessampled

activestotal
) × (

𝑁total
𝑁sampled

) . (2)

EF1% and EF2% are shown the ability of a particular
scoring method to retrieve true ligands with a high rank
among virtual screening results. They could be even more
informative than AUC of ROC curve index, as scoring
functions with AUC of ROC curve around 0.5 could still have
an acceptable performance at early stage of the curve that can
be detected using EF1% or EF2%.

All of the statistical test and plotting were done using R
(R: a language and environment for statistical computing; R
Foundation for Statistical Computing, Vienna, Austria; URL
http://www.R-project.org/.) including packages: enrichvs,
missMDA, and ROCR [29].

3. Results

3.1. Correlation of Predicted Scores with Experimental Binding
Affinities. The −Log experimental binding affinities (pAffin-
ity) for the selected test set of MMPs-ligand complexes range
from −3.9 to 4, spanning about 8 orders of magnitude with a
mean value of 1.40 and STDof 1.52 (SupplementaryMaterial).
The correlation table of scoring functions (scores from all
the 11 scoring functions as well as two consensus scorings)
are shown in Supplementary Material. Table 1 shows the cor-
relation coefficients between different scoring functions and
pAffinity. Table 2 summarized the main results of the scor-
ing functions comparison. The consensus scorings did not
improve the prediction more than the best scoring functions.
For scoring functions which had a good correlation with
experimental results (F-Score, PoseScore, RankScore, DSX,
and ChemScore), correlation plots are shown in Figure 1.

3.2. ROC Curve Analysis and Enrichment Factor Calculation
for the Retrospective Virtual Screening on MMP-12. Based on
the fact that PoseScore and RankScore have online based
interfaces they were excluded from rescoring assessment.

ROC curve plots specificity against sensitivity at different
cutoff values (in this case, different scores). The enrichment
ability of scoring functions was assessed on a set of docked
compounds including known inhibitors and decoys. Table 3
demonstrated the obtained EFs at different level for various
scoring function on docked poses with either Glide standard
precision or Glide HTVS protocols. In addition to Glide-
native scoring function, ChemScore, Autodock, and DSX
showed better performance than other tested functions in
both rescoring jobs. Figures 2 and 3 show representative ROC
plots for scoring functionswith the best performances among
scoring programs evaluated in the enrichment study. The
calculated areas under the receiver-operating characteristic
curves values for each scoring program are given in Table 3.
PC1 obtained from performed PCA on Autodock, DSX, and
ChemScore scores led to the best EF1% and AUC for SP
docking runs. Principle component 2 (PC2) was plotted

Table 1: Correlation coefficients (Pearson’s and Spearman’s cor-
relation coefficients) for 11 individual and two consensus scoring
functions with pAffinity.

Pearson’s correlation
coefficient with

pAffinity

Spearman’s
correlation coefficient

with pAffinity
Consensus
(rank-by-rank) 0.298 0.227

Consensus
(rank-by-number) −0.303 −0.211

AutoDock4.1 −0.049 0.019
ChemScore −0.253 −0.216
D-Score −0.090 −0.048
DSX −0.368 −0.255
F-Score −0.390 −0.391
G-Score −0.178 −0.148
PoseScore −0.321 −0.227
RankScore −0.311 −0.285
PMF-Score −0.148 −0.147
Vina −0.078 −0.036
X-Score −0.209 −0.109

4

2

2

0

0

−2

−2−4

PC
2

PC1

Figure 4: Plot of PC2 against PC1 for Glide virtual screening results
(SP). 󳵳: actives; I: decoys.

against PC1 in Figure 4. As it was shown in Figure 4, PC1 has
an ability to discriminate true binders from decoys, as at the
left side the density of true ligands is much higher. PC2 is not
very informative in this regard.

4. Discussion

It was clear that MMPs are still interesting targets for
pharmaceutical studies. On the other hand, scoring functions
have different performance on different targets [3].We used 11
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Table 2: The scoring functions are ranked from the best (1) to the worst (5) according to the correlation with experimental data.

Based
on Rp F-Score1 DSX2 PoseScore2 RankScore2 ChemScore3 X-Score4 G-Score4 PMF-Score4 D-Score5 Vina5 AutoDock4.15

Based
on Rs F-Score1 RankScore2 DSX2 PoseScore2 ChemScore3 G-Score4 PMF-Score4 X-Score4 D-Score5 Vina5 AutoDock4.15

Table 3: The performance characteristics of scoring functions in discrimination of true binders after docking.

Scoring method AUC of ROC curve EF20% EF10% EF2% EF1%

Glide (HTS)

Glide 0.653348 2.142857 2.5 1.785714 3.571429
F-Score 0.242776 0 0 0 0

PMF-Score 0.501041 0.535714 0.714286 0 0
G-Score 0.551684 1.428571 1.428571 5.357143 10.71429
D-Score 0.515996 1.428571 1.785714 7.142857 7.142857

ChemScore 0.648363 2.678571 3.571429 7.142857 14.28571
X-Score 0.56054 1.25 1.785714 1.785714 3.571429
DSX 0.632341 2.142857 2.857143 1.785714 0

Autodock 0.646775 1.964286 2.142857 7.142857 10.71429
Vina 0.560097 1.25 1.071429 0 0

Glide (SP)

Glide 0.730062 2.758621 3.448276 8.62069 13.7931
F-Score 0.409975 0.172414 0.344828 0 0

PMF-Score 0.496598 0.689655 0.689655 0 0
G-Score 0.56524 1.724138 1.724138 1.724138 3.448276
D-Score 0.549838 1.206897 1.724138 1.724138 0

ChemScore 0.757174 2.758621 4.827586 12.72414 20.68966
X-Score 0.605001 1.896552 1.724138 1.724138 3.448276
DSX 0.683476 2.586207 3.793103 6.896552 10.34483

Autodock 0.690234 1.896552 3.793103 12.06897 13.7931
Vina 0.592455 1.551724 1.37931 1.724138 3.448276
PC1 0.79963 3.448276 5.862069 18.96552 34.48276

scoring functions to predict the binding affinities for MMPs-
inhibitor complexes. After that, the results were tested on a
member ofMMPs family (MMP-12).The F-Score, PoseScore,
RankScore, DSX, and ChemScore showed the best perfor-
mances among the 11 assessed scoring functions in scoring
and ranking ligand-receptor binding taken from available
MMPs crystal structures. In the next step we evaluated the
scoring functions ability to find MMP-12 inhibitors (active
compounds) among set of decoys. Our enrichment and
ROC curve study further validated the results of predictivity
study for DSX and ChemScore via analysis of MMP-12
virtual screening results. The PC1 component of PCA model
consisting of three scoring functions (Autodock, DSX, and
ChemScore) had the best performance in enrichment study.

The overall performance of scoring functions in predic-
tion of experimental binding affinities ofMMPs 3D structures
in presence of inhibitors was not satisfying in comparison
with those reported in some previous studies on other targets
[6, 25, 30]. This could be due to the lack of restrictive
selection criteria in our study. We did not apply restrictive
selection criteria on our test set 3D structures, since it would
dramatically decrease the statistical power of the analysis.
Usually test sets for evaluation of docking/scoring functions

include only X-ray crystallography structures with high
resolutions. Moreover, the binary complexes are preferred.
But our test set included complexes that are not fully suitable
for docking/scoring studies. In addition, the binding affinity
data were taken from different sources that could be the
source of noises in analysis.

However, the scoring functions with top correlation coef-
ficients (DSX and ChemScore) associated with the best ROC
curve and EFs in rescoring virtual screening results of MMP-
12. This was validated by the applicability of the predictivity
power study results for MMPs. As the PCA potential for
improving virtual screening results was demonstrated in
previous reports [31], this approach was also evaluated in our
study. PCAmodels obtained from different scoring functions
were tested and the one which included Autodock, DSX, and
ChemScore scoring functions had improved the ROC as well
as EF of SP Glide virtual screening results.

The ultimate goal of this study was to determine which
of the scoring functions or combinations of them would
yield the best results in terms of enrichment when used
against MMPs in a virtual screening study. Our study was
retrospective and virtual screening was only performed in
case of MMP-12. However, due to high similarity between
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active site structure and sequence among MMPs family, the
similar results were expected for other members.
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