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Lichun Ma1*†, Debby D Wang1†, Yiqing Huang2†, Hong Yan1, Maria P Wong3 and Victor HF Lee3
Abstract

Background: Epidermal growth factor receptor (EGFR) mutation-induced drug resistance has caused great difficulties
in the treatment of non-small-cell lung cancer (NSCLC). However, structural information is available for just a few EGFR
mutants. In this study, we created an EGFR Mutant Structural Database (freely available at http://bcc.ee.cityu.edu.hk/
data/EGFR.html), including the 3D EGFR mutant structures and their corresponding binding free energies with two
commonly used inhibitors (gefitinib and erlotinib).

Results: We collected the information of 942 NSCLC patients belonging to 112 mutation types. These mutation types
are divided into five groups (insertion, deletion, duplication, modification and substitution), and substitution accounts
for 61.61% of the mutation types and 54.14% of all the patients. Among all the 942 patients, 388 cases experienced a
mutation at residue site 858 with leucine replaced by arginine (L858R), making it the most common mutation type.
Moreover, 36 (32.14%) mutation types occur at exon 19, and 419 (44.48%) patients carried a mutation at exon 21. In this
study, we predicted the EGFR mutant structures using Rosetta with the collected mutation types. In addition, Amber
was employed to refine the structures followed by calculating the binding free energies of mutant-drug complexes.

Conclusions: The EGFR Mutant Structural Database provides resources of 3D structures and the binding affinity with
inhibitors, which can be used by other researchers to study NSCLC further and by medical doctors as reference for
NSCLC treatment.

Keywords: Epidermal growth factor receptor (EGFR), EGFR mutation database, Non-small-cell lung cancer (NSCLC),
Tyrosine kinase inhibitor, Gefitinib, Erlotinib, Binding free energy
Background
As the primary type of lung cancer, non-small-cell lung
cancer (NSCLC) has received growing attention from
the researchers [1-3]. It is reported that about 85% of all
the lung cancer patients are diagnosed as NSCLC [4].
One strategy commonly used in the treatment is to tar-
get the tyrosine kinase (TK) domain of epidermal growth
factor receptor (EGFR) to interrupt the downstream sig-
naling [5,6]. Reversible tyrosine kinase inhibitors (TKIs),
such as gefitinib and erlotinib, are generally applied in
this procedure. They are proven to be efficient for pa-
tients over a period of time, but a limited treatment
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outcome usually occurs because of mutation at EGFR TK
domain [7,8]. According to statistics, about 10% to 15% of
white patients and 30% East Asian patients experience a
mutation of EGFR TK domain [4], and over one hundred
mutation types have been found so far [9,10].
Structural information is available for just a few EGFR

mutants from the Protein Data Bank (PDB) [11]. They
are obtained with experimental methods, such as X-ray
crystallography and nuclear magnetic resonance (NMR)
spectroscopy [12]. These methods can produce high-
resolution protein crystal structures, but they are usually
very complex, costly and time consuming. Bioinformat-
ics based methods have become very popular and suc-
cessful in predicting protein structures [13,14]. Wang
et al. [15] predicted EGFR mutant structures using the
tools scap and loopy. Yarov‐Yarovoy et al. [16] employed
Rosetta [17] to predict helical transmembrane protein
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structures. The binding free energy acts as a useful index
to evaluate the binding affinity between mutants and
drugs, and can be used as an important indicator of drug
resistance. Zhou et al. [18] predicted EGFR mutation in-
duced drug resistance based on the binding free energy,
which was calculated with Amber [19]. As different muta-
tions affect the EGFR structure and drug resistance level
differently, a database of the EGFR mutant structures and
the corresponding binding free energies with TKIs can
provide a useful resource for further research and clinical
guidance.
In this study, we created an EGFR Mutant Structural

Database, containing over one hundred EGFR mutants
and their binding free energies with reversible TKIs gefi-
tinib and erlotinib. We employed Rosetta [17] to generate
the 3D structures of the EGFR mutants with the wild-type
(WT) EGFR. Then Amber [19] was used to optimize the
structures and compute the binding free energies with
Figure 1 Procedure used to build the EGFR Mutant Structural Databa
modeling (CM) protocol to predict EGFR mutant structures. Secondly, the pre
Amber. Then a drug (gefitinib or erlotinib) was added to the mutant structure
Amber to calculate the binding free energies of the EGFR mutants and the in
binding free energies with gefitinib and erlotinib were collected to establish t
gefitinib and erlotinib. The procedure we have used to
build the database is shown in Figure 1.

Methods
Data collection
The EGFR mutation types were obtained from the EGFR
Mutation Database (http://www.cityofhope.org/egfr-mu-
tation-database) [9] and the Queen Mary Hospital in
Hong Kong [10]. The EGFR Mutation Database is a pub-
lic database, while the data from Queen Mary Hospital
in Hong Kong were obtained through several clinical
projects and all of these projects had ethics approvals.
None of any data entries contains patient identity. Before
the commencement of this study, we obtained approval
and permission from Institutional Review Board of the
University of Hong Kong/Hospital Authority Hong Kong
West Cluster to use the data from Queen Mary Hospital.
The mutations locate at exons 18 to 21 of the EGFR TK
se. First, we applied Rosetta ddg_monomer protocol and comparative
dicted structures were refined with a minimization step using sander in
s followed by MD simulation. Subsequently, we employed MM-GBSA in
hibitor. Finally, the refined mutant structures and their corresponding
he database.

http://www.cityofhope.org/egfr-mutation-database
http://www.cityofhope.org/egfr-mutation-database


Table 2 Distribution of EGFR mutations

Name Number of
mutations

Number of
patients

Percentage of all
mutation types

Percentage
of all the
patients

Insertion 7 9 6.25% 0.96%

Deletion 6 285 5.36% 30.25%

Duplication 6 18 5.36% 1.91%

Modification 24 120 21.42% 12.74%

Substitution 69 510 61.61% 54.14%
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domain. Specifically, there are 112 mutation types, includ-
ing 95 from 774 NSCLC patients of the Mutation Data-
base and 17 from 168 patients of the Queen Mary
Hospital in Hong Kong. These mutation types are named
according to their corresponding changes of the amino
acid sequences relative to the WT sequence (Table 1). In
the mutation representation, A and B, locating at positions
p and q respectively, represent two residues in the protein
sequence. I is a single residue or a residue list, and C and
D are two other residues.
The crystal structures of EGFR mutants with L858R and

G719S are available from PDB [11]. Other EGFR mutants,
used for calculating binding free energies with gefitinib and
erlotinib, were generated based on the template structures
“2ITY” and “1 M17” respectively downloaded from PDB.
Point mutation modeling
Residue substitution accounts for more than 60% (Table 2)
of all the mutation types in our database. Single-point mu-
tation is a replacement of an amino acid in the protein se-
quence with another, while double-point mutation occurs
when the amino acids at two positions are replaced. In this
paper, ddg_monomer in Rosetta was employed to generate
the residue substitution mutants. This application takes
the WT EGFR crystal structure and the mutant sequence
as inputs, and the output is the structural model of the
mutation with the side-chain replaced. Two main proto-
cols are available in this procedure, the high-resolution
protocol [20] and the low-resolution protocol [21]. The
high-resolution protocol allows the backbone with a lim-
ited relaxation while the low-resolution protocol makes
the backbone fixed. We adopted the high-resolution
protocol to generate the EGFR single-point and double-
point mutations. First, the side-chain at the mutant pos-
ition is replaced and the Rosetta’s standard side-chain
optimization module is applied to optimize the rotamers
at all residues of the protein. Subsequently, gradient-based
minimization is adopted to produce the minimized struc-
tures. As the high-resolution protocol allows the backbone
a limited freedom, Cα-Cα distance restraints are used in
Table 1 The naming rules of EGFR mutations

Name Representation Example Description

Insertion Ap_I_Bq V769_ASV_D770 Residues insertion

Deletion delAp_Bq delE746_S752 Residues deletion

Duplication dulAp_Bq dulA767_V769 Residues duplication

Modification delAp_BqinsI delE746_A750insAP Combination of
residues deletion
and insertion

Substitution ApB T790M Single-point
mutation

ApC_BqD E709A_G719A Double-point
mutation
the optimization process in order to prevent the backbone
moving too much from the start conformation.

Homology modeling
We employed the homology modeling (also known as
comparative modeling (CM)) [22] protocol in Rosetta to
generate the mutations of amino acids insertion, dele-
tion, duplication and modification relative to WT EGFR.
Homology modeling is widely used in predicting protein
structures as it can often provide reliable and accurate
structural models [23-25]. It provides a way to fill the
large gap between the increasing number of available
protein sequences and the protein crystal structures ob-
tained from experimental methods [26].
Before model construction, several files (target and

template protein sequences, template PDB file, mutant-
aligned sequences, fragment library and secondary struc-
ture file of the target) should be prepared first. Selection
of a template is very important because it can affect the
accuracy of the predicted structure. In our studies, the crys-
tal structures of EGFR TK domain “2ITY” and “1 M17” are
selected as templates to generate the mutants. After the
template is determined, mutant sequences are aligned to
the template sequence with multiple-sequence alignment
program ClustalW [27]. The fragment library includes short
peptide backbone fragments, which can play an important
role in the construction of variable regions. We employed
the fragment picker protocol in Rosetta to pick fragments,
which can help to establish models more efficiently and ac-
curately by enabling rapid search of the conformational
space. Moreover, PSIPRED [28] are used to obtain the tar-
get’s secondary structure file. After all these files prepared,
the CM protocol [22] in Rosetta are applied to build the
well-aligned regions and the missing parts are rebuilt using
loop modeling with the fragment library. Finally, a full-
atom refinement step is performed to the models and clus-
tering method is used to select models.

Model assessment
The models predicted with software simulation may not
be accurate, thus the verification and assessment of the
predicted models become very important. Two methods
are often adopted to assess the predicted models with
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software simulation, computing the energy of the model
and evaluating the similarity with a given characteristic be-
tween the predicted model and the real structure [26]. In
this paper, we used physics-based energies of the predicted
EGFR mutants to assess the accuracy of the 3D structures.
The full atom energy scoring function was employed to
calculate the energies of all the structures and the one
with the minimum energy was identified as the finally pre-
dicted structure. Using the function, each predicted struc-
ture is scored with a series of parameters (Lennard-Jones
interactions, solvation, residue pair interactions, van der
Waals, hydrogen bonding, Ramachandran torsion prefer-
ences, rotamer self-energy and unfolded state reference
energy) and their corresponding weights [29]. The total
score of a predicted model is defined as the weighted sum
of all the scoring parameters.

Molecular dynamics (MD) simulation
After the predicted EGFR mutant structures were ob-
tained, we optimized these structures using MD simula-
tion in Amber [19]. The simulation is conducted in a
solvent environment, thus, an octahedron water box
(TIP3P model, 10.0-angstrom (Å)) is added to the struc-
ture with tleap in Amber. In order to describe the mol-
ecule interactions, the following molecular force field is
adopted in Amber.

V rð Þ ¼ Ebonded þ Enonbonded

¼
X
bonds

Kb b−b0ð Þ2 þ
X
angles

K θ θ−θ0ð Þ2

þ
X
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V n=2ð Þ 1þ cos nϕ−δ½ �ð Þ

þ
X
nonbij

Aij=r
12
ij
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6
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� �
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� �
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The total energy is composed of bonded term Ebonded
and non-bonded term Enonbonded. In Equation (1), the
bonded energy which is related to the covalent bonds con-
sists of bond stretching (where Kb is an empirical stretch-
ing force constant, b and b0 are the actual and empirical
bond lengths respectively), angle bending (where Kθ is a
constant, θ and θ0 are the actual and empirical bond angles
respectively), and torsion terms (where Vn is the barrier to
free rotation for the empirical bond, n is rotation period-
icity, ϕ stands for torsion angle, and δ represents the angle
when the potential reaches its minimum value). The non-
bonded energy includes van der Waals (where Aij and Bij
describe the depth and position for a pair of non-bonded
interacting atoms respectively, and rij is the interatomic
distance) and the long-range electrostatic terms (where qi
and qj are point charges, and rij is the interatomic dis-
tance). In our simulation, we employed the ff99SB force
field, which is a broad application of the basic force field.
After solvating the complex and adding force filed, we
conducted a minimization step to the entire system with
sander in Amber. The result from the optimization process
is our refined mutant structure.
With MatchMaker in UCSF Chimera [30], we aligned

the optimized structure to the template complex “2ITY”
(EGFR-gefitinib complex) or “1 M17” (EGFR-erlotinib com-
plex) to obtain the mutant-drug complex. Then Amber was
used to optimize these complexes. Similarly, the complex
was solvated in a TIP3P water box (10.0 Å) and the ff99SB
force filed was adopted. In order to conduct the production
MD, we need to equilibrate the solvated complex using
sander in Amber. First, 1000 circles of minimization were
adopted to remove any bad contacts and make the struc-
ture relaxed. In this procedure, steepest descent algorithm
was used for the first 500 steps and conjugate gradient
algorithm was applied for the second 500 steps. Then
50 picosecond (ps) of heating and 50 ps of density equili-
bration were conducted to reach the temperature about
300 K and the density around 1 grams/ml. Subsequently,
equilibration of constant pressure at 500 ps was carried
out at the temperature of 300 K. All these simulations
were conducted with shake on hydrogen atoms, and Lan-
gevin dynamics was used to control the temperature. Sev-
eral parameters, such as temperature, density, total energy
and root-mean-square deviation (RMSD) were finally used
to verify that the equilibration of the system. When the
system is equilibrated, we proceeded to run the produc-
tion MD for a total of 2 ns and recorded the coordinates
every 10 ps.

Binding free energy calculation
The binding free energy of each mutant-drug complex is
calculated based on the motion trajectories, which are gen-
erated during the production MD simulation. The MM-
GBSA method in Amber tools was applied to calculate the
binding free energies of EGFR mutants and reversible TKIs
(gefitinib and erlotinib). The aim of this procedure is to
obtain the free energy difference between the bound and
unbound state of two solvated molecules. However, in a
solvent environment, the solvent-solvent interactions ac-
count for most energy contributions and the fluctuations
of the total energy would be an order of magnitude greater
than the binding energy. Therefore, the binding free en-
ergy is calculated as follows by means of thermodynamic
cycle in solvent and vacuum environment.

ΔGbind;solv ¼ ΔGbind;vacuum þ ΔGsolv;complex

− ΔGsolv;ligand þ ΔGsolv;receptor
� � ð2Þ

where ΔG bind,solv and ΔG bind,vacuum represent the free
energy difference of bound and unbound state of a com-
plex in solvent and vacuum environment respectively,
and ΔG solv,receptor, ΔG solv,ligand and ΔG solv,complex stand
for the changes of free energies of the receptor, ligand
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and complex between solvent and vacuum environment,
respectively.
We calculated the binding free energies of EGFR mutants

with gefitinib and erlotinib. MM-GBSA in Amber derives
the interaction energy and solvation free energy for the re-
ceptor, ligand and complex respectively. The energy of each
molecular is composed of several terms, including van der
Waals force (VDWAALS), electrostatic energy (EEL), the
electrostatic contribution to the solvation free energy (EGB)
and nonpolar contribution to the solvation free energy
(ESURF). The total binding free energy is given by ΔG
along with error values.

Results and discussion
Data analysis
According to the naming rules, 112 EGFR mutation
types of the 942 NSCLC patients are divided into five
groups, including insertion, deletion, duplication, modi-
fication and substitution. We counted the number of
mutation types as well as the corresponding patients of
each mutation type (Table 2). From Table 2, substitution
accounts for more than half of EGFR mutation types
and the number of patients. Although deletion just takes
up 5.36% of all the mutation types, 285 cases belong to
this group and they hold 30.25% of all the patients.
Among all the 112 mutation types, several of them

take up the majority of the patients, such as L858R,
delE746_A750 and delL747_P753insS. We listed the top
10 common mutations among the 942 patients in
Table 3. Top two of them (L858R and delE746_A750)
accounts for more than half of all the patients in total.
Specifically, 388 cases experienced a mutation of L858R at
exon 21, taking up 41.19%, and 264 patients suffered from
delE746_A750 (deletion of amino acids at exon 19), which
accounts for 28.03%.
Moreover, we analyzed the mutations and the number

of patients at each exon (Table 4). From Table 4, the num-
ber of occurrences of most mutation types at each exon is
less than or equal to 3. For example, there are 14 mutation
Table 3 Most common EGFR mutation types

Mutation types Number of patients Percentage Position (Exon)

L858R 388 41.19% 21

delE746_A750 264 28.03% 19

delL747_P753insS 43 4.56% 19

delE746_S752insV 16 1.70% 19

G719S 10 1.06% 18

delL747_T751 10 1.06% 19

delL747_T751insP 10 1.06% 19

L861Q 10 1.06% 21

G719C 9 0.96% 18

delE746_T751insA 9 0.96% 19
types at exon 18 with the number of occurrences less than
or equal to 3 and only 3 mutations with occurrences more
than 3. However, those mutations with the number of oc-
currences more than 3 often occupy more patients than
all other mutations with the number of occurrences less
than or equal to 3. For instance, 371 patients have 10 mu-
tation types while just 38 patients have 26 mutation types
at exon 19. In addition, exon 19 (32.14%) occupies the
most mutation types, and exon 21 (44.48%) accounts for
the greatest number of the NSCLC patients.

EGFR mutant structure prediction
We employed Rosetta to generate the EGFR mutants
based on the template structures “2ITY” and “1 M17”. As
the crystal structures of L858R and G719S are available
from PDB, we took the two models as the 3D mutant
structures. The procedure of predicting EGFR mutants
using Rosetta has been discussed in Point Mutation Mod-
eling and Homology Modeling parts of the Materials and
methods Section. After the mutant structures were ob-
tained, we employed sander in Amber to conduct a short
1000 steps of minimization to remove any bad contacts
and find out the nearest local minima. Then the refined
structures were saved as our predicted EGFR mutants for
further analysis. Figure 2 shows the mutation neighborhood
of our predicted structures and the WT structure. We
employed UCSF Chimera [30] to display these structures.
In the EGFR Mutant Structural Database, computation-

ally predicted structures are provided. These structures
were selected according to the full atom energy scoring
function. To examine the accuracy of the predicted struc-
tures, we made a comparison of the predicted structures
and the actual structure of L858R, the most common mu-
tation of the EGFR TK domain. Ten amino acids close to
the mutation position were selected in order to see the
local differences. Using UCSF Chimera, we aligned the pre-
dicted structures (structureE01, structureE02 and struc-
tureE03 from http://bcc.ee.cityu.edu.hk/data/EGFR.html)
to the actual structure “2ITZ” from PDB. Figure 3 shows
the comparison of the actual structure and the structures
generated based on Rosetta. The backbones of the pre-
dicted structures are consistent with the actual one. In
addition, the backbone RMSDs of the three pairs of struc-
tures are 0.725 Å, 0.562 Å and 0.559 Å respectively, which
confirms the good accuracy of our prediction procedure.
Once the optimized mutant structures were obtained, we

aligned these structures to the WT EGFR using Match-
Maker in UCSF Chimera. Inhibitors were added to the
structures followed by several optimization steps to these
mutant-drug complexes using MD simulation. Before MD
simulation, the mutant-drug complex should first be sol-
vated in a TIP3P water box (10.0 Å) and the ff99SB force
filed was needed in order to describe the molecule interac-
tions. Then a series of refinement operations (minimization,

http://bcc.ee.cityu.edu.hk/data/EGFR.html


Table 4 Distribution of mutation types and the number of patients by mutation position

Mutation position Number of occurrences Number of mutation types Number of patients Percentage of all
mutation types

Percentage of all
the patients

Exon 18 ≤3 14 19 12.5% 15.18% 2.02% 4.89%

>3 3 27 2.68% 2.87%

Exon 19 ≤3 26 38 23.21% 32.14% 4.03% 43.41%

>3 10 371 8.93% 39.38%

Exon 20 ≤3 25 34 22.32% 25.89% 3.61% 6.05%

>3 4 23 3.57% 2.44%

Exon 21 ≤3 18 21 16.07% 17.86% 2.23% 44.48%

>3 2 398 1.79% 42.25%

Others ≤3 10 11 8.93% 8.93% 1.17% 1.17%
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heating, density equilibration and constant pressure equili-
bration) were conducted with sander in Amber as intro-
duced in the Molecular dynamics (MD) simulation part of
the Materials and methods Section. Figure 4 shows the
comparison of minimized EGFR mutant-drug complex and
WT EGFR-drug complex structures.

Binding free energy calculation
Binding free energies are calculated based on the trajector-
ies determined during the production MD simulation
process. Before running the production MD simulation, we
should make sure that the solvated complex has equili-
brated. For this, the terms of temperature, density and total
energy of the system are examined. Moreover, the protein
backbone RMSD is checked in order to see whether the
conformational stability has been achieved. Figure 5 shows
the verification terms of the mutant delE746_A750 with
gefitinib and erlotinib during the equilibration period.
Figure 2 Comparison between local changes of the predicted structu
duplication, modification and substitution (single-point and double-poin
delT751_I759insN, L165Q and S72IV78M, respectively. The dark gray cha
the predicted ones with Rosetta.
From Figure 5, the computational processes for the dens-
ity, temperature and total energy of delE746_A750 with
gefitinib and erlotinib are all converged at last, which can
be used as evidence for system equilibration. The back-
bone RMSD is in an acceptable level although it is not
converged completely for each system.
After the system reaches equilibration, production MD

simulation is conducted. Similarly, we still check equilib-
rium phase space of the system by the density, temperature,
total energy and backbone RMSD during the production
phase in order to obtain good simulation results. Then,
with the trajectories produced in the production MD simu-
lation process, binding free energies are calculated using
MM-GBSA in Amber tools. The total binding free energies
of WT EGFR and several common mutation types with
gefitinib and erlotinib are shown in Table 5. Moreover, the
standard deviations (SD) and standard error of the mean
(SED) are also listed. If the binding free energy of the
res and WT EGFR. (A-F) display an example of insertion, deletion,
t), corresponding to V769_CV_D770, delE746_S752, dulN771_H773,
ins represent the WT structures while the magenta chains stand for



Figure 3 Comparison of the predicted structures and the actual structure of L858R. (A-C) show local comparison of predicted structureE01,
structureE02, structureE03 and the actual structure “2ITZ”, respectively. The dark gray chains represent the actual structures while the purple chains
stand for the predicted ones using Rosetta.
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mutant and drug is low, generally, they are considered
binding well with each other, which means the drug can
inhibit the activation of EGFR mutant.
The total binding free energy is composed of several en-

ergy components, including VDWAALS, EEL, EGB and
ESURF. Figure 6 shows the distribution of each energy com-
ponent and the total binding free energies of all the EGFR
mutants and the inhibitors. As shown in Figure 6A and B,
the total energy and energy components (VDWAALS, EEL
and EGB) of the EGFR mutant-gefitinib complexes are dis-
tributed in a wider range than those of EGFR mutant-
erlotinib complexes.

Comparison of the EGFR mutant structural database and
other EGFR-related databases
Several EGFR-related databases are available publicly,
such as the EGFR Mutation Database (http://www.cityof-
hope.org/egfr-mutation-database) [9], the Catalogue of
Somatic Mutations in Cancer (http://cancer.sanger.ac.
uk/cancergenome/projects/cosmic/) [31], EGFR Inhibitor
Figure 4 Comparison of the WT EGFR-drug complex and mutant-drug
mutant structure delT751_I759insS with gefitinib. (C) and (D) show the WT
the corresponding solvent-excluded molecular surfaces of (A) to (D), and t
mutant sites are shown in magenta while the original sites are presented i
Database (http://crdd.osdd.net/raghava/egfrindb/) [32] and
the widely used PDB [11]. The EGFR Mutation Database
contains the mutant position information as well as the re-
sponse to inhibitors of the NSCLC patients. The COSMIC
stores somatic mutation data of human cancer. These data-
bases just provide the sequence information of the muta-
tions. The EGFR Inhibitor Database contains biological and
chemical information of the EGFR inhibitors. PDB provides
crystal structures of proteins, nucleic acids, and complex
assemblies obtained from experimental methods, such as
X-ray or NMR. However, only a few EGFR mutant struc-
tures are available because of the high cost of experiments.
The EGFR Mutant Structural Database presented in this
paper contains 3D structures of 112 kinds of EGFR mu-
tants. Moreover, the binding free energies of the mutant
and inhibitors are provided to show the binding affinity.
The structural information is very helpful to conduct pro-
tein docking, hydrogen bond analysis, and protein-drug
complex simulation, which are very important in the
studying of drug resistance mechanisms.
complex structures. (A) and (B) display the WT EGFR and the
structure and the mutant dulA767_V769 with erlotinib. (E-H) present
he drug binding pockets can be seen very clearly. In (A) to (D), the
n blue. In addition, drugs are colored green.

http://www.cityofhope.org/egfr-mutation-database
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Figure 5 The density, temperature, total energy and RMSD of delE746_A750 with gefitinib (A-D) and erlotinib (E-H) during the
equilibration period.

Table 5 Binding free energies of WT EGFR-drug complex and several common mutation-drug complexes

EGFR Binding free energy with gefitinib (kcal/mol) Binding free energy with erlotinib (kcal/mol)

Total SD SEM Total SD SEM

WT −43.8839 2.7576 0.1950 −41.2009 3.0544 0.2160

L858R −46.0101 2.7728 0.1961 −45.1344 2.6856 0.1899

delE746_A750 −35.2995 2.9642 0.2096 −44.6007 3.3339 0.2357

delL747_P753insS −28.5837 3.6056 0.2550 −38.1157 3.0238 0.2138

delE746_S752insV −42.7755 3.1422 0.2222 −33.2645 2.9925 0.2116

G719S −35.4427 2.7781 0.1964 −43.4964 3.3155 0.2344
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Figure 6 Distribution of binding free energies of all the EGFR mutants with (A) gefitinib and (B) erlotinib. The energy components and
the total energies are shown in the diagrams.
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In our previous work [15,33], the molecular mecha-
nisms have been identified from the aspects of geometric
properties of mutant structures and the binding free ener-
gies with gefitinib and erlotinib. In [33], with 30 mutant
structures generated by Rosetta, we analyzed local surface
changes of the binding pocket relative to the wild-type
EGFR using alpha shape modeling. Moreover, we con-
ducted a correlation analysis about the geometric proper-
ties and the pre-recorded progression-free survival (PFS)
in the treatments. Results show that the curvature of the
binding pocket surface plays an important role in the pre-
diction of EGFR mutation-induced drug resistance. In
[15], we identified drug resistance mechanisms from the
binding free energies with inhibitors (gefitinib and erloti-
nib) as well as some personal features of 168 patients (be-
longing to 37 mutation types). Extreme learning machine
method was employed to build a classification model and
resistant subjects were successfully identified. Overall, the
molecular mechanisms of drug resistance are closely re-
lated to the mutant structures and the binding affinity
with inhibitors. Thus, the EGFR Mutant Structural Data-
base we built here is very useful to other researchers and
medical doctors for further studying or clinical guidance.

Conclusions
In this work, we created an EGFR Mutant Structural Data-
base, composed of computationally predicted 3D structures
of the EGFR mutants and the corresponding binding free
energies with gefitinib and erlotinib. In our database, 112
kinds of mutants were collected from 942 NSCLC patients.
We categorized the mutants into five groups (insertion, de-
letion, duplication, modification and substitution), and sub-
stitution accounts for 61.61% of the EGFR mutation types
and 54.14% of all the patients. As the most common muta-
tion type, L858R covers 388 or 41.19% of all the patients. In
addition, we analyzed the mutations at each exon. It shows
that exon 19 (32.14%) possesses the most mutation types
and exon 21 (44.48%) occupies the largest number of pa-
tients. With the mutant protein sequences and WT EGFR
crystal structure, we predicted the EGFR mutation struc-
tures with Rosetta and optimized the structures using
Amber. Finally, we calculated the binding free energies of
EGFR mutants and the inhibitors (gefitinib and erlotinib).
Our work provides a database of the EGFR mutant struc-
tures and their corresponding binding free energy with in-
hibitors. These resources can be used for further researches
and clinical guidance, such as analyzing drug resistance of
the EGFR mutants, which is a major problem during the
treatment of NSCLC patients. The database is freely
available at http://bcc.ee.cityu.edu.hk/data/EGFR.html.
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