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Abstract

Perceiving an external stimulus depends not only on the physical features of the stimulus, but also fundamentally on the
current state of neuronal excitability, indexed by the power of ongoing alpha-band and beta-band oscillations (8—-30 Hz).
Recent studies suggest that heightened excitability does not improve perceptual precision, but biases observers to report
the presence of a stimulus regardless of its physical presence. It is unknown whether this bias is due to changes in
observers’ subjective perceptual experience (perceptual bias) or their perception-independent decision-making strategy
(decision bias). We tested these alternative interpretations in an EEG experiment in which male and female human
participants performed two-interval forced choice (2IFC) detection and discrimination. According to signal detection theory,
perceptual bias only affects 2IFC detection, but not discrimination, while interval decision bias should be task independent.
We found that correct detection was more likely when excitability before the stimulus-present interval exceeded that before
the stimulus-absent interval (i.e., 8—17 Hz power was weaker before the stimulus-present interval), consistent with an effect
of excitability on perceptual bias. By contrast, discrimination accuracy was unaffected by excitability fluctuations between
intervals, ruling out an effect on interval decision bias. We conclude that the current state of neuronal excitability biases the
perceptual experience itself, rather than the decision process.
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The current state of neuronal excitability, indexed by the power of ongoing low-frequency oscillations (8-30
Hz), has a strong influence on perception. However, the specific mechanism underlying this influence is a
continuing subject of debate in neuroscience. Previous research showed that states of heightened excit-
ability make observers report the presence of a sensory stimulus even when none is present. Heightened
excitability may therefore indicate a state of strategic decision-making (i.e., observers prefer to report “Yes,
| saw the stimulus”) or a state of amplified subjective perception (i.e., observers experience a stimulus even
when none is present). Here, we tested these alternative interpretations and found evidence that fluctua-
\tions in neuronal excitability bias the perceptual experience itself, rather than the decision strategy. j

ignificance Statement

Introduction
Ongoing neuronal activity just preceding, or in the ab-
sence of, experimental events is ubiquitous in electro-
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physiological recordings in the form of “spontaneous” or
“prestimulus” oscillations. Two prominent types of such
spontaneous activity are the « and B rhythm (8-30 Hz),
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which play a key role in regulating cortical excitation and
inhibition (Jensen and Mazaheri, 2010; Spitzer and Hae-
gens, 2017). Specifically, states of weak « and 8 power (in
addition to other indices, e.g., specific a phases) reflect
increased excitability in sensory brain areas, as indexed
by the spike-firing rate (Haegens et al., 2011; Watson
et al., 2018), multiunit activity (van Kerkoerle et al., 2014),
ongoing y power (Spaak et al., 2012), and the hemody-
namic fMRI signal (Goldman et al., 2002; Becker et al.,
2011).

How do spontaneous neural oscillations interact with
the processing of sensory events? Numerous studies
have demonstrated that observers are more likely to de-
tect visual targets that are preceded by weak prestimulus
low-frequency power (8-30 Hz), reflecting stronger neu-
ronal excitability (e.g., Ergenoglu et al., 2004; Chaumon
and Busch, 2014). But does strong excitability help ob-
servers distinguish more accurately between target pres-
ence and absence? Or does excitability simply make
observers more likely to report the presence of a target,
regardless of its physical presence? Recent studies dem-
onstrated that in visual detection tasks, strong excitability
increases the hit rate in target-present trials as well as the
false alarm rate in target-absent trials (Limbach and Cor-
ballis, 2016; lemi et al., 2017). Moreover, recent studies
found that this effect is specific to the detection of target
presence versus absence, while the accuracy of the dis-
crimination between two alternative target types is unaf-
fected by excitability (lemi et al., 2017; Samaha et al.,
2017b). In sum, these findings indicate that, contrary to
the previously dominant view in the literature (Romei et al.,
2008; van Dijk et al., 2008; Payne and Sekuler, 2014),
heightened excitability does not lead to an increased
perceptual precision, but to a more liberal detection bias.

These findings could be regarded as evidence refuting
an effect of excitability on perception proper, showing
instead an effect on observers’ strategic decision bias: a
deliberate preference to report “yes, | saw the target” in
both target-present and target-absent trials. Accordingly,
false alarms induced by a decision bias during states of
strong excitability are due to a shift in decision strategy.
However, not every change in bias implies a change in
deliberate decision strategy (Witt et al., 2015); alterna-
tively, excitability might modulate perceptual bias, which
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is a change in the amplification of the neural representa-
tion of both target and nontarget stimuli. In tasks requiring
the detection of target presence versus absence, this
process boosts the perception of target presence in both
target-present and target-absent trials. Accordingly, false
alarms induced by perceptual bias during states of strong
excitability are due to genuine, albeit false, impressions of
seeing a target. Evidently, decision bias and perceptual
bias each lead to very different theoretical interpretations
of how spontaneous brain activity is related to perception
and behavior.

The present study was conducted to determine
whether spontaneous fluctuations in prestimulus low-
frequency power (i.e., 5-30 Hz, a proxy for neuronal ex-
citability) affect precision, perceptual bias, or decision
bias. To this end, we used a two-interval forced choice
(2IFC) paradigm, in which each trial includes a target and
a nontarget interval. In 2IFC detection, a stimulus is pre-
sented in the target interval and no stimulus is presented
in the nontarget interval; and observers report the interval
comprising the stimulus. In 2IFC discrimination, a target
stimulus (e.g., a left-tilted grating) is presented in one
interval and a nontarget stimulus (e.g., a right-tilted grat-
ing) in the other interval, and observers report the interval
comprising the target.

We tested three models that represent alternative hy-
potheses on how weak prestimulus low-frequency power,
reflecting strong neuronal excitability, influences perfor-
mance (for details, see Materials and Methods). If greater
excitability improved perceptual precision, performance
in both 2IFC detection and discrimination should be most
accurate when power in both intervals is weak. If greater
excitability leads to a more liberal perceptual bias, perfor-
mance in 2IFC detection should be most accurate when
power is weak in the target interval (enhancing the correct
impression of stimulus presence), but strong in the non-
target interval (inhibiting the false impression of stimulus
presence), implying that the excitability during the
stimulus-present interval exceeds the excitability during
the stimulus-absent interval. Since this effect reflects a
bias in the perception of stimulus presence versus ab-
sence, it should be specific to the detection task. If
greater excitability leads to a more liberal decision bias,
performance in both 2IFC detection and 2IFC discrimina-
tion should be most accurate when power is weak in the
target interval compared with the nontarget interval, indi-
cating a strategic tendency to report the interval with the
weakest power.

The results confirmed the predictions of the perceptual
bias model, implying that spontaneous fluctuations in
excitability, indexed by a and B power, bias subjective
perceptual experience rather than strategic decision-
making or precision.

Materials and Methods

Participants

Previous studies on the relationship between neuronal
excitability and perception (Busch et al., 2009; Lange
et al., 2013; Chaumon and Busch, 2014; lemi et al., 2017)
have typically reported samples of 12-33 participants. To
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ensure a robust estimate of our neurophysiological effect,
we recruited a sample of 25 participants (mean age, 29.3
years; SEM, 0.75 years; 16 females, 2 left handed). All
participants had normal or corrected-to-normal vision and
no history of neurological disorders. Each participant took
part in two sessions, one for each task, on 2 separate
days within a 7-days period. One participant was excluded
before EEG preprocessing and behavioral analysis, because
she could not participate in the second experiment. Two
participants were excluded after EEG preprocessing be-
cause of excessive artifacts. 22 participants were included in
the analysis. Before the experiment, written informed con-
sent was obtained from all participants. All experimental
procedures were approved by the ethics committee of the
German Psychological Society.

Stimuli

The experiment was written in MATLAB (RRID:
SCR_001622) using the Psychophysics toolbox 3 (RRID:
SCR_002881; Brainard, 1997; Pelli, 1997). Stimuli were
presented on a black background, using a gamma-
linearized cathode ray tube monitor operated at 100 Hz
and situated in a dark room. Low-contrast Gabor patches
tited by 10° clockwise or counterclockwise from the
vertical meridian with a diameter of 0.75° visual angle
were displayed at 10° to the left or to the right (counter-
balanced across conditions) of the fixation dot.

Each trial included two successive intervals, separated
by a 2 s gap. Each interval lasted two frames (0.02 s) and
was indicated by a 50% reduction in the diameter of the
fixation point (Fig. 1). A Gabor stimulus was presented in
one or both intervals for a duration of two frames (0.02 s).
After a delay of 0.4 s following the second interval, the
fixation dot turned into a question mark, which instructed
participants to deliver a response with their dominant
hand via button pressing, in accordance with the task
instructions. After the button press, the question mark
disappeared and participants received color-coded feed-
back: correct/incorrect responses were indicated by a
green/red fixation dot, lasting 0.2 s. After the feedback,
the fixation dot turned white and a new trial started.

For each participant and task, an adaptive staircase
procedure (QUEST; Watson and Pelli, 1983) was used to
find the stimulus contrast yielding 75% accuracy. To en-
sure that the analysis included only trials of similar con-
trast, we rejected outlier trials in which the difference
between the presented contrast value and the final
threshold estimated by QUEST exceeded *=10%. Using
this procedure, we ensured that the 2IFC detection and
discrimination tasks were equally difficult.

Experimental design

Participants performed a 2IFC detection and a 2IFC
discrimination task in two separate sessions. Task order
was counterbalanced across participants. Each session
lasted ~1.5 h with breaks and included 700 trials divided
into 14 blocks of 50 trials each. For both tasks, each trial
included a target interval and a nontarget interval. The
order of target and nontarget intervals within a trial was
counterbalanced and randomized across trials, such that
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half of the trials were target-first (T1) and nontarget-first
(nT1), respectively.

In the 2IFC detection task, a Gabor stimulus was pre-
sented in the target interval and a blank screen was
presented in the nontarget interval (Fig. 1a). Participants
were informed that each trial contained a stimulus, which
could appear in either interval, and were instructed to
report in which interval they perceived the stimulus (“first”
vs “second”).

In the 2IFC discrimination task, each of the two intervals
contained a Gabor stimulus: a left-tilted Gabor appeared
in the target interval and a right-tilted Gabor appeared in
the nontarget interval (Fig. 1c). Participants were informed
that each trial contained two stimuli characterized by
different tilts and were instructed to report in which inter-
val they perceived the left-tilted target (“first” vs “sec-
ond”).

EEG recording and preprocessing

EEG was recorded with a 64-channel Biosemi Activ-
eTwo system at a sampling rate of 1024 Hz. Electrodes were
placed according to the international 10-10 system (elec-
trode locations can be found on the Biosemi website:
https://www.biosemi.com/download/Cap_coords_all.xls).
The horizontal and vertical electro-oculograms were re-
corded by additional electrodes at the lateral canthi of both
eyes and below the eyes, respectively.

The EEGLAB toolbox version 11, running on MATLAB
(R2010b), was used to process and analyze the data
(Delorme, 2004). Data were rereferenced to the average of
all electrodes, epoched from —3.7 to 0.7 s relative to the
second interval onset and downsampled to 256 Hz. The
data were then filtered using an acausal bandpass filter
between 0.25 and 80 Hz. Gross artifacts (eye blinks and
noisy data segments) were removed manually, and entire
trials were discarded when a blink occurred within a
critical 0.5 s time window preceding interval onset to
ensure that participants’ eyes were open at interval onset.
After rejecting trials with EEG artifacts and contrast out-
liers, the total number of trials analyzed was 680 (SEM,
5.5) and 645 (SEM, 10.5) for the detection and discrimi-
nation session, respectively.

Noisy channels were selected manually on a trial-by-
trial basis for spherical spline interpolation (Perrin et al.,
1989). In the detection task, we interpolated on average
8.1 channels (SEM, 1.13) in 22.3 trials (SEM, 4.74) in 21 of
22 participants. In the discrimination task, we interpolated
on average 8.5 channels (SEM, 0.85) in 21.7 trials (SEM,
3.71) in 19 of 22 participants. Furthermore, the EEG data
were transformed using independent component analysis
(ICA), and SASICA (Semi-Automated Selection of Inde-
pendent Components of the electroencephalogram for
Artifact correction) (Chaumon et al., 2015) was used to
guide the exclusion of independent components related
to noisy channels and muscular contractions, as well as
blinks and eye movements occurring before or after the
critical intervals.

We then re-epoched the trials relative to the onsets of
target and nontarget intervals of each trial, enabling us to
analyze within-trial, between-interval fluctuations in oscil-
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Figure 1. Effects of perceptual bias on 2IFC detection and discrimination performance according to SDT. See Materials and Methods
for predictions of the precision and decision bias models. a, In 2IFC detection, a target stimulus (T) appears in either one of two
successive intervals and the task is to report which interval contained T. b, According to SDT, the internal response in the target,
stimulus-present interval, R, is compared with the internal response in the nontarget, stimulus-absent interval, R,,, and the interval
yielding the stronger response is reported. If R > R, (below diagonal), the report is correct, otherwise it is incorrect. The perceptual
bias model predicts that the accuracy of 2IFC detection reports is affected by the balance of excitability and inhibition between the
stimulus-present and stimulus-absent intervals: weaker oscillatory power (i.e., stronger excitability) before the stimulus-present
interval relative to before the stimulus-absent interval, is expected to boost detection accuracy (green circle); instead, stronger
oscillatory power (i.e., stronger inhibition) before the stimulus-present interval relative to before the stimulus-absent interval, is
expected to impair accuracy (red circle). ¢, In 2IFC discrimination, two successive intervals contain either a target (T) or a nontarget
(nT) stimulus, and the task is to report which interval contained T. d, According to SDT, for each interval, the difference between the
internal responses of the target detector and nontarget detector (i.e., distance from the diagonal; dashed line) represents the evidence
of target presence in that interval (E), and the interval yielding stronger target evidence is reported. If there is more target evidence
in the target interval, the response is correct, otherwise it is incorrect. The perceptual bias model predicts that increased excitability
or inhibition in the target interval (left) or nontarget interval (right) affects both target and nontarget detectors equally, leaving target
evidence in that interval unchanged (illustrated by a shift parallel to the diagonal without affecting the distance to the diagonal). Thus,
this model predicts that between-interval fluctuations of excitability do not affect 2IFC discrimination accuracy.

latory power. Time—frequency analysis was conducted ing linearly from 1 to 12). Thus, a wavelet at 10 Hz was 4.4
using a wavelet transform (Morlet wavelets, 30 frequen-  cycles long and had a temporal resolution (o;) of 0.14 s
cies; frequency range, 1-30 Hz; number of cycles increas-  and a spectral resolution (o, of 4.53 Hz. Since wavelet
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analysis is computed by convolving the data with a func-
tion that is extended in time, it is possible that prestimulus
effects close to stimulus onset are actually affected by
poststimulus data. lemi et al. (2017) determined the extent
of this contamination by estimating the o; of the wavelet
(Tallon-Baudry et al., 1996). Thus, we consider effects as
truly “prestimulus” only if they occur at time points earlier
than interval onset — oy (Figs. 2a,c, 3a,e, 4a,d,f,h, red line).

Modeling the relationship between oscillatory power
and behavioral performance

Signal detection theory (SDT) (Macmillan and Creel-
man, 2005; Fig. 1b,c) provides an account of behavioral
performance and perceptual decision-making in 2IFC de-
tection and discrimination tasks.

For a 2IFC detection task (Fig. 1a), SDT posits that ob-
servers sample an internal response in each interval, com-
pare the two internal responses, and report whichever
interval yielded the stronger response. Thus, if the internal
response during the target (stimulus-present) interval ex-
ceeds the response during the nontarget (stimulus-absent)
interval, the participant makes a correct detection. Across
trials, the overall accuracy in 2IFC detection depends on the
relative distance between the response distributions for
stimulus-present and stimulus-absent intervals (Fig. 1b,
two-dimensional Gaussian distributions).

For a 2IFC discrimination task (Fig. 1c), SDT posits that in
each interval, observers sample the internal responses of
two feature detectors selective for the target and nontarget
stimulus, respectively. The relative strength of these two
responses serves as an index of evidence of target presence
in a given interval. Observers compare this evidence be-
tween both intervals and report whichever interval yielded
the strongest evidence (Fig. 1d). If the strength of evidence
for target presence in the target interval exceeds the
strength of evidence in the nontarget interval, the participant
makes a correct response. Across trials, overall accuracy in
2IFC discrimination depends on the relative distance be-
tween the response distributions for target and nontarget
intervals (Fig. 1d, two-dimensional Gaussian distributions).
Note that 2IFC detection is based on comparing the re-
sponses of a single signal detector across two intervals,
while 2IFC discrimination is based on comparing the relative
strength of two feature detectors across two intervals.

As described in the Introduction, different models hypoth-
esize that prestimulus low-frequency power (i.e., 5-30 Hz, a
proxy for neuronal excitability) affects perceptual precision,
perceptual bias, or decision bias. Importantly, these models
make specific, testable predictions regarding the relation-
ship between prestimulus power and performance in 2IFC
detection and discrimination tasks.

According to the precision model, weak prestimulus
power (i.e., greater excitability) improves the accuracy in
perceptual tasks by increasing the relative distance between
the response distributions in the target and nontarget inter-
vals, possibly via reduction of the trial-by-trial response
variability (lemi et al., 2017). In 2IFC detection, stronger
excitability results in a greater distance between the re-
sponse distributions of stimulus-present and stimulus-
absent intervals. In 2IFC discrimination, stronger excitability
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results in a greater difference in target evidence between
target and nontarget intervals. Thus, the precision model
predicts that greater accuracy is related to weaker overall
power in both the target and the nontarget interval in both
detection and discrimination.

According to the perceptual bias model, weak prestimulus
power (i.e., greater excitability) amplifies internal responses
to any kind of stimulus. In 2IFC detection, such an amplifi-
cation would improve accuracy if amplification happened to
be stronger in the stimulus-present compared with the
stimulus-absent interval, thus increasing the relative dis-
tance between the internal responses in target and nontar-
get intervals (Fig. 1b). In other words, 2IFC detection
accuracy should be influenced by the balance of excitability
and inhibition between the stimulus-present and stimulus-
absent interval. In 2IFC discrimination, stronger amplification
in either the target or nontarget interval would simultane-
ously increase the internal responses of both target and
nontarget feature detectors in that interval, leaving the rela-
tive distance between their response distributions (i.e., tar-
get evidence) unchanged (Fig. 1d). In sum, the perceptual
bias model predicts that 2IFC detection accuracy is greater
when prestimulus power is weaker in the stimulus-present
interval compared with the stimulus-absent interval, while
2IFC discrimination accuracy is expected to be unaffected
by between-interval fluctuations of prestimulus power.

According to the decision bias model, weak prestimulus
power influences observers’ decision-making strategy
rather than their perception, by increasing their tendency to
report the interval with weakest power (i.e., strongest excit-
ability). Importantly, this tendency should be task indepen-
dent. For 2IFC detection, this interval bias improves
accuracy if prestimulus power is weaker in the stimulus-
present compared with the stimulus-absent interval (similar
to a perceptual bias). Likewise, interval bias improves
2IFC discrimination accuracy if prestimulus power is
weaker in the target interval compared with the nontarget
interval. Thus, in contrast to the perceptual bias model,
the decision bias model predicts that both 2IFC detection
and 2IFC discrimination accuracy are greater when pre-
stimulus power is weaker in the stimulus-present/target
interval compared with the stimulus-absent/nontarget in-
terval, respectively.

Statistical analysis

The analysis included oscillatory power at all elec-
trodes, at frequencies between 5 and 30 Hz and between
—0.5 and 0 s relative to interval onset.

Generalized linear modeling

The predictions of the precision model concern the
overall oscillatory power in the two intervals within a trial.
Thus, for each single ftrial, time point, frequency, and
electrode, we computed a measure, P,,., reflecting power
averaged across the two intervals within a trial.

The predictions of the perceptual bias and decision bias
models concern the relative oscillatory power between
the two intervals within a trial. Thus, for each single ftrial,
time point, frequency, and electrode, we computed a
measure, P,., comparing oscillatory power between the
two intervals, as follows:
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Figure 2. Relationship between overall oscillatory power (P,,) and 2IFC accuracy; the test of the precision model. a, ¢, Group-level
t statistics maps of the regression coefficient B, indicating the relationship between accuracy and P, in 2IFC detection and
discrimination, respectively. Accuracy in neither 2IFC detection nor discrimination is related to P,,.. This null effect is corroborated
by the BF analysis, indicating that there is more evidence supporting H, than supporting H, (bottom insets). The maps in a and ¢ are
averaged across the electrodes comprising the cluster of significant effects illustrated in Figure 3, a and ¢, and masked by a p value
of 0.01 using two-sided cluster permutation testing. Time 0 s indicates interval onset. The red line in @ and ¢ indicates the time points
before which oscillatory activity is not contaminated by activity after interval onset (lemi et al., 2017). b, d, Group average P, in

detection (b) and discrimination (d), shown separately for correct and incorrect trials, normalized by the P, in all trials. The bar plots
are shown for illustrative purposes for the cluster of significant effects illustrated in Figure 3, a and c. These results refute the

prediction of the precision model that low P

P

Prel = P_r:r’
where P is power in the stimulus-present interval in 2IFC
detection, and the target interval in 2IFC discrimination,
and Pt is power in the stimulus-absent interval in 2IFC
detection and the nontarget interval in 2IFC discrimina-
tion. Thus, P, > 1 indicates that power was relatively
stronger in the to-be-reported interval. P, and P, were
rank scored to mitigate the influence of extreme values.
Next, we modeled the relationship between single-trial
oscillatory power, response accuracy and interval order
using multilevel generalized linear modeling (GLM; Cohen
and Cavanagh, 2011; Samaha et al., 2017b). Including
interval order as a regressor enabled us to remove any
possible contribution of the interval order from the esti-
mation of the accuracy predictor. For each participant and
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ve IS related to higher accuracy.

for each electrode, frequency, and time point, we fit a
regression model of the following form:

X =Bo+ BA + B0 + &, @

where X is a continuous measure of oscillatory power (i.e.,
P for the precision model and P, for the bias models),
A is the accuracy (correct/incorrect) coded as a 1/—1
variable; O is the interval order (target first or nontarget
first) coded as a 1/—1 variable; By, B4, and B, are the
estimated coefficients; and e is the residual error. This
GLM corresponds to a linear regression model, where the
coefficients B, and B, represent the independent contri-
butions of the accuracy and the interval order predictors,
respectively, in explaining the observed power (P, or
P...)- GLMs were fit separately for detection and discrim-
ination tasks.
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Statistical testing and effect size

We then tested whether the regression coefficients B4
and 3, at each electrode, frequency, and time point were
significantly different from zero within participants, and
consistent across the sample of participants, using sep-
arate statistical tests at the participant level and at the
group level. Again, this procedure was conducted sepa-
rately for the 2IFC detection and 2IFC discrimination task.

At the participant level, we permuted the mapping be-
tween single trial power and single trial accuracy/interval
order 1000 times, recomputing the B coefficients each
time. This procedure creates a within-participant null hy-
pothesis distribution of the B coefficients. The B coeffi-
cients associated with the true data mapping were then
converted to a z-statistic relative to the mean and SD of
the distribution of the permuted data, resulting in a
z-score for each participant and time—frequency-elec-
trode point.

At the group level, we then tested whether z-scores of
the B, and B, coefficients were significant across partic-
ipants (i.e., whether their signs were consistent) using a
nonparametric cluster-based permutation test, which also
addresses multiple comparisons across time points, fre-
quencies, and electrodes (Maris and Oostenveld, 2007).
We obtained a distribution of z-scores under the null
hypothesis by randomly permuting their signs 5000 times.
On each iteration, we tested the resulting z-scores with a
two-tailed t test against zero and assessed the sum of the
t values within the largest contiguous cluster of significant
time—-frequency-electrode points (cluster p = 0.01), re-
sulting in a distribution of t sums expected under the null
hypothesis. A final p value was calculated as the propor-
tion of t sums under the null hypothesis larger than the
sum of t values within clusters in the observed data. Thus,
p-values smaller than 0.01 indicate that the observed B
coefficients were significantly different from zero (two
sided).

We computed Cohen’s d to estimate the effect size of
significant clusters of interest. For each time—frequency—
electrode point of the significant cluster, Cohen’s d was
estimated by dividing the t statistics by the square root of
the number of participants. Conventionally, Cohen’s d
indicates whether the effect size is small (if d < 0.2),
medium (if 0.2 < d < 0.8) or large (if d > 0.8; Cohen, 1988;
Lakens, 2013).

Bayes factor analysis

The perceptual bias model predicts a relationship be-
tween P, and accuracy in 2IFC detection, but a null effect
in 2IFC discrimination. However, in conventional inferen-
tial statistics, a nonsignificant result only indicates that the
null hypothesis cannot be rejected. It does not necessarily
follow that the null hypothesis is actually true; it is possible
that the data might be inconclusive (e.g., due to insuffi-
cient statistical power). Thus, to directly estimate evi-
dence supporting the null hypothesis, we estimated the
Jeffreys—Zellner-Siow (JZS) Bayes factor (BF; Jeffreys,
1961; Zellner and Siow, 1980; Rouder et al., 2009). The
JZS BF is a Bayesian measure of evidence, which takes
the form of an odds ratio [i.e., the probability of the data
under the alternative hypothesis (H,) relative to that under
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the null hypothesis (H,)]. Conventionally, the BF indicates
whether there is evidence supporting H, (B # 0: if BF > 3)
or supporting Hy (B = 0: if BF < 1/3), or whether the
evidence is inconclusive (if 1/3 < BF < 3). For example,
BF = 1/3 indicates that the data are three times more
likely under H, than under Hy. For the significant negative
t statistics, found by the cluster test, we set the prior on
effect size following a Cauchy distribution with a scale
factor of 0.707, as recommended by Rouder et al. (2009).
We then computed for each time point the proportion of
cluster electrodes and frequencies yielding evidence for
H, and H,, respectively (Figs. 2a,c, 3e, insets below the
time-frequency plots).

Results

Behavior

For each participant, an adaptive staircase procedure
(see Materials and Methods) adjusted stimulus contrast to
ensure a proportion of 75% correct responses in both the
2IFC detection and the discrimination task. The partici-
pants included in the analysis had a mean proportion of
correct detection responses of 73.2% (SEM, 0.002) and a
mean proportion of correct discrimination responses of
72.5% (SEM, 0.007), indicating that the staircase proce-
dure was successful. On average, the stimulus contrast
necessary for achieving this level of performance was
higher in the 2IFC discrimination task than in the 2IFC
detection task (two-tailed paired-sample t test: f,q =
5.77, p < 0.001), which is consistent with previous work
(lemi et al., 2017). The group average contrast was 7.2%
(SEM, 0.2) and 41.6% (SEM, 6.1) in the detection and
discrimination task, respectively.

EEG

This study aimed to test three models of the relationship
between low-frequency oscillatory power as a measure of
excitability and performance in 2IFC detection and discrim-
ination. To recap, the precision model predicts that correct
responses are associated with weak overall prestimulus
power in both intervals (i.e., low P,,). The perceptual bias
model predicts that correct responses are associated with
relatively weaker prestimulus power in the target interval
compared with the nontarget interval (i.e., low P,), but only
in the detection task. The decision bias model predicts this
association for both the detection and discrimination task
(for details, see Materials and Methods).

To test these models, we analyzed both tasks using
GLM to model within each participant the contributions of
response accuracy (B8, regressor) and interval order (3,
regressor; target-first vs nontarget first) on either P, (to
test the precision model) or on P, (to test the perceptual
bias and decision bias models). We then used a cluster
permutation test to determine whether regressors were
significantly different from 0 across participants.

Precision model

The group-level statistical test of B, (accuracy) identi-
fied significant clusters in neither 2IFC detection nor dis-
crimination. In other words, 2IFC accuracy did not
correlate with P, across participants. To provide evi-
dence of a true null effect of accuracy on P, as opposed
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Figure 3. Relationship between relative oscillatory power (P,.) and 2IFC accuracy; test of the perceptual bias and decision bias
models. a, Group-level t statistics maps of the regression coefficient B, indicating the relationship between 2IFC detection accuracy
and P,,. Correct performance is related to lower 8-17 Hz P, (i.e., reduced «a and B power preceding the stimulus-present interval
relative to that preceding the stimulus-absent interval). b, Group average power averaged across the window before the target interval
(left) or that before the nontarget interval (middle), shown separately for correct and incorrect 2IFC detections, normalized by the
average power in all trials. Group average P, (right) shown separately for correct and incorrect trials, normalized by the average P,
in all trials. ¢, A time course of topographies of the significant negative cluster. Black dots represent cluster electrodes. d, Histogram
of the effect size, estimated as Cohen’s d, for the data within the time—frequency-electrode cluster of significant negative effects. The
median value is highlighted by the blue vertical bar. e, Group-level t statistics maps of the regression coefficient 3, indicating the
relationship between 2IFC discrimination accuracy and P,. 2IFC discrimination accuracy is not related to P,. This null effect is
corroborated by the BF analysis, indicating that there is more evidence supporting H, than supporting H, (bottom inset). f, Group
average P, shown separately for correct and incorrect 2IFC discriminations, normalized by the average P, in all trials. The maps in
a and e are averaged across the electrodes comprising the cluster of significant effects illustrated in a and ¢ and masked by a p value
of 0.01 using two-sided cluster permutation testing. Time 0 s indicates interval onset. The red line in a and e indicates the time points
before which oscillatory activity is not contaminated by activity after interval onset (lemi et al., 2017). The plots in b and f are shown
for illustrative purposes for the cluster of significant effects illustrated in a and e. The negative relationship between P, and accuracy
in 2IFC detection, but not in 2IFC discrimination, confirms the perceptual bias model.

to merely inconclusive evidence, we used BF analysis to
quantify the proportion of data points providing evidence
of H, or evidence of H,. We restricted this analysis to the
significant time-frequency-electrode cluster found for
in the bias model for 2IFC detection (see below; Fig. 3a).
The BF analysis revealed that for both 2IFC detection and
discrimination, the proportion of data points in favor of a
null effect by far outnumbered the proportion of data
points in favor of an effect (H, > H;; Fig. 2a,c, bottom
insets). In sum, the relationship between P, and 2IFC
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detection and discrimination accuracy was not merely
weak or inconclusive, but entirely absent. These findings
reject the precision model.

The group-level statistical test of B, (interval order)
identified a significant effect of interval order for 2IFC
detection (p = 0.003), starting from —0.5 s relative to
interval onset and at frequencies between 7 and 24 Hz
with an occipital topography (Fig. 4a,b). In other words,
prestimulus 7-24 Hz P, was greater in trials when a
stimulus was presented in the first interval (T1) relative to
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Figure 4. Relationship between oscillatory power (P, and P,,) and interval order in 2IFC detection and discrimination. a, d,
Group-level t statistics map of the regression coefficient B,, indicating the relationship between interval order and P, in 2IFC
detection and discrimination, respectively. b, Topography of the significant positive cluster in 2IFC detection. Black dots represent
cluster electrodes. ¢, Group average power averaged across the window before the stimulus-present interval (left) or that before the
stimulus-absent interval (middle), shown separately for nT1 and T1 trials, normalized by the average power in all trials. Group average
P..e (right) shown separately for nT1 and T1 detection trials, normalized by the average P, in all trials. f, h, Group-level t statistics
map of the regression coefficient B,, indicating the relationship between interval order and P, in 2IFC detection and discrimination,
respectively. g, i, Group average P, shown separately for nT1 and T1 trials, normalized by the average P, in all trials in 2IFC
detection and discrimination, respectively. The maps in a, d, f, and h are averaged across the electrodes comprising the cluster of
significant effects illustrated in @ and b and masked by a p value of 0.01 using two-sided cluster permutation testing. Time 0 s
indicates interval onset. The red line in a, d, f, and h indicates the time points before which oscillatory activity is not contaminated
by activity after interval onset (lemi et al., 2017). The plots in ¢, e, g, and i are shown for illustrative purposes for the cluster of

significant effects illustrated in a and b.

trials when it was presented in the second interval (nT1;
Fig. 4c). By contrast, no significant clusters were found for
B, in 2IFC discrimination (Fig. 4d,e).

Perceptual and decision bias model

The group-level statistical test of B, (accuracy) in the
2IFC detection task yielded a significant negative cluster
(p = 0.005) starting from —0.344 s before interval onset
and at frequencies between 8 and 17 Hz (Fig. 3a). In other
words, correct detection was associated on a trial-by-trial
basis with lower 8-17 Hz P, (i.e., reduced « and 8 power
in the time window before the stimulus-present interval
relative to the stimulus-absent interval; Fig. 3b). The to-
pography of this negative effect evolved from frontocen-
tral to parieto-occipital electrodes (Fig. 3c). The peak of
this cluster was at electrode FC4, at 13 Hz, and at —0.305
s before interval onset (f,1, = —5.20). Cohen’s d esti-
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mated within this significant cluster had a median of
—0.290, indicating a medium effect size (Fig. 3d). Note
that this effect in 2IFC detection is predicted by both the
perceptual bias and the decision bias model.

No significant clusters were found for B, in the 2IFC
discrimination task (Fig. 3e). In other words, discrimination
accuracy did not correlate with differences in P, (Fig. 3f).
We then tested whether there was evidence of a true null
effect of accuracy on P,,, using BF analysis as described
above. We restricted this analysis to the significant time—
frequency-electrode cluster found for B, in 2IFC detection
(Fig. 3a). The BF analysis revealed that the proportion of data
points in favor of a null effect on 2IFC discrimination accu-
racy by far outnumbered the proportion of data points in
favor of an effect (H, > H,; Fig. 3e, bottom inset). Hence, the
relationship between 2IFC discrimination accuracy and P,

eNeuro.org



eMeuro

was not merely weak or inconclusive, but entirely absent. In
sum, the results confirm the prediction of the perceptual bias
model that for 2IFC detection, but not for 2IFC discrimina-
tion, relatively weak power before the target interval and
strong power before the nontarget interval are related to
higher accuracy.

The group-level statistical test of B, (interval order)
found significant clusters in neither 2IFC detection (Fig.
4f,g) nor discrimination (Fig. 4h,i).

Discussion

Excitability modulates perceptual bias rather than
decision bias

What are the perceptual consequences of spontaneous
fluctuations in neuronal excitability? Accumulating evi-
dence suggests that, during states of strong neuronal
excitability, indexed by weak ongoing « and B power,
observers are more likely to report the presence of a
sensory target, irrespective of its actual physical pres-
ence. Thus, contrary to the previously dominant view
(Ergenoglu et al., 2004; Payne and Sekuler, 2014), strong
excitability reflects a state of liberal detection bias rather
than of improved perceptual precision. What is the mech-
anism linking fluctuations of excitability and bias? Accord-
ing to SDT, two alternative mechanisms are possible. On
the one hand, strong excitability could indicate a state of
more permissive detection strategy, during which observ-
ers prefer to report “yes, | saw the target.” This mecha-
nism is referred to as decision bias. On the other hand,
strong excitability could reflect a state of increased base-
line sensory processing, resulting in an amplification of
the neural responses to both target and nontarget stimuli.
At the behavioral level, this is paralleled by an amplifica-
tion of subjective perceptual experience, during which
observers “perceive” the presence of a target even when
it is not physically present. This mechanism is referred to
as perceptual bias. Past studies using single-interval de-
tection tasks (Limbach and Corballis, 2016; lemi et al.,
2017) were unable to distinguish between these alterna-
tive interpretations of excitability, because standard SDT
analysis cannot determine the underlying source of the
bias, be it perceptual or decisional (Wixted and Stretch,
2000; Witt et al., 2015).

In this study, we addressed the issue by analyzing the
relationship between low-frequency oscillatory power
(5-30 Hz), as a measure of neuronal excitability, and
performance in 2IFC detection and discrimination tasks,
which are affected differently by perceptual bias and de-
cision bias. The predictions of a SDT model of perceptual
bias are twofold. First, 2IFC detection should be most
accurate when excitability in the stimulus-present interval
exceeds that in the stimulus-absent interval, reflecting an
amplification of the stimulus representation in the
stimulus-present interval and a dampening of the repre-
sentation in the stimulus—absent interval. Second, in 2IFC
discrimination, fluctuations of excitability between target
and nontarget intervals should not affect discrimination
accuracy. This is because a change in global excitability
(i.e., not specific to a certain feature value) affects the
response of all feature detectors equally, without chang-
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ing their relative strength, which determines the evidence
for target presence. By contrast, an SDT model of deci-
sion bias posits that fluctuations in excitability influence
the observer’s strategic decision behavior, rather than
perceptual processing. Note that a “yes” bias, as in a
single-interval detection task, cannot affect decisions in a
2IFC detection task, because “yes, | saw it” is not among
the given options. However, an interval decision bias
predicts a tendency to report the interval with stronger
excitability, regardless of perceptual task, and should
therefore be manifest in both 2IFC detection and 2IFC
discrimination.

To test these alternative models, we analyzed how 2IFC
detection and discrimination accuracy is related to excit-
ability in target and nontarget intervals (P,,). We found
that detection was most accurate when prestimulus « and
B power was lower before the stimulus-present interval
relative to the stimulus-absent interval (i.e., low P,.). This
effect rules out a “yes” decision bias that might have
affected previous findings from single-interval detection
tasks (Chaumon and Busch, 2014; Limbach and Corballis,
2016; lemi et al., 2017). Moreover, using Bayes factor
analysis we found evidence that discrimination accuracy
was unaffected by between-interval fluctuations of excit-
ability, ruling out an interval decision bias model. To-
gether, the effect on 2IFC detection and the evidence of a
null effect on 2IFC discrimination confirm the predictions
of the perceptual bias model.

Excitability does not affect perceptual precision

It is important to note that the effect of perceptual bias
on 2IFC detection (i.e., when excitability is specifically
strong in the stimulus-present interval) merely represents
a serendipitous distortion of subjective perception “in the
right direction” rather than an actual improvement in per-
ceptual precision. By contrast, the precision model pre-
dicts that overall excitability in both intervals improves
detection and discrimination accuracy. However, using
Bayes factor analysis we found that overall excitability
(P,ye) affected neither 2IFC detection nor discrimination
accuracy (Fig. 2). This result replicates, in a 2IFC para-
digm, the findings of three recent studies, reporting a null
effect of excitability on single-interval yes/no detection
sensitivity (Limbach and Corballis, 2016; lemi et al., 2017)
and 2AFC discrimination accuracy (lemi et al., 2017; Sa-
maha et al., 2017b). Together, these findings challenge
the long-held notion that neuronal excitability affects the
accuracy of perceptual decisions (Romei et al., 2008; van
Dijk et al., 2008; Payne and Sekuler, 2014). This notion
has been based on the observation that successful stim-
ulus detection (hit rate) is associated with relatively stron-
ger excitability. Such findings have been obtained with
visual (Ergenoglu et al., 2004; van Dijk et al., 2008), audi-
tory (Leske et al., 2015), and somatosensory (Baumgarten
et al., 2016) detection, and for detection of transcranial
magnetic stimulation-induced phosphenes (Romei et al.,
2008; Samaha et al., 2017a). However, without testing for
an effect on the false-alarm rate in stimulus-absent trials,
it is possible that excitability affects rather the bias to
report a stimulus, irrespective of whether or not this is
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accurate. Indeed, recent studies analyzing signal detec-
tion measures found that increased excitability is associ-
ated with a more liberal detection bias in both vision
(Limbach and Corballis, 2016; lemi et al., 2017) and so-
matosensation (Craddock et al., 2017). Our results are
also consistent with several experiments that found no
effect of excitability on multiple-alternative forced choice
(mAFC) discrimination performance (Bays et al., 2015; for
a comprehensive literature review, see lemi et al., 2017).
An SDT model of perceptual bias, in fact, predicts these
null findings because discrimination performance in
mAFC tasks is unaffected by a “yes” bias, and a modu-
lation of excitability does not change the discriminability
between response alternatives (lemi et al., 2017).

Accumulating evidence suggests that spontaneous
neural oscillations modulate subjective, rather than objec-
tive, measures of performance in perceptual tasks. While
replicating the finding that states of heightened excitabil-
ity do not improve objective perceptual accuracy, two
recent studies additionally demonstrated that excitability
instead biases observers to report higher confidence in
2AFC discrimination (Samaha et al., 2017b) and higher
visibility ratings (Benwell et al., 2017). These results can
be reconciled by an SDT model of perceptual bias. For
example, in a 2AFC discrimination task, confidence, un-
like accuracy, is thought to depend on the absolute
amount of evidence in favor of the chosen stimulus alter-
native, regardless of the amount of evidence against this
choice (Zylberberg et al., 2012; Maniscalco et al., 2016).
According to a perceptual bias model, heightened excit-
ability amplifies evidence for both stimulus alternatives
simultaneously (lemi et al., 2017). Thereby, a perceptual
bias amplifies evidence for the chosen alternative and, in
turn, amplifies subjective confidence and subjective visi-
bility, while leaving objective accuracy unchanged. To-
gether, these results provide suggestive evidence for the
perceptual bias model.

Spectral and topographical characteristics of the
experimental effects

Correct detection was more likely when low-frequency
power before the stimulus-present interval was weaker rel-
ative to the stimulus-absent interval (Fig. 3a—c). The effect of
between-interval power fluctuations (P,.) on detection accu-
racy was widely distributed over many electrodes and
spanned frequencies between 7 and 18 Hz. The topography
of this effect evolved from a frontocentral to parieto-occipital
topography (Fig. 3c). This pattern is consistent with previous
studies using single-interval perceptual tasks reporting a
frontocentral (Busch et al., 2009; Achim et al., 2013), parieto-
occipital (Ergenoglu et al., 2004; Romei et al., 2008; van Dijk
et al., 2008; Lange et al., 2013; Chaumon and Busch, 2014;
Mathewson et al., 2014; Samaha et al., 2017b), or wide-
spread (Benwell et al., 2017; lemi et al., 2017) topography.
Furthermore, the broad frequency range of this effect (Fig.
3a) is consistent with recent reports (Benwell et al., 2017;
lemi et al., 2017; Samaha et al., 2017b) and is in line with
studies showing that « and B oscillations are typically co-
modulated in time and colocalized in space (Bastos et al.,
2015; Lakatos et al., 2016; Michalareas et al., 2016). A recent
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study (Watson et al., 2018) in rats demonstrated that low-
frequency power (10-30 Hz) is negatively correlated with
firing rate. Therefore, it is possible that B oscillations exert an
inhibitory function, similar to « oscillations (Spitzer and Hae-
gens, 2017). Together, these studies suggest that « and 3
power may reflect a similar function in regulating cortical
excitability and perceptual decision-making.

In addition to detection accuracy, interval order (i.e.,
whether or not a stimulus is presented in the first interval)
was also related to low-frequency power (Fig. 4a—c). In the
detection task, low-frequency prestimulus power aver-
aged across first and second intervals (P,,,) was signifi-
cantly greater in trials when a stimulus was presented in
the first interval (T1 trials) relative to trials when it was
presented in the second interval (nT1 trials; Fig. 4a). Dur-
ing T1 trials, low-frequency synchronization (Kalcher and
Pfurtscheller, 1995) induced by the first, stimulus-present
interval probably leaked into the prestimulus period of the
second, stimulus-absent interval. Conversely, during nT1
trials, low-frequency desynchronization due to temporal
expectation and attention (Rohenkohl and Nobre, 2011)
following the first, stimulus-absent interval leaked into the
prestimulus period of the second, stimulus-present inter-
val. Including the interval order in our regression model
ensured that the effect of accuracy on oscillatory power
was independent of effects of interval order.

Within-trial fluctuations of excitability

Past studies on the relationship between perception
and excitability have typically analyzed how differences in
perceptual reports were related to differences in pre-
stimulus power across trials (Busch et al., 2009; Limbach
and Corballis, 2016; lemi et al., 2017). This across-trial
approach treats individual trials as independent samples
and therefore ignores the fact that data are collected in
temporal order. This is potentially problematic, because it
is known that both perceptual reports and excitability
change over the course of an experiment. Specifically,
behavioral measures such as hit rate (Boncompte et al,,
2016; Carrasco-Lopez et al., 2017) and sensitivity (Manis-
calco et al., 2017) tend to decrease over time, possibly
due to progressive fatigue, resulting from an exhaustion of
cognitive resources. Likewise, ongoing « power tends to
increase over the course of an experiment (van Dijk et al.,
2008), suggesting a decrease in excitability, possibly as a
result of fatigue (Kaida et al., 2006). Since perceptual
reports and excitability both covary across time (e.g., as a
function of fatigue), their correlation could be epiphenom-
enal. Therefore, several studies have tried to rule out that
the across-trial correlation between performance and «
power is confounded by fatigue by showing that the tempo-
ral factor does not explain the effect on performance (van
Dijk et al., 2008; Mathewson et al., 2009).

To test the bias models in our study, we used a different
approach and quantified the differences in excitability be-
tween two intervals within a trial (P,), instead of the differ-
ences in the absolute magnitude of excitability across trials.
This approach ensures that our measure of excitability is not
influenced by fatigue-related effects occurring over longer
time scales. Crucially, our results show a significant corre-
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lation between excitability and perceptual reports, even
when the effects of fatigue are ruled out. This study thus
confirms that the relationship between excitability and per-
ception is not determined by fatigue.

Perceptual bias and selective stimulus processing

It is important to note that the present study focused on
spontaneous, moment-to-moment fluctuations of oscilla-
tory power and, in turn, of neuronal excitability and inhi-
bition. To this end, the task was designed such that
participants could not expect and selectively attend to a
specific time interval, spatial location, or stimulus feature.
Therefore, our finding that spontaneous, nonselective
fluctuations in oscillatory power are associated with a
perceptual bias rather than a change in precision, does
not exclude the possibility that this bias can serve to
improve accuracy when the task allows for some form of
selective stimulus processing.

Numerous studies have demonstrated that selective
attention to a spatial location or to other stimulus aspects
allows for a selective gating of the task-relevant informa-
tion by adjusting « power in task-relevant versus irrele-
vant neuronal populations (for review, see Foxe and
Snyder, 2011). When subjects are instructed to selectively
attend to a spatial location, « power decreases in the
contralateral relative to the ipsilateral hemisphere, indicating
greater excitability in the task-relevant hemisphere and
greater inhibition in the task-irrelevant hemisphere (Thut
et al.,, 2006; Busch and VanRullen, 2010). For example,
Handel et al. (2011) demonstrated that this lateralization
serves to inhibit distracting stimuli in the unattended vi-
sual hemifield. Moreover, selective attention to a particu-
lar stimulus feature (orientation vs identity; Jokisch and
Jensen, 2007), modality (visual vs auditory; Mazaheri
et al., 2014), and timing (expected vs unexpected; Rohen-
kohl and Nobre, 2011) induces a relative increase of «
power in the currently task-irrelevant areas.

Thus, our finding is consistent with the gating-by-
inhibition account by Jensen and Mazaheri (2010) and the
pulsed-inhibition account by Mathewson et al. (2011).
Both models argue that the inhibitory effect of « oscilla-
tions is not sustained, but pulsed as a function of a phase,
and that the inhibitory phase is more pronounced than the
excitatory counterpart. Moreover, both models argue that
top-down control can modulate both power and phase for
selective information processing. In light of the present
findings, we propose that the performance-modulating
effect of top-down-controlled « oscillations is associated
with a selective perceptual bias, which dampens re-
sponses in those neuronal populations processing poten-
tially distracting or task-irrelevant information.

Conclusions

We propose that the current state of neuronal excitabil-
ity—indexed by spontaneous « and B oscillations—bi-
ases the observer’s subjective perceptual experience by
amplifying or attenuating sensory representations, rather
than the decision strategy.
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