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C o m m e n t a r y

Voltage-gated sodium channels play a central role in  
action potential firing throughout the cardiovascular 
and nervous systems, and their gating is exquisitely  
sensitive to changes in transmembrane potential. Nega-
tive regulation of sodium channel conductance occurs 
through a process known as inactivation, which can pro-
ceed from either the open or closed states, termed “fast” 
or “steady-state” inactivation (SSI), respectively. When 
sodium channel conductance is poorly regulated, very 
bad things happen. For instance, inherited or acquired 
defects in sodium channel conductance are associated 
with a spectrum of electrical signaling disorders includ-
ing cardiac arrhythmias (Wang et al., 1995; Valdivia et al.,  
2005), epilepsy and primary erythermalgia (a peripheral  
pain disorder) (Yang et al., 2004), paroxysmal extreme 
pain disorder (Fertleman et al., 2006), hypokalemic pe-
riodic paralysis (Ptácek et al., 1991; Rojas et al., 1991), 
paramyotonia congenital (McClatchey et al., 1992), in 
addition to unexpected roles in migraine (Kahlig et al., 
2008), autism (Weiss et al., 2003; Han et al., 2012a), sleep 
(Han et al., 2012b), and multiple sclerosis (Craner et al.,  
2004). Furthermore, SSI strongly influences electrical 
stability in excitable cells because the midpoint of the 
inactivation–voltage relationship is often near the rest-
ing membrane potential of the cell; thus, seemingly 
modest shifts in the midpoint of the SSI versus voltage 
relationship, caused by (dys)modulation or point mu-
tations, can have a powerful effect on the number of 
channels that are available to contribute to the action 
potential. Thus, sodium channel gating, and inactiva-
tion in particular, is a biophysical phenomenon that  
effortlessly transcends the patch rig to the clinical set-
ting, yet a detailed picture of the molecular basis that 
underlies inactivation remains stubbornly unresolved. 
In this issue of The Journal of General Physiology, Capes 
et al. used a voltage sensor–disabling approach to sys-
tematically investigate the identity of the molecular trig-
ger for inactivation and confirm the role for the domain 
four (DIV S4) voltage sensor in this key physiological 
process (Capes et al., 2013).

Rapid sodium channel activation drives the upstroke of 
the action potential, but fast and complete inactivation 
of sodium conductance is essential for timely membrane  
repolarization and the refractory interval between action 
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potentials. Hodgkin and Huxley presciently descri bed a 
mechanism whereby four membrane-embedded charged 
particles, three associated with activation (m-gates) and 
one with inactivation (h-gate), give rise to the voltage-
dependent sodium conductance in squid axon (Hodgkin 
and Huxley, 1952). This idea is consistent with the  
sodium channel gene structure that contains four non-
identical domains (DI–DIV), each with pore-lining  
S5–p-loop–S6 segments and a voltage-sensing domain 
(VSD) comprised of the S1–S4 segments, with the S4 
segments harboring between three and seven positively 
charged residues, depending on the domain. Mutations 
throughout the channel can affect gating; however, 
those introduced in DIV tend to most strongly affect 
inactivation (Chahine et al., 1994; McPhee et al., 1994, 
1998; Chen et al., 1996; Yang et al., 1996; Lerche et al., 
1997). The fast kinetics of DI–III S4 movement, as visu-
alized by voltage-clamp fluorometry, correlate closely 
with activation of sodium conductance, whereas the 
relatively slow movement of DIV S4 aligns with the de-
velopment of inactivation and with the immobilization 
of the gating charge (Cha et al., 1999; Chanda and  
Bezanilla, 2002). Furthermore, toxins that preferentially 
interact with the DIV VSD potently modulate channel 
inactivation (Hanck and Sheets, 2007; Bosmans et al., 
2008; Wang et al., 2011). Thus, a plethora of evidence 
supports the idea that DI–III contribute to channel acti-
vation and DIV S4 is associated with inactivation. How-
ever, it is not known whether DIV S4 activation alone is 
sufficient to initiate inactivation, and if this single trig-
ger is responsible for allowing inactivation to proceed 
from both open and closed channels.

To tackle this question directly, Capes et al. (2013) 
used a charge neutralization strategy whereby the first 
three S4 charges, which carry the bulk of the charge 
movement (Sheets et al., 1999), were mutated to gluta-
mine (Q), resulting in charge-neutral (CN) voltage sen-
sors. In addition to impairing S4 voltage sensitivity and 
movement, such CN VSDs are likely to be in an active 
conformation, which is usually only visited at positive 
potentials (Bao et al., 1999; Gagnon and Bezanilla, 
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instantaneous entry into fast-inactivated states as deter-
mined by a two-pulse protocol to avoid the contribution 
of activation latencies (Aldrich et al., 1983). Third, once 
inactivated, DIV CN channels lagged in leaving noncon-
ducting states, and once initiated, the recovery from 
inactivation was significantly slowed. Fourth, all three of 
these experimental results could be recapitulated by a 
model of sodium channel gating whereby inactivation, 
from either open or closed states, is initiated by DIV S4 
movement, after which an inactivation particle may 
bind through a weakly voltage-dependent step. Despite 
the wrinkle that the QQQ triplet mutation may func-
tionally affect each S4 segment differently, the data pro-
duced a clear result and, together with previous work, 
support the notion that, although all four voltage sen-
sors activate in channel opening, DIV S4 activation 
alone is sufficient for initiation of both fast and SSI, as 
depicted in Fig. 1. For simplicity, the stochastic activa-
tion of the DI–DIII VDSs are combined as a single step 
that ends with channel opening, as shown on the path-
way to the right-hand side. The subsequent activation  
of DIV VSD results in additional pore conformations 
(Goldschen-Ohm et al., 2013), and the eventual activation 

2009; Capes et al., 2012). In the present case, these mu-
tations were made individually in each of the four S4 
segments of skeletal muscle sodium channels, and the 
resulting channels were electrophysiologically interro-
gated for activation and inactivation characteristics.  
All four CN sodium channels were functional and had  
robust voltage-dependent activation gating, which at 
first glance is surprising, given that the S4 segments  
had been electrostatically neutered. However, if S4  
neutralization promotes movement of the S4 segment 
into the activated conformation, one has in fact re-
moved an energy barrier to activation, explaining the 
“normal” conductance–voltage relationships of VSD-
disabled channels. In terms of inactivation, DI–III CN 
channels were again quite functionally tolerant, whereas 
DIV CN channels have altered inactivation properties 
from closed, open, and inactivated states. First, DIV CN 
channels displayed a large hyperpolarizing shift in the 
SSI midpoint, suggesting that they were “preinactivated” 
at negative potentials, consistent with the hypothesis 
that DIV S4 activation is sufficient for SSI and that the 
mutation “preactivates” the DIV S4 segment. Second, 
DIV CN channels also showed an accelerated and near 

Figure 1. The life cycle of so-
dium channel inactivation. (Top)  
A simplified model of a voltage-
gated sodium channel, with the 
DI–DIII voltage sensors function-
ally compartmentalized from 
DIV and an inactivation “gate” 
(red bar) that is held in place 
by the DIV VSD. (Right) The 
potential contributions of DI–III 
to activation and the DIV VSD to 
fast inactivation from the open 
conformation. DIV S4 activation 
(bottom right) allows for the in-
activation gate to relocate to a 
pore site, occluding sodium con-
ductance. (Left) SSI proceeds 
after DIV activation through a 
series of nonconducting states. 
The possibility of a single inacti-
vated conformational end point 
with all VSDs activated is shown 
at the bottom, consistent with 
the kinetic scheme in Fig. 6 of 
Capes et al. (2013) in this issue 
of the Journal.
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of fast inactivation, bottom right. Speculative domain 
contributions involved with SSI portrayed on the left 
are described in the legend and flow through a series  
of electrically silent conformations (Horn et al., 1981). 
Does inactivation from open or closed states produce a 
common nonconducting conformation? One untested 
but compelling possibility is that DIV S4 activation pro-
motes a pore conformation that is permissive to inacti-
vation through the binding of regions of the channel, 
such as the DIII–IV linker triplet of residues IFM, which 
have been shown to disrupt inactivation when mutated 
(West et al., 1992). In the case of closed-state inactiva-
tion, DIV S4 activation and subsequent conformations 
would be electrically silent but may still share a similar 
inactivated conformation with fast-inactivated channels. 
However, it is also possible that, as in voltage-gated po-
tassium channels, distinct pore regions are used for dif-
ferent types of inactivation (Choi et al., 1991). Although 
the data are consistent with the notion that DIV S4  
represents a single molecular switch for closed- and 
open-state inactivation, little molecular detail is avail-
able on the transient complexes formed between DIV 
S4 movement and the development of inactivation or 
the location(s) of putative pore regions that might serve 
as a receptor for an inactivation particle. Indeed, given 
the many mechanistic unknowns in regards to sodium 
channel inactivation, the paper by Capes et al. (2013), 
like DIV S4 activation, is just the beginning of the story.
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