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Summary

Background—The cardiovascular benefits of intensive systolic blood pressure control vary 

across clinical populations tested in large randomised clinical trials. We aimed to evaluate the 

application of machine learning to clinical trials of patients without and with type 2 diabetes to 

define the personalised cardiovascular benefit of intensive control of systolic blood pressure.

Methods—In SPRINT, a trial of intensive (systolic blood pressure <120 mm Hg) versus standard 

(systolic blood pressure <140 mm Hg) systolic blood pressure control in patients without type 

2 diabetes, we defined a phenotypic representation of the study population using 59 baseline 

variables. We extracted personalised treatment effect estimates for the primary outcome, time-to-

first major adverse cardiovascular event (MACE; cardiovascular death, myocardial infarction or 

acute coronary syndrome, stroke, and acute decompensated heart failure), through iterative Cox 

regression analyses providing average hazard ratio (HR) estimates weighted for the phenotypic 

distance of each participant from the index patient of each iteration. Next, we trained an extreme 

gradient boosting algorithm (known as XGBoost) to predict the personalised effect of intensive 

systolic blood pressure control using features most consistently linked to increased personalised 

benefit, before evaluating its performance in the ACCORD BP trial of patients with type 2 

diabetes randomly assigned to receive intensive versus standard systolic blood pressure control. 

We stratified patients based on their predicted treatment effect, and key demographic groups (age, 

sex, cardiovascular disease, and smoking). We assessed the presence of heterogeneity with an 

interaction test, and assessed the performance of the algorithm in a simulation analysis of SPRINT 

in the presence or absence of an artificially introduced heterogeneous treatment effect.

Findings—From SPRINT, we included all 9361 study participants (mean age 67·9 years [SD 

9·4], 3332 [35·6%] female) who underwent randomisation to either intensive (n=4678) or standard 

(n=4683) treatment. The median individualised HR for MACE was 0·63 (IQR 0·53–0·78). An 

eight-feature tool built for this analysis to predict personalised benefit in SPRINT was externally 

tested in ACCORD BP (4733 participants (mean age 62·7 years [SD 6·7], 2258 [47·7%] female), 

wherein it successfully identified individuals with differential benefit from intensive versus 

standard systolic blood pressure control (adjusted HR for MACE of 0·70 [95% CI 0·55–0·90] in 

individuals with above-median MACE benefit versus 1·05 [95% CI 0·84–1·32] for below-median 

predicted benefit; pinteraction=0·0184). Subgroup analysis based on age (<65 years: HR 0·89 [95% 

CI 0·71–1·12]; ≥65 years: 0·85 [0·67–1·09]), sex (male: 0·89 [0·72–1·10]; female: 0·85 [0·65–

1·10]), established cardiovascular disease (no: 0·89 [0·70–1·14]; yes: 0·84 [0·67–1·06]), or active 

smoking (no: 0·85 [0·71–1·02]; yes: 1·01 [0·64–1·60]) did not identify groups with heterogeneity 

of treatment effect. In a simulation analysis of SPRINT, the proposed algorithm detected groups 

with heterogeneous treatment effects in the presence, but not absence, of simulated subgroup 

differences.

Interpretation—By use of machine learning to define an individual’s personalised benefit 

through phenotypic representations of clinical trials, we created a practical tool for individualising 
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the selection of intensive versus standard systolic blood pressure control in patients without and 

with type 2 diabetes.

Funding—National Heart, Lung, and Blood Institute of the US National Institutes of Health.

Introduction

Hypertension is the modifiable metabolic risk factor with the largest contribution to 

cardiovascular disease burden globally.1 Isolated systolic hypertension is the most common 

form of hypertension,2 with systolic blood pressure considered a stronger cardiovascular 

risk factor than diastolic blood pressure.3 The Systolic Blood Pressure Intervention Trial 

(SPRINT)4 and Action to Control Cardiovascular Risk in Diabetes Blood Pressure trial 

(ACCORD BP)5 tested whether targeting a systolic blood pressure of less than 120 mm Hg 

(intensive group) reduces the incidence of a major adverse cardiovascular event (MACE) 

when compared with a systolic blood pressure target of less than 140 mm Hg (standard 

group). Although both trials included individuals with a systolic blood pressure of 130–180 

mm Hg who had or were at an elevated risk of cardiovascular disease, type 2 diabetes 

was an exclusion criterion in SPRINT and an eligibility requirement in ACCORD BP. 

Intensive systolic blood pressure treatment demonstrated a substantial cardiovascular benefit 

in SPRINT,4,6 but similar benefits were not seen in ACCORD BP.5,7

These discordant findings might suggest that the benefits of intensive systolic blood 

pressure control depend on the phenotypic profile of each patient. Indeed, clinical practice 

guidelines have suggested that systolic blood pressure targets should be based on a patient’s 

cardiovascular risk profile;8 however, risk profiles alone do not adequately capture the 

phenotypic diversity of individuals, which is a requirement for precision care.

Our research group has recently published a machine learning-based approach that enables 

phenotyping of a clinical trial population based on baseline characteristics to predict 

treatment response.9,10 By defining a computational trial phenomap, a mathematical 

construct of the individual phenotypes across all these baseline measures, we can 

evaluate heterogeneous treatment effects via computational approaches that account for the 

phenotypic similarity of all included individuals, the treatment each individual received, and 

their subsequent clinical outcomes.

In this study, we aimed to test our hypothesis that patients with hypertension exhibit 

differential cardiovascular benefits from intensive versus standard systolic blood pressure 

reduction based on their complex phenotypic profile at baseline. Using participant-level 

data from SPRINT, we developed a computational phenomapping strategy that leverages 

information from all trial participants to infer signatures of individualised benefit of 

intensive systolic blood pressure lowering among patients without type 2 diabetes.4,6 We 

then evaluated its ability to identify patients with type 2 diabetes in the ACCORD BP trial 

who benefitted from intensive systolic blood pressure control.5
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Methods

Data sources

We obtained participant-level data of the SPRINT (n=9361) and ACCORD BP (n=4733) 

trials through the National Heart, Lung, and Blood Institute Biologic Specimen and Data 

Repository Information Coordinating Center. The design and original results for both studies 

have been published.4–6 A detailed description of the patient population is provided in the 

appendix (p 1). In both the SPRINT and ACCORD BP trials, participants were randomly 

assigned (1:1) to a systolic blood pressure goal of either less than 120 mm Hg (intensive 

treatment) or less than 140 mm Hg (standard treatment). A glossary of terms can be found in 

the appendix (p 10).

This post-hoc analysis of de-identified data complied with the Declaration of Helsinki and 

was approved by the Yale Institutional Review Board, which waived the requirement for 

informed consent.

Study population and covariates

We included all SPRINT and ACCORD BP participants who underwent randomisation 

and were included in the original trial reports.4–6 Inclusion and exclusion criteria for 

these trials have been described previously.4–6 No patients were further excluded for 

this analysis. In SPRINT, which was used as the derivation trial, we included patient 

characteristics at trial enrolment and the index or baseline visit, including demographics, 

anthropometric indices, medication, cardiovascular history, non-cardiovascular history, 

physical activity, self-reported assessment of health status, blood pressure measurements, 

Framingham Risk Score of 10-year atherosclerotic cardiovascular disease risk, laboratory 

and electrocardiographic measurements, and cognitive testing results. All features are listed 

in the appendix (pp 11–12).

Data pre-processing

The data pre-processing steps are described in detail in the appendix (pp 1–2). Briefly, 

we reviewed all clinically relevant variables collected in SPRINT (≤10% missingness), 

before imputing any missing information using chained random forests with predictive 

mean matching (missRanger in R).11 Following normalisation, reduction of collinearity, and 

removal of near-zero variance factors, 59 variables were included in our analysis (appendix 

pp 11–12).

Outcomes

Consistent with SPRINT,4,6 our primary outcome was the incidence of the first MACE, 

defined as a composite of myocardial infarction or acute coronary syndrome, stroke, acute 

decompensated heart failure, or cardiovascular mortality.

Our secondary outcome was the incidence of a composite net clinical benefit endpoint, 

including the primary outcome, all-cause mortality, and serious adverse events. Serious 

adverse events were defined as events deemed to be life threatening, leading to 
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hospitalisation or prolonging hospitalisation, or resulting in persistent or substantial 

disability or death. All analyses were performed in an intention-to-treat manner.

Defining a computational trial phenomap

We computed phenotypic distances between individuals based on their baseline 

characteristics according to the Gower’s distance, which is a metric of dissimilarity 

between two patients based on mixed continuous and categorical data (appendix p 2).12 

To visualise the phenotypic variation in the SPRINT population, we used uniform manifold 

approximation and projection (appendix pp 2–3, 10). This method constructs a phenomap 

(two-dimensional representation) of the population based on the full breadth of baseline 

phenotypes seen in the trial.13 This projection allows a degree of interpretability of the 

distribution of patients in this multidimensional phenotypic space, through colour-coded 

maps.

Defining personalised treatment effect estimates

For each unique participant, we measured the association of intensive versus standard 

systolic blood pressure reduction with the primary and secondary outcomes of interest 

using weighted estimation by Cox regression, as proposed by Schemper and colleagues.14 

Weights for our analysis were derived from the dissimilarity matrix with the contribution 

of each patient to the final prediction dependent on their phenotypic distance from the 

index patient. To ensure that patients who are phenotypically closer to the index patient 

carried higher cumulative weights than did patients located further away, we evaluated 

kernels with different exponential transformations of the similarity metric, defined as (1–

Gower’s distance). These values were processed through a rectified linear unit function 

(with SoftMax pre-processing) before their inclusion as weights in the regression models. 

We also analysed discrete phenotypic neighbourhood sizes consisting of 5% or 10% of the 

phenotypically similar patients within each patient’s neighbourhood, as per our previous 

work.9,10 We selected the weight definition that provided the most consistent estimates 

with neighbourhood-based methods (appendix pp 3–5, 14). From each personalised Cox 

regression model, we extracted the natural logarithmic transformation of the hazard ratio 

(log HR) comparing intensive versus standard systolic blood pressure control. Negative 

values favoured intensive systolic blood pressure control as more protective against the 

outcome of interest. Furthermore, for each patient, we calculated the difference in the 

weighted mean systolic blood pressure between the intensive and standard treatment groups 

at 1, 6, and 12 months.

Developing and validating an algorithm to identify benefit from intensive systolic blood 
pressure control

We trained an extreme gradient-boosting algorithm (XGBoost)15 to predict the personalised 

log HRs of MACE with intensive versus standard systolic blood pressure reduction using 

a subset of 32 baseline variables (appendix pp 11–12), which were selected based on their 

availability and consistent definitions between SPRINT and ACCORD BP. The model was 

trained in a randomly selected subset of SPRINT participants, consisting of 80% of the 

study population, with internal validation done in the remaining 20% of the trial population. 

Random sampling was done in R.
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Specifically, the XGBoost algorithm was constructed to identify the baseline phenotypes 

most strongly linked to the individualised log HR values in a Cox regression model. Model 

performance was evaluated using root mean square error as the loss function.9 Optimal 

hyperparameters, including the learning rate and those defining the depth and structure of 

the tree-based architecture, were selected (appendix pp 5–6) using a random search, and 

five-fold cross-validation for internal validation. To allow for interpretation of our model’s 

predictions, we assessed feature importance using Shapley additive explanations (SHAP) 

values to identify a predictor’s relative contribution, either positively or negatively, to the 

final prediction.16 Further details are given in the appendix (pp 6–7).

To improve the model’s practical application, we selected features that were most strongly 

associated with the cardiovascular effects of an intensive treatment strategy based on a 

SHAP feature importance of 0·01 or higher, identifying eight features. These features were 

sex, renal function (glomerular filtration rate or creatinine), history of coronary disease 

requiring revascularisation, history of angina, active smoking, and statin or aspirin use. 

We retrained our model using this set of features, based on the same approach described 

above, and arrived at a parsimonious tool to predict the personalised benefit of targeting 

a systolic blood pressure goal of less than 120 mm Hg versus less than 140 mm Hg. The 

final tool was named PRECISION (for PREssure Control In hypertenSION) and an online 

browser-accessible version of PRECISION was also made available for external use.

Performance of PRECISION in ACCORD BP

We evaluated PRECISION in the external ACCORD BP trial to provide patient-level 

predictions on the expected cardiovascular effect of intensive versus standard systolic blood 

pressure treatment among patients with type 2 diabetes. We examined the relative hazard of 

MACE across strata of predicted response (predicted benefit above versus below the median 

predicted response) and actual group randomisation (intensive versus standard systolic blood 

pressure control), with an interaction test used to assess heterogeneity between subgroups. 

Subgroups were age, sex, established cardiovascular disease, and active smoking.

Sensitivity analysis through simulation studies

To assess the sensitivity of the algorithm in detecting treatment effect heterogeneity in a 

clinical trial population, we performed a positive and negative control simulation study. Full 

details of the simulation are given in the appendix (pp 8–9). Briefly, using the baseline 

SPRINT characteristics, we introduced artificial endpoints in the presence or absence of 

treatment effect heterogeneity in a predefined subgroup (ie, women on aspirin [n=1470, 

15·7% of entire cohort] versus the rest of the cohort). Treatment effect heterogeneity was 

introduced using the method proposed by Rigdon and colleagues,17 with our first simulation 

(positive control) introducing an average treatment effect of 6% among women with aspirin 

versus no effect among the rest of the cohort, and the second simulation (negative control) 

introducing an average treatment effect of 1% for all groups. Follow-up time data were 

introduced at random using a Gompertz distribution. Similar to our analysis in the original 

SPRINT dataset, we performed phenomapping of the baseline trial population and extracted 

individualised treatment effect estimates. Following this, we trained an XGBoost model in 

the randomly selected training set (n=6242, 67%), before applying the algorithm in the 
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remaining (test) set (n=3119, 33%) to (1) compare the predicted effect estimates between 

our predefined patient subgroups (women on aspirin versus the rest of the cohort); and (2) 

allow the algorithm to identify de novo subgroups with treatment effect heterogeneity.

Statistical analysis

Categorical variables are summarised as numbers (percentages), and continuous variables 

as mean values with standard deviation or median with IQR (Q1–Q3), as appropriate. 

Continuous variables between two groups were compared using Student’s t test. Pearson’s r 
was used to assess the pairwise correlation between continuous variables. When extracting 

patient-specific effect estimates during the training stage, we applied weighted Cox 

estimation as proposed by Schemper and colleagues (implemented in the R package 

coxphw).14 This method enables unbiased average HR estimates in case of non-proportional 

hazards (appendix pp 3–5). In sensitivity analyses, we assessed the correlation between 

the individualised log(HR) (relative risk reduction) and (1) the cumulative hazard of the 

primary outcome in the control group and (2) the observed absolute risk reduction, both at 

the median follow-up of 3·26 years based on Kaplan-Meier analyses in SPRINT weighted 

for each participant using the previously defined weights.4 We explicitly adjusted our Cox 

regression models for age and sex given their importance in defining clinical patient groups. 

We performed survival regression analyses using time-to-first event Cox regression models, 

which are graphically presented as unadjusted Nelson-Aalen plots. We assessed between-

subgroup heterogeneity using a test for interaction.

In a post-hoc evaluation of the model in ACCORD BP, we also applied an inverse 

probability censoring weighted estimator, evaluating whether features identified by our 

algorithm as defining heterogeneous treatment effects were robust to potential effects of 

dependent censoring, using the method proposed by Willems and colleagues (appendix pp 

7–8).18

All statistical tests were two-sided with a level of significance of 0·05 without correction 

for multiplicity of comparisons. Analyses were performed using R (version 4.0.2) and 

Python (version 3.8.5). Reporting of the study design and findings is in accordance with the 

STROBE guidelines.19

Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the manuscript.

Results

From SPRINT, we included all 9361 study participants (mean age 67·9 years [SD 9·4], 3332 

[35·6%] female, 5399 [57·7%] non-Hispanic White, 2802 [29·9%] non-Hispanic Black, 

and 984 [10·5%] Hispanic) who underwent randomisation to either intensive (n=4678) or 

standard (n=4683) treatment. Participants were followed up over a mean period of 3·8 years 

(SD 1·0), during which a first primary MACE event was reported in 562 individuals. For 

the secondary outcome of net clinical benefit, there were 365 total death events and 3529 

serious adverse events, with the outcome occurring in 3549 participants. In ACCORD BP, 
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4733 participants (mean age 62·7 years [SD 6·7], 2258 [47·7%] female, 2864 [60·5%] non-

Hispanic White, 1142 [24·1%] Black, and 330 [7·0%] Hispanic) underwent randomisation 

to either intensive (n=2362) or standard (n=2371) treatment. Participants were followed up 

for a mean period of 4·9 years (SD 1·2) with 553 first MACE events recorded. Secondary 

outcomes were not available in a manner that enabled a direct comparison with SPRINT.

The phenomap of the SPRINT trial was based on pairwise distances between all trial 

participants according to the Gower’s dissimilarity index using 59 baseline phenotypic 

variables (figure 1). Visual assessment of the risk phenomaps showed that the treatment 

groups were randomly distributed in the phenomic space (figure 1A). By contrast, baseline 

phenotypic variables, such as sex, age, 10-year Framingham Risk Score for atherosclerotic 

cardiovascular disease, and systolic and diastolic blood pressure were heterogeneously 

distributed reflecting distinct phenotypic neighbourhoods (figure 1B–F). Longitudinal blood 

pressure monitoring confirmed a greater weighted mean systolic blood pressure reduction 

in the intensive group than in the standard group, over time, with overall consistent effects 

across phenotypic neighbourhoods (median neighbourhood difference of −5·4 mm Hg [IQR 

−6·0 to −4·9] at 1 month; −13·0 mm Hg [−13·6 to −12·5] at 6 months; and −15·4 mm Hg 

[−15·9 to −15·0] at 12 months; appendix p 15).

We subsequently calculated individualised estimates of cardiovascular and net clinical 

benefit with intensive versus standard systolic blood pressure reduction by fitting a Cox 

regression model for each individual, weighted based on their phenotypic similarity to the 

rest of the trial participants. For the primary outcome of MACE, the median individualised 

HR (iHR) was 0·63 (IQR 0·53–0·78), with 8800 (94·0%) patients exhibiting an iHR of less 

than 1, favouring intensive systolic blood pressure treatment (figure 2A). By contrast, for 

the secondary (net benefit) endpoint of serious adverse events and all-cause mortality, the 

median iHR was 1·08 (1·01–1·15), with 1988 (21·2%) patient neighbourhoods exhibiting 

an iHR of less than 1 (figure 2B). In sensitivity analyses, iHRs were poorly correlated 

with the baseline cardiovascular risk observed in patients in the control group of each 

phenotypic neighbourhood (r=−0·04, 95% CI −0·06 to −0·02), but were moderately to 

strongly associated with the observed absolute risk reduction (r=0·65, 0·64 to 0·66; appendix 

p 16).

An XGBoost algorithm that predicts a patient’s individualised hazard (log HR) based on 

baseline phenotypic variables, also collected in ACCORD BP, was trained and internally 

validated in SPRINT. SHAP analysis showed sex, renal function (glomerular filtration rate 

or creatinine), history of coronary disease requiring revascularisation, history of angina, 

active smoking, and statin or aspirin use to be key predictors of the individualised MACE 

benefit of intensive versus standard systolic blood pressure reduction (figure 3).

When we trained an XGBoost tree algorithm on the subset of the eight most important 

features, there was no evidence of overfitting to SPRINT, with a root mean square error 

of 0·1930 (R2=0·47) in the 20% of the holdout test set from SPRINT, compared with 

0·1864 (R2=0·52) in the training set consisting of 80% of the SPRINT participants. The 

learning curve for the performance of the XGBoost algorithm in the training and holdout 
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SPRINT datasets is shown in the appendix (p 17). There was strong correlation between the 

predictions of the parsimonious (eight variables) and full model (r=0·97, 95% CI 0·96–0·97).

Application of the tool in the independent ACCORD BP trial showed that the predicted 

personalised benefit of intensive systolic blood pressure reduction did not differ between 

the intensive and standard treatment groups (p=0·46), which is consistent with the random 

allocation of these treatments (appendix p 18). However, individuals with the highest 

predicted personalised MACE benefit had a lower actual MACE risk when assigned to 

intensive treatment than to standard treatment, with an adjusted HR for time-to-first MACE 

of 0·70 (95% CI 0·55–0·90) in individuals with above-median predicted benefit (high 

responders) versus 1·05 (95% CI 0·84–1·32) for below median predicted benefit (low 

responders; figure 4, pinteraction=0·0184). Nelson-Aalen plots demonstrating the cumulative 

incidence of MACE in patients with high versus low predicted benefit are shown in figure 

4. Among predicted high responders, the hazard curve started to separate 1 year after 

enrolment in ACCORD BP. These findings were consistent in an analysis where inverse 

probability censoring weighted estimator accounted for possible dependent censoring 

(appendix p 19).

Subgroup analysis based on age (<65 years: HR 0·89 [95% CI: 0·71–1·12]; ≥65 years: 

0·85 [0·67–1·09]), sex (male: 0·89 [0·72–1·10]; female: 0·85 [0·65–1·10]), established 

cardiovascular disease (no: 0·89 [0·70–1·14]; yes: 0·84 [0·67–1·06]) or active smoking (no: 

0·85 [0·71–1·02]; yes: 1·01 [0·64–1·60]) did not identify groups with significant benefit 

from intensive versus standard systolic blood pressure reduction in type 2 diabetes. A 

screenshot from the browser-accessible version of our decision support tool can be found in 

the appendix (p 20).

Our positive control simulation studies confirmed the ability of our approach to discover an 

artificially introduced treatment-effect heterogeneity. The algorithm detected a phenotypic 

subgroup of patients with significant treatment-effect heterogeneity (pinteraction<0·0001); 

however in a negative control study without any simulated treatment-effect heterogeneity, 

the algorithm defined no subgroups with significant treatment-effect heterogeneity (p=0·35). 

The effect size detected using our approach was consistent with the effect size introduced in 

the positive control study (figure 5).

Discussion

Using data from SPRINT, we developed a machine learning-based tool that defines the 

individualised cardiovascular benefit from intensive versus standard systolic blood pressure 

reduction based on eight core clinical features: sex, renal function (glomerular filtration 

rate or creatinine), history of coronary disease requiring revascularisation, history of angina, 

active smoking, and statin or aspirin use. The tool successfully defined a personalised 

benefit of intensive blood pressure lowering beyond the SPRINT population in patients with 

type 2 diabetes in the ACCORD BP trial, although there was no benefit from the approach 

in the overall study population.5 Our algorithm, based on the full breadth and complex 

inter-relationships of recorded baseline phenotypic information, enabled the extraction of 

personalised estimates of cardiovascular benefit through iterative analyses of the data 
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from each participant’s unique phenotypic angle. The strategy was robust in simulation 

experiments with positive and negative control outcomes.

Previous studies have suggested heterogeneous treatment effects in SPRINT defined as an 

association between an individual’s baseline cardiovascular disease risk and the magnitude 

of absolute risk reduction with intensive versus systolic blood pressure control.20–22 To 

this end, various machine learning approaches—including recursive partition modelling,23 

k-means clustering,24 and X-learners25—have been used to define broad patient groups that 

experience differential benefit from intensive blood pressure reduction. However, reliance 

on such broad subgroups and a priori exclusion of variables from the analysis based on 

presumed lack of clinical significance might restrict the applicability of these approaches.

By contrast, our approach identified complex interactions between a patient’s sex, baseline 

renal function,23,24 cardiovascular risk profile (eg, anginal symptoms and previous coronary 

revascularisation), active smoking, and statin or aspirin use as key determinants of the 

personalised benefits of targeting a systolic blood pressure goal of less than 120 mm Hg 

as opposed to less than 140 mm Hg. Our analysis also highlights how differences in the 

trial-wide outcomes for SPRINT and ACCORD BP might ultimately reflect differences in 

phenotypes of patients enrolled in the two trials, and therefore supports the cardiovascular 

benefits of intensive systolic blood pressure reduction in type 2 diabetes,26,27 despite the 

main results of ACCORD BP, which showed no substantial benefits for intensive systolic 

blood pressure reduction in this population.5

We believe that the present work represents a contribution in both methodological and 

clinical domains. First, our approach treats a trial phenomap as a continuum for evaluating 

individualised effect estimates. This method expands on our previous work9 by yielding 

robust estimates that incorporate information from all participants in each iteration. Second, 

in contrast to previous approaches,23 by modelling the relative risk change, our study 

provides insights into the phenotypic characteristics that determine the extent to which a 

patient’s baseline cardiovascular risk is modifiable through intensive systolic blood pressure 

control. Third, our analysis provides a framework for learning from a positive trial to infer 

patient-level effectiveness in a null trial on hypertension management. Fourth, simulation 

studies demonstrate the ability of our method to detect meaningful heterogeneous treatment 

effects in the presence of a ground truth, without overfitting to random noise. Future studies 

should explore how our approach can complement alternative solutions that have found 

successful applications across disciplines, such as random forest-based approaches,28–30 

“U-learners”,31 transformed outcome trees,32 or the modified outcome method.33 Finally, 

PRECISION, our decision support tool, is aimed at supporting shared decision making 

between patients and their health-care providers. The PRECISION tool shifts the focus from 

applying average effects of blood pressure reduction observed in a positive clinical trial 

to risk reduction for individuals based on their characteristics. Future clinical trials should 

explore the value of a decision support tool-guided pathway versus traditional pathways in 

guiding blood pressure management and combating therapeutic inertia.

Our study has a few limitations. First, variation in effect estimates drawn from weighted 

analyses around each patient’s phenotypic location could be prone to random variation. 
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Future studies should explore the robustness of a dynamic kernel definition, as opposed to 

a fixed kernel as used in this study. Second, to ensure consistency with the original trials, 

we chose the original primary outcome as our outcome of interest, with net clinical benefit 

analyses provided as secondary outcomes that could not generalise across studies due to 

variable definitions. Third, notable differences in the study design between SPRINT and 

ACCORD BP—such as the exclusion versus inclusion of patients with diabetes and use 

of unattended versus attended blood pressure measurements in SPRINT versus ACCORD 

BP—preclude direct validation of our findings, but support the generalisability of our 

tool. Fourth, further testing of our tool in diverse patient populations is needed to better 

understand the biological, clinical, and socioeconomic factors that might underlie such 

heterogeneous treatment effects. Fifth, our analysis was not compared with other potential 

methods proposed for the study of heterogeneous treatment effects in trials. However, our 

approach—which was externally validated in a second independent trial (ACCORD BP) 

and detected a simulated treatment effect—can be used as a framework to benchmark 

other methods. Finally, the algorithm should be evaluated prospectively before clinical 

implementation as a decision support tool.

In this post-hoc analysis of two randomised clinical trials of systolic blood pressure control, 

we developed a machine learning-guided, evidence-based tool to extract individualised 

treatment effects based on participant-level data. When applied in two trials of intensive 

versus standard systolic blood pressure control, our method identified explainable 

phenotypes associated with heterogeneous treatment effects that generalise to patients 

without and with type 2 diabetes. More importantly, our broader method provides a 

personalised approach to the translation of clinical trial findings and promotes the use of 

shared decision-making through personalised inference.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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The dataset with the simulated outcome will be shared with the BioLINCC team to be 

posted as an ancillary dataset after publication of the manuscript.
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Research in context

Evidence before this study

Hypertension is a key modifiable cardiovascular risk factor. Although the effects of 

blood pressure reduction in hypertension are well established, the optimal treatment 

goals for individual patients remain under debate. We searched PubMed on July 19, 

2021, for studies published in English and relating to decision support tools to guide 

the personalisation of systolic blood pressure treatment targets. A second search was 

performed on Sept 29, 2022, with the same search criteria, to update our literature review. 

We used the search terms “hypertension”, “intensive blood pressure control”, “systolic 

blood pressure”, “heterogeneity”, and “machine learning”. Our search returned 5278 

papers, 29 of which were relevant to the topic. Two large randomised clinical trials 

have evaluated the effect of intensive systolic blood pressure lowering for cardiovascular 

risk reduction. The SPRINT trial found that targeting a systolic blood pressure of less 

than 120 mm Hg (intensive treatment) as opposed to less than 140 mm Hg (standard 

treatment) reduces the incidence of major adverse cardiovascular events among patients 

with hypertension but without diabetes (types 1 and 2). By contrast, the ACCORD BP 

trial did not show a cardiovascular benefit for the intensive versus standard treatment 

strategy in type 2 diabetes. Our search revealed several studies and approaches for 

detecting and describing heterogeneity in the effects of intensive systolic blood pressure 

treatment. To date, studies have used a mixture of approaches, ranging from regression 

modelling with interaction effects to machine learning algorithms. Although many 

studies have suggested that the absolute risk reduction with intensive systolic blood 

pressure control is proportional to the baseline cardiovascular disease risk, others 

have demonstrated that more advanced machine learning algorithms might improve 

the detection of individualised treatment effects. Nevertheless, most previous studies 

restricted their analysis to modelling of absolute risk reduction, relied on a smaller 

number of recorded covariates, defined discrete numbers of phenotypic clusters, or did 

not demonstrate generalisability of their approach to independent patient populations.

Added value of this study

In this post-hoc analysis of SPRINT and ACCORD BP, we used machine learning 

to construct computational clinical trial phenomaps and investigate patient-level 

heterogeneity in treatment effectiveness of intensive blood pressure control. We leveraged 

this heterogeneity to develop an evidence-based tool to personalise the consideration for 

pursuing intensive versus standard systolic blood pressure treatment goals among patients 

without and with type 2 diabetes with high cardiovascular risk. This individualised 

approach to evidence synthesis could represent a novel strategy to maximise the benefits 

of intensive blood pressure control and might be a valuable adjunct to inform shared 

decision making in clinical practice. The approach also highlights a potential strategy for 

personalised inference from randomised clinical trials.

Implications of all the available evidence

Here, we present an objective decision support tool derived from two of the largest 

randomised clinical trials, to date, to have assessed the cardiovascular benefit of intensive 
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versus standard systolic blood pressure reduction in hypertension. This tool might 

facilitate a more standardised, yet personalised, approach in the selection of optimal 

treatment goals for individual patients. Our analyses demonstrate that there is substantial 

heterogeneity in the individual benefit derived from pursuing intensive blood pressure 

control, and that phenotypic features that define benefit from intensive systolic blood 

pressure reduction might generalise to patients without and with type 2 diabetes.
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Figure 1: Manifold representations of the phenotypic architecture of SPRINT
Patients are embedded in the phenotypic space based on dissimilarity metrics (Gower’s 

distance) derived from 59 pre-randomisation variables; thus phenotypically similar 

individuals tend to be topologically closer. Each dot represents a study participant, with 

colouring based on treatment group. Since the dimensionality reduction is non-linear, 

axes have been omitted and only the comparisons between distances are meaningful. 

SPRINT=Systolic Blood Pressure Intervention Trial.
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Figure 2: Cardiovascular benefit phenomaps of intensive blood pressure reduction in SPRINT 
phenomap representation of the individualised HRs with intensive versus standard blood 
pressure control for the primary (A) and secondary (B) outcomes
HR=hazard ratio. SPRINT=Systolic Blood Pressure Intervention Trial.
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Figure 3: SHAP analysis showing feature importance for prediction of individualised 
cardiovascular benefit from intensive systolic blood pressure reduction
The y-axis represents the features included in the model development (in descending order 

of importance) and the x-axis indicates the change in prediction. The gradient colour 

denotes the original value for that variable (eg, for categorical variables such as sex it 

only takes two colours, whereas for continuous variables it contains the whole spectrum), 

with each point representing an individual participant from SPRINT. More negative SHAP 

values indicate a higher major adverse cardiovascular event benefit with an intensive versus 

standard treatment strategy. The eight most important variables (with importance of 0·01 or 

higher) were selected to train a parsimonious clinical model. CVD=cardiovascular disease. 

HR=hazard ratio. SHAP=Shapley additive explanations. SPRINT=Systolic Blood Pressure 

Intervention Trial.
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Figure 4: External performance of the PRECISION decision support tool in ACCORD BP, a 
trial of intensive systolic blood pressure reduction among patients with type 2 diabetes
Nelson-Aalen plots demonstrating the cumulative incidence of MACE in patients with high 

(above the median; A) versus low (below the median; B) predicted benefit. Models were 

adjusted for age and sex. ACCORD BP=Action to Control Cardiovascular Risk in Diabetes 

Blood Pressure trial. HR=hazard ratio. MACE=major adverse cardiovascular event.

Oikonomou et al. Page 19

Lancet Digit Health. Author manuscript; available in PMC 2022 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: Simulation studies for sensitivity analysis
(A) The SPRINT population was randomly split into a training and internal validation 

set (n=6242, 67%) and a testing set (n=3119, 33%). In the positive control simulation, 

with HTE (B), an average treatment effect of 6% was introduced among women receiving 

aspirin. In the negative control simulation (no HTE; C), an average treatment effect 

of 1% was introduced across the population. After defining a dissimilarity matrix and 

phenomap for the training population and extracting individualised hazard estimates for 

each participant, an XGBoost model was trained to detect baseline phenotypes associated 
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with HTEs (D). In the held-out test set, the algorithm successfully identified patient groups 

with HTE in the positive (E) but not the negative (F) control simulations. HR=hazard ratio. 

HTE=heterogeneous treatment effect. SPRINT=Systolic Blood Pressure Intervention Trial. 

UMAP=uniform manifold approximation. XGBoost=extreme gradient-boosting algorithm.
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