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Abstract

To target food security interventions for smallholder households, decision makers need

large-scale information, such as maps on poverty, food security and key livelihood activities.

Such information is often based on expert knowledge or aggregated data, despite the fact

that food security and poverty are driven largely by processes at the household level. At

present, it is unclear if and how household level information can contribute to the spatial pre-

diction of such welfare indicators or to what extent local variability is ignored by current map-

ping efforts. A combination of geo-referenced household level information with spatially

continuous information is an underused approach to quantify local and large-scale variation,

while it can provide a direct estimate of the variability of welfare indicators at the most rele-

vant scale. We applied a stepwise regression kriging procedure to translate point informa-

tion to spatially explicit patterns and create country-wide predictions with associated

uncertainty estimates for indicators on food availability and related livelihood activities using

household survey data from Uganda. With few exceptions, predictions of the indicators

were weak, highlighting the difficulty in capturing variability at larger scale. Household

explanatory variables identified little additional variation compared to environmental explan-

atory variables alone. Spatial predictability was strongest for indicators whose distribution

was determined by environmental gradients. In contrast, indicators of crops that were more

ubiquitously present across agroecological zones showed large local variation, which often

overruled large-scale patterns.

Our procedure adds to existing approaches that often only show large-scale patterns by

revealing that local variation in welfare is large. Interventions that aim to target the poor

must recognise that diversity in livelihood activities for income generation within any given

area often overrides the variability of livelihood activities between distant regions in the

country.
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Introduction

Smallholder farming is the basis of living for many of the most vulnerable on earth [1] and one

of the most common forms of agriculture worldwide [2]. For the majority of the rural house-

holds in sub-Saharan Africa, agriculture contributes a substantial part of their livelihood.

There is a strong link of smallholder farming with poverty, malnutrition and hunger of the

rural population [3], so that targeting interventions on smallholder farming is important for

achieving Sustainable Development Goal 2 (Zero Hunger) of the United Nations. Decision

makers need large-scale quantitative information, such as displayed in maps, for targeting

interventions, assessing vulnerability of rural households to poverty and food insecurity, and

for planning emergency relief.

Maps on poverty and food security are often derived from aggregated information or based

on expert knowledge. Until recently, expert-based aggregation masks [4] were typically used.

Recent more advanced approaches using machine learning to predict the distribution of pov-

erty from satellite imagery [5] have relied on aggregated household data. While often justified,

the aggregation of household data potentially hides relevant information and variability at the

household level. After all, poverty and food security tend to be locally driven processes with

large variation at small scale, for example between nearby households [6].

An alternative approach would be to model variability at the household level directly, using

household survey data in combination with spatially explicit environmental and socio-eco-

nomic data, and to produce maps that allow identifying spatial patterns at this scale. This

would provide a direct estimate of the variability and predictability of welfare indicators at the

most relevant scale and would allow evaluation of the importance of explanatory variables at

the household level. Such a combination of geo-referenced household level information with

spatially continuous information [7, 8] is an underused approach to quantify local and large-

scale variation and improve targeting of interventions.

In our study we developed and tested a stepwise procedure to translate point information

to spatially explicit patterns and create country-wide spatial predictions of welfare indicators

using household survey information. We thereby addressed the following questions:

i. Can spatial variability in welfare at the household level be reliably modelled using spatially

explicit environmental and socio-economic data in combination with household survey

data?

ii. Do household resource variables offer additional explanatory power compared to environ-

mental and socio-economic variables alone?

iii. Is there remaining spatial information in unexplained variability that can be exploited for

generating spatial predictions?

Welfare and particularly food security was represented using the household food availabil-

ity framework [9], which enables to identify the importance of different livelihood activities

and agricultural products to a household’s potential food availability (as approximation to

food security). By differentiating rural households in terms of their livelihood activities and

resources contributing to household welfare, the approach generates important insights for

effective policy making and provides relevant information for vulnerability and risk assess-

ments [1].

Household level data were acquired from the Living Standard Measurement Study–Inte-

grated Survey on Agriculture (LSMS-ISA) of the World Bank, which provides country-wide

household survey data in several countries in sub-Saharan Africa containing information on

household welfare and smallholder production [10]. We used the LSMS-ISA data from Uganda
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[11] as an example because of the country’s large variability in agro-ecosystems and related liveli-

hoods. A majority of households in Uganda lives in rural areas and is involved in agriculture pro-

duction on small farms [12]. Farming systems in Uganda are diverse, ranging from coffee-banana

systems in the humid tropical climate of the south-east to agro-pastoral systems in the semi-arid

north. Most farming systems combine crop and livestock activities. Livestock and particularly cat-

tle is dominant in Uganda’s ‘cattle corridor’, an area of pastoral rangelands stretching from the

Southwest to the Northeast [13, 14]. Temperature in Uganda mostly depends on elevation and

show little annual variation with maxima between 25 to 30 oC. Annual rainfall varies from<750

mm in the northeast to>1750 mm at higher elevations and near Lake Victoria. Rainfall distribu-

tion is bimodal in Uganda’s south, but gradually changes to unimodal as we move northeast

where the dry season becomes more prolonged [15]. The majority of Ugandans live in the west-

ern, central and eastern parts of the country which also have the densest road networks and major

towns [16, 17]. While the poverty rate of Uganda has declined in the recent past, it is unclear if

this benefited all segments of the population [18, 19]. While the poverty rate of Uganda has

declined in the recent past, it is unclear in how far the benefits have been equally distributed [18,

19]. The GINI coefficient (an indicator of inequality) of Uganda increased from 41 in 2012 to 42.8

in 2016 and is similar to neighbouring countries (e.g. 40.8, 37.8 and 45.1 for Kenya, Tanzania and

Rwanda, respectively) [20]. This indicates that local variability in poverty and food security is sim-

ilar in Uganda as other countries in East Africa.

Material and methods

Protocol on: dx.doi.org/10.17504/protocols.io.vb6e2re

We identified a set of household level indicators to determine food availability (as approxi-

mation for food security) and related livelihood activities. We used a regression kriging

approach with a set of spatially continuous environmental and socio-economic explanatory

variables and household resource explanatory variables (herd size, total cultivated land area,

household size) to identify large-scale and local variation.

Data and data preparation

Data. We used cross-sectional household survey data for Uganda from the World Bank

Living Standard Measurement Study–Integrated Surveys on Agriculture (LSMS-ISA) [10, 11].

In total 2671 geo-referenced households were sampled across Uganda over a 12-month period

from 2010 to 2011. The LSMS-ISA has been designed to be nationally representative on rural/

urban and regional levels. Households were sampled per enumeration area (EA), based on a

random selection of EAs per region (Kampala, Central, Eastern, Northern and Western) [21].

We used survey data on household characteristics, farm size, crop and livestock production

and off-farm income for the household food availability analysis and on herd size, total culti-

vated land area and household size as household resource explanatory variables for the regres-

sion analysis (see below). The three household resource explanatory variables were chosen

because they reflect productive resources, which link to the food availability analysis looking at

household productivity. We present results from the dataset from the year 2010–11. Other

years (LSMS 2011–12) were used to check for consistency of patterns, which revealed that pat-

terns remained similar across years for most variables (for details see S1–S3 Figs). We were

interested in the agricultural households and excluded households without land holdings as

well as households without any livelihood activities (i.e. no agricultural production and no off-

farm income; final sample: 1927 households, Fig 1). For the spatial analysis we collected envi-

ronmental and socio-economic explanatory variables (henceforth: ‘environmental explanatory

variables’) that were available as raster layers, including elevation [22], temperature and rainfall

Household survey data to identify large-scale food security patterns
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[23], length of growing period [24], soil conditions [25], population density [16] and market

access [17] (Table 1).

Data preparation and calculation of food availability indicator. The household loca-

tions were randomly displaced by the publishing authority with an offset� 10 kilometres and

several households were clustered resulting in multiple households relocated to the same loca-

tion [11]. For the kriging unique locations are required. We therefore randomly offset the

household locations using a random distance of� 50 meters and a random direction. We sam-

pled the values of the raster layers of the environmental explanatory variables at these new

household points. To minimize the unknown errors in the sampled environmental explana-

tory variables introduced from offsetting the household locations, we resampled all raster lay-

ers to a resolution of 5 arc minutes, which approximates a grid cell size of 10 x10 km near the

equator. Given the small spatial offset compared with the country-wide scale of analysis, we

consider the remaining uncertainty to be negligible. Raster layers and household points were

geo-referenced to WGS84 coordinates.

We calculated soil carbon stock SCARB (kg C Mg-1) from the soil organic matter content

SOC (kg C Mg-1) and the bulk density BD (Mg m-3) for three soil layers of increasing thickness

Δz (m, 0–0.05 m, 0.05–0.15 m, 0.15–0.3 m):

SCARB ¼ BD� Dz � SOC� 104 ½1�

We calculated the mean carbon stock value across the three layers for each grid cell.

Fig 1. Locations of the households included in analysis (n = 1927). Each red x represents one household. Blue areas

are water bodies and grey areas are protected areas (e.g. nature reserves).

https://doi.org/10.1371/journal.pone.0208714.g001
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To approximate food security we chose the food availability framework by [9] because it

enables to identify the importance of different livelihood activities, crops and livestock types

for a household’s welfare (in terms of food availability). Although the food availability indica-

tor (FA) does not consider all dimensions of food security [26], it closely correlates with well-

established indicators such as the Household Dietary Diversity Index (HDDS) and the House-

hold Food Insecurity Access Scale (HFIAS) [27]. For each household we calculated the FA esti-

mating the potential amount of daily food energy that is available to a male adult equivalent

household member (kcal cap-1 d-1):

FA ¼
ðEconsumed þ EincomeÞ

365� nhh� mae
½2�

Where Econsumed is the annual direct consumption of potential food energy from on-farm

products (kcal a-1), Eincome is the annual indirect consumption of potential food energy from

on- and off-farm income (kcal a-1), and nhh-mae is the household size in male adult equivalents.

Econsumed was derived from information on produced amounts of crops and livestock products

and the respective kilo-caloric energy values of the crops and livestock products. These were

obtained from the standard product list of the US Department of Agriculture (source: ndb.nal.

usda.gov/ndb/search/list, accessed 02/07/16) and from the FAO (source: http://www.fao.org/

docrep/x5557e/x5557e00.htm#Contents, accessed 02/07/16). Consumption was then quanti-

fied from the difference between produced and sold quantities of the respective product. Total

household income was calculated from reported quantities of crop and livestock product sales

and from off-farm income. Assuming that all this income could have been used to purchase

the staple food (maize) we translated the monetary value to kilocalories equivalent (Eincome).

Household size was standardised to male adult equivalence (nhh-mae) using sex and age depen-

dent daily energy requirements relative to that of an adult male (2500 kcal cap-1d-1) [28].

Livelihood activities were derived from the different food energy sources contributing to

FA and were expressed as relative contribution to FA (values between 0 and 1, Table 2 and S1

Table). We distinguished between livelihood activities on-farm (crop contribution to FA, live-

stock contribution to FA) and off-farm (off-farm income contribution to FA). We subdivided

the on-farm livelihood activities into key crops (highland banana, sorghum, maize, cassava,

Table 1. Characteristics of the environmental explanatory variables used in the regression analysis.

Code Spatially continuous environmental variable Original

resolution

Source

DEM elevation (m.a.s.l.) 3 arc s Jarvis, Reuter (22)

TEMP Average annual mean temperature in period 1950–2000 (˚C) 30 arc s Hijmans, Cameron (23)

TEMP_R Average annual temperature range in period 1950–2000 (max temperature of warmest month minus min

temperature of coldest month) (˚C)

30 arc s Hijmans, Cameron (23)

RAIN Average annual rainfall in period 1950–2000 (mm a-1) 30 arc s Hijmans, Cameron (23)

RAIN_V Average annual rainfall variation (coefficient of variation calculated on monthly rainfall) 30 arc s Hijmans, Cameron (23)

LGP average length of growing period in period 1965–1995 (days/ year) 5 arc min HarvestChoice (24)

BD bulk density for three soil layers: 0–5 cm, 5–15 cm, 15–30 cm soil depth (Mg m-3) 250 m Hengl, Mendes de Jesus

(25)

SOC soil organic carbon content for three soil layers: 0–5 cm, 5–15 cm, 15–30 cm soil depth (kg C Mg-1) 250 m Hengl, Mendes de Jesus

(25)

SCARB soil carbon stock, calculated from soil data, mean across three layers (kg C Mg-1) - -

POP human population density (number km-2) ~100 m WorldPop (16)

TRAV market access in travel time to nearest town of +50,000 inhabitants based on road network from 2000

(minutes)

30 arc s Nelson (17)

https://doi.org/10.1371/journal.pone.0208714.t001
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beans, and coffee) and livestock types (cattle and poultry) that contributed to the crop and the

livestock part of the FA, respectively. Details on the methodology are provided in [29]. The

data analysis was performed in R (version 3.2.3) [30].

General approach

Our procedure aims at generating a spatial prediction of food availability indicators using

household and environmental data, taking full account of variability at the household level. It

combines a predictive model of household level variation for an indicator of interest with a

spatial model of unexplained variation. Although machine learning algorithms have been used

successfully for building predictive models of poverty indicators, we opted for a regression

approach to allow for formal tests of model improvement when using different types of explan-

atory variables. By comparing predictive models using both environmental and household

resource explanatory variables to models only using environmental explanatory variables we

established to what extent model fit from environmental data was sufficient to perform predic-

tion on a spatial grid. Modelling of the unexplained variation (i.e. the model residuals) was

done by a classic spatial kriging approach (see below). Finally spatial predictions based on

explained and unexplained variation were combined into a single map. A detailed description

of the procedure (Fig 2) is provided in the following sections. An example of the procedure for

highland banana contribution is illustrated in Fig 3 (Results).

Step 1: Regression analysis

Regression model selection. The indicators FA and the contributions of crops, livestock

and livelihood activities to FA were the response variables in the regression models and the

environmental variables were the explanatory variables (Table 2). If the indicator was trans-

formable so that regression residuals were approximately normally distributed, a multiple lin-

ear regression (MLR) model was used. This was possible for FA after log-transformation. The

contributing livelihood activities, variables representing proportions containing a large num-

ber of zeros and ones, were not transformable to a (near-)normal distribution and required an

alternative regression model.

Table 2. Food availability indicators as response variables and environmental and household resource explanatory variables of the analyses.

Response variables (food availability indicators) Spatially continuous environmental explanatory variables Household resource explanatory variables

Household food availability (FA) Elevation Total cultivated land area

Variables contributing to FA (livelihood activities): Mean annual temperature Household size

Crop contribution Annual temperature range Herd size

Livestock contribution Annual rainfall

off-farm income contribution Annual rainfall variation

Variables contributing to the crop part of FA: Length of growing period

banana contribution Soil carbon stock

sorghum contribution Human population density

maize contribution Market access

cassava contribution

beans contribution

coffee contribution

Variables contributing to the livestock part of FA:

cattle contribution

poultry contribution

https://doi.org/10.1371/journal.pone.0208714.t002
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For this purpose we used a multiple zero-and-one inflated beta regression (MIBR) model

that can handle distributions where the observation, y, is a proportion including many zeros

and ones [31, 32]. The MIBR model uses a mixed continuous-discrete distribution that defines

both the probabilities P0 (y = 0), P1 (y = 1) and 1- P0- P1 (0 < y< 1) and the probability distri-

bution of the values of y between 0 and 1, which is given by a beta distribution with shape

Fig 2. The stepwise procedure. See text for further explanation.

https://doi.org/10.1371/journal.pone.0208714.g002
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parameters α and β. This complete probability distribution of y is defined by four parameters,

μ, σ, ν and τ, where μ, σ define the shape of the beta distribution as α = μ(1- σ2)/ σ2, β = (1- μ)
(1- σ2)/ σ2 while ν and τ describe the probabilities P0 = ν/(1+ν + τ) and P1 = τ /(1+ν + τ). The

expectation of y under this distribution is given by E(y) = (τ + μ)/(1+ν + τ) [33]. For variables

with no or few (i.e.� 3) observations of y = 1, we considered the sample too small for making

reasonable predictions of y = 1. Therefore, we used a multiple zero-inflated beta regression

model (MIBR-0), leaving out the distribution parameter τ. This was the case for the contribut-

ing livelihood activities ‘coffee’ and ‘livestock’.

Fig 3. Mapping livelihood activities contributing to food availability (FA) following the procedure of Fig 2 on the example of highland

banana contribution to the crop part of FA. a) Highland banana contribution predicted by a multiple inflated beta regression (MIBR) model. b)

Histogram of the regression residuals from the MIBR model. c) Histogram of the regression residuals after Normal Score Transformation. d)

Variogram model of the transformed regression residuals. e) Unexplained structure in the regression residuals interpolated by kriging, after back-

transformation. f) Prediction map (a) added to the lower 95% bound of the prediction interval (PI) of the interpolated residuals. For y< 0, values

are set to 0. g) Prediction map (a) added to the interpolated residuals (e). For y> 1, values are set to 1; for y< 0, values are set to 0. h) Prediction

map (a) added to the upper 95% PI of the interpolated residuals. For y> 1, values are set to 1. White areas are protected areas (e.g. national parks)

and water bodies.

https://doi.org/10.1371/journal.pone.0208714.g003
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MLR models were estimated using the ordinary least squared method and the R package

‘stats’. The MLR model fit was evaluated based on R-Squared (R2). MIBR were fitted by maxi-

mum-likelihood methods using the R package ‘gamlss’ [34]. Details are in [35]. The MIBR

model fit was evaluated by the squared correlation of fitted and observed y (henceforth ‘pseudo

R2’).

Building regression models with environmental explanatory variables (EV-models).

For each indicator, the environmental explanatory variables that were used to build the regres-

sion models were selected in two steps: First, we built simple MLR or MIBR models for each

environmental explanatory variable and selected those variables that gave a significant slope in

the simple models at p< 0.1 for further analysis. Second, we analysed the significant environ-

mental explanatory variables on collinearity using the variance inflation factor (VIF) approach

(R package ‘usdm’) and included all environmental explanatory variables with VIF< 10 in the

multiple regression analysis [36].

The MLR model was fit using the step-function with forward direction. The MIBR model

was fit using the stepGAICAll.A function (R package ‘gamlss’), which uses a forward selection

and backward elimination approach for each model parameter and selects the best final model

based on the AIC. To reduce the chance for model overfitting, we simplified the selected best

MIBR model (full model) by removing the last coefficient of any of the model parameters (μ,

σ, ν and τ) if that one had a significance of p< 0.1. We rejected the simplified model if the dif-

ference between the AIC of the full model and the AIC of the simplified model > 10 [37]. The

regression models were used to generate prediction maps for each indicator for the entire

country. For the MIBR models we calculated the predicted y-value ‘ypredicted’ [35] to generate

prediction maps.

Building nested regression models with environmental and household resource explan-

atory variables (EVHR-models). To identify how much of the variation was explained by

the environmental explanatory variables in comparison with the household level variables, we

built nested regression models for each indicator: We used the regression model with environ-

mental explanatory variables (EV-model, see step 2) and added household resource variables

(EVHR-model). The household resource variables had first been tested on collinearity using

the VIF approach and no collinearity was observed.

Step 2: Spatial interpolation of regression residuals

The regression models did not capture all the spatial structure in the data. To account for

remaining spatial structure, we interpolated the residuals of the MLR and MIBR models.

Calculation and transformation of MIBR residuals. While the residuals of the MLR

model could be directly derived from the MLR model results, the MIBR residuals were calcu-

lated at the household locations:

ResidualsMIBR;i ¼ yobserved;i � ypredicted;i ½3�

Where yobserved is the value of the indicator y observed for household i and ypredicted is the

value of the indicator y predicted from the MIBR model at the location of household i. To

account for the spatial interpolation requirement of normally distributed residuals, the MIBR

regression residuals were transformed using a quantile-based normal score transformation for

100 intervals [38]. With this approach the tails of the distribution (< 0.5% and> 99.5%) were

truncated. This trade-off was acceptable, since we were interested in the larger patterns rather

than in predictions for particular regions.

Variogram models of the MLR and MIBR residuals. To identify spatial autocorrelation

in the residuals, we fitted variogram models using the method of moments with weights based

Household survey data to identify large-scale food security patterns
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on the number of point pairs over the squared distance. We selected the best variogram models

based on the weighted sum of squared errors and verified the variogram models by cross-vali-

dation (krige.cv-function of the R package ‘gstat’). Variogram models are described by three

main characteristics, the nugget, the sill and the range. The nugget is the value at which the

variogram (almost) crosses the y-axis and indicates the level of local variation at distances

smaller than the sampling interval. The sill is the y-value at which the curve of the variogram

model flattens out indicating the level of spatial autocorrelation. The range indicates the dis-

tance at which the curve of the variogram model flattens out and thus the distance of spatial

autocorrelation (https://gisgeography.com/semi-variogram-nugget-range-sill/, accessed 16/

07/18). We calculated the nugget-sill ratio to identify how much of the variation in the residu-

als was explained by spatial autocorrelation in relation to local variation.

Interpolation of the MLR and MIBR residuals. For the MLR model, we used the residual

variogram model in combination with regression kriging (R package ‘gstat’) to compute a final

map of the log-transformed FA. This approach takes into account spatial correlations of the

regression residuals in the regression model fit. For the MIBR models we used the variogram

models of the normal score transformed residuals to interpolate the transformed residuals by

kriging and produce residual maps. We used the MIBR model as a deterministic surface,

which was a model choice implying that all uncertainty was attributed to lack of fit of the

MIBR models in the further steps of the procedure. Subsequently, all uncertainty was captured

in the prediction intervals of the interpolated MIBR residuals (see below).

Back-transformation and calculation of uncertainty. For the MLR model, the kriging

results of the log-transformed FA were back-transformed to obtain the expected median E(Y)
of FA [39]:

EðYÞ ¼ em ½4�

Where μ is the mean of the log-transformed FA. The uncertainty of the expected mean of

FA was identified calculating the back-transformed upper and lower 95% bounds of the pre-

diction interval (PI95, u, MLR; PI95, l, MLR):

PI95;u=l;MLR ¼ eðm�1:96�sÞ ½5�

Where σ is the standard deviation of the log-transformed FA. For the MIBR model, the

upper and lower 95% bounds (PI95, u, MIBR; PI95, l, MIBR) of the interpolated transformed predic-

tion intervals were calculated as follows:

PI95;u=l;MIBR ¼ m� 1:96� s ½6�

Where μ is the mean and σ the standard deviation of the interpolated transformed residuals.

The interpolated means and upper and lower 95% bounds of the prediction interval of the

transformed MIBR residuals were back-transformed using the inverse of the normal score

transformation. In this way, the mean of the transformed residuals represents the median of

the back-transformed residuals.

Step 3: Adding the prediction and residual maps

For the MLR models step 2 and 3 were performed in one step using regression kriging (R

package ‘gstat’). For the MIBR models the prediction map and the back-transformed median

residual map were added to generate a final map of the variable. Uncertainty in the interpo-

lated MIBR residuals was mapped by adding the MIBR prediction map and the back-trans-

formed MIBR residual maps of the upper and lower bounds of the prediction interval,
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respectively. Where y> 1 or y< 0 as a result of the addition, values were corrected to remain

within the bounds of proportional data (0,1).

Results

The stepwise procedure

The stepwise procedure is illustrated with the example of highland banana contribution to the

crop part of FA (Fig 3). Highland banana contribution was first predicted based on the MIBR

model (step 1, Fig 3A). The regression residuals (Fig 3B) were transformed to a normal distri-

bution using normal score (Fig 3C) and spatial autocorrelation of the transformed residuals

was quantified in the variogram model (step 2, Fig 3D). The transformed residuals were inter-

polated using the variogram model and simple kriging and were then back-transformed to

generate a map of the median residuals (Fig 3E). The prediction map was added to the back-

transformed median of the interpolated residuals, lower 95% bound of the prediction interval

(PI) and upper 95% PI of the interpolated residuals (step 3, Fig 3F–3H). Results of the single

steps for all indicators are discussed below.

Regression models using environmental explanatory variables

Spatial variation in FA was explained by the length of growing period, soil carbon stock,

annual rainfall variation, population density and travel time to the market, but explanatory

power was low (R2 = 0.10, Table 3). Among the MIBR-EV models, the models predicting high-

land banana and sorghum contributions revealed the largest explanatory power (R2 = 0.35 and

0.53, respectively), while for all other indicators the model performance was poor (R2� 0.12,

Table 4, details S2–S4 Tables). Variation in highland banana contribution was explained by

annual mean temperature, annual temperature range, annual rainfall, soil carbon stock and

travel time to the market. Variation in sorghum contribution was explained by annual temper-

ature range, annual rainfall variation, length of growing period and soil carbon stock. The

results indicate that the available environmental explanatory variables explained little of the

variation for most of the indicators (except for highland banana and sorghum).

Nested regression models

Adding the household resource explanatory variables herd size, total cultivated land area and

household size to the MLR-EV model (MLR-EVHR) increased the explanatory power for FA

somewhat (R2 = 0.13, against 0.1 for the MLR-EV model, Table 3), but most of the variation

remained unexplained. Our results differed from findings of [9], who explained a larger part of

FA with herd size, total cultivated land area and household size (R2 = 0.33 using artificial neu-

ral networks). Adding household resource explanatory variables to the MIBR-EV models

(MIBR-EVHR) raised explanatory power only for the livestock and cattle contribution models

due to the strong link between livestock and cattle contribution and herd size (pseudo R2 =

0.17 and 0.29, against 0.003 and 0.005 for the MLR-EV model; Table 4, details S5–S7 Tables).

Explanatory power did not increase for the models of crop contribution.

Spatial structure in the regression residuals

We chose a nugget-sill ratio�0.7 to indicate spatial autocorrelation. Seven indicators (highland

banana, sorghum, maize, cassava and coffee contributions to the crop part of FA, and cattle and

poultry contributions to the livestock part of FA) revealed spatial autocorrelation in the regression

residuals with varying strength. While spatial autocorrelation accounted for 52% of the variance

in the regression residuals of coffee contribution, this was only 30% for cassava (nugget-sill ratios
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0.48 and 0.7, respectively). The other variables (FA, livestock and off-farm income contributions

to FA and beans contribution to the crop part of FA) had little or no spatial autocorrelation in

their regression residuals. For crop contribution to FA the variogram model did not converge, but

the observed (experimental) variogram indicates little spatial autocorrelation (Table 5, S4 Fig).

Particularly for FA and off-farm income contribution the curves of the variogram models were

flat (small sill) and nuggets were large. The range of spatial autocorrelation of the regression resid-

uals of the seven indicators with nugget-sill ratio� 0.7 varied from 40 km for the residuals of cof-

fee contribution to 175 km for the residuals of sorghum contribution.

Mapping FA and contributing livelihood activities

Application of the stepwise procedure to FA identified a larger FA in the southwest of Uganda

(median values� 15,000 kcal cap-1 d-1) and the smallest FA in the north and northeast

Table 3. Multiple linear regression (MLR) model of food availability (FA) with environmental explanatory variables (MLR-EV) and with environmental and house-

hold resource explanatory variables (MLR-EVHR) as explanatory variables.

Explanatory variable Coefficient Betaa Std. Error t-Statistic Sign. (p-value)

MLR-EV model
(intercept) 7.34 - 5.99 x 10−1 12.25 ���

LGP 6.75 x 10−3 0.12 1.57 x 10−3 4.29 ���

SCARB 1.94 x 10−5 0.16 3.49 x 10−6 5.55 ���

RAIN_V -2.13 x 10−2 -0.11 5.37 x 10−3 -3.96 ���

POP -2.23 x 10−2 -0.10 5.35 x 10−3 -4.16 ���

TRAV -1.13 x 10−3 -0.08 3.60 x 10−4 -3.15 ��

R-squared 0.10

Adjusted R-squared 0.10

F-statistic 42.27

MLR-EVHR model
(intercept) 7.62 - 5.93 x 10−1 12.84 ���

LGP 6.20 x 10−3 0.11 1.55 x 10−3 3.99 ���

TLU 4.31 x 10−2 0.16 5.94 x 10−3 7.24 ���

SCARB 2.03 x 10−5 0.16 3.45 x 10−6 5.90 ���

RAIN_V -2.21 x 10−2 -0.11 5.29 x 10−3 -4.18 ���

POP -2.00 x 10−2 -0.09 5.28 x 10−3 -3.78 ���

TRAV -1.32 x 10−3 -0.10 3.56 x 10−4 3.72 ���

HH_SIZE -2.28 x 10−2 -0.06 8.25 x 10−3 -2.76 ��

LAND 8.78 x 10−3 0.04 4.44 x 10−3 1.98 �

R-squared 0.13

Adjusted R-squared 0.13

F-statistic 35.31

Explanatory variables: LGP = average length of growing period, RAIN_V = average annual rainfall variation, RAIN = average annual rainfall, SCARB = mean soil

carbon stock, TRAV = market access in travel time to nearest town of +50,000 inhabitants, LAND = total cultivated land area, TLU = herd size, HH_SIZE = number of

household members

Significance

��� < 0.001

�� < 0.01

� < 0.05,. < 0.1
aBeta = coefficient X standard deviation of variable x / standard deviation of FA

https://doi.org/10.1371/journal.pone.0208714.t003
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(median values < 5000 kcal cap-1 d-1) (Fig 4A middle). However, the large local variation of

the regression residuals indicated much spatial uncertainty about FA (Fig 4A left and right).

The maps of the contributions of livestock, off-farm income and beans indicated uniform pat-

terns across the country with few hotspots for livestock and off-farm income contribution (Fig

4B and 4C, Fig 5A middle). Also here the uncertainty in the patterns was large (Fig 4B and 4C,

Fig 5A left and right) due to an enormous local variation in the regression residuals (nugget-

sill ratios� 0.72) and poor explanatory power of the MIBR-EV models (pseudo R2� 0.04).

Table 4. Regression results of the multiple inflated beta regression model with environmental explanatory variables (MIBR-EV) and with environmental and house-

hold resource variables (MIBR-EVHR) as explanatory variables.

Indicator Crop

contribution

Livestock

contribution

Off-farm

income

contribution

Banana

contribution

Sorghum

contribution

Maize

contribution

Cassava

contribution

Coffee

contribution

Beans

contribution

Cattle

contribution

Poultry

contribution

MIBR-EV
model

Pseudo R2 0.02 0.003 0.01 0.35 0.53 0.02 0.12 0.05 0.04 0.005 0.01

AIC -7397 1774 2350 1686 1164 1362 877 1295 -113 2303 1727

AICini—

AICfinal

77 47 89 1052 530 141 573 197 390 24 40

Explanatory
variables:

DEM μ, σ

TEMP μ, ν μ, σ μ, σ, ν, τ μ, σ, ν ν

TEMP_R μ, σ μ, ν μ, ν ν, τ ν

RAIN μ, ν μ, σ, ν

RAIN_V μ, ν μ, ν τ σ, ν

LGP μ, σ μ, σ μ, ν, τ μ, σ, ν, τ μ, σ, ν, τ ν μ, ν

SCARB μ, ν τ ν, τ μ, ν

POP μ, ν μ

TRAV τ μ, ν μ, σ ν ν ν σ, ν ν

MIBR-EVHR
model

not
converging

Pseudo R2 0.05 0.17 0.02 0.54 0.02 0.12 0.06 0.05 0.29 0.007

AIC -7611 1378 2305 1156 1344 865 1279 -128 1785 1704

AICini—

AICfinal

291 443 134 538 159 585 212 405 535 63

Explanatory
variables:

DEM μ, σ

TEMP μ, σ, μ, σ, ν, τ μ, σ, ν ν

TEMP_R μ, σ μ, ν τ ν

RAIN μ, σ, ν

RAIN_V μ, σ, ν μ, ν τ σ, ν

LGP μ, σ μ, σ μ, ν, τ μ, σ, ν, τ σ, ν, τ ν μ, ν

SCARB τ ν, τ μ, ν

POP μ, ν μ, σ

TRAV τ ν μ, σ ν ν σ, ν ν

TLU μ, σ, ν, τ μ, σ, ν μ, σ σ, τ σ, ν ν ν, τ

HH_SIZE μ, σ, τ ν μ, σ, ν μ ν μ, σ ν, τ

LAND μ, τ μ, σ ν

For explanation of model parameter see Material and Methods. Explanatory variables: DEM = elevation, TEMP = average annual mean temperature,

TEMP_R = average annual temperature range, RAIN = average annual rainfall, RAIN_V = average annual rainfall variation, LGP = average length of growing period,

SCARB = mean soil carbon stock, POP = human population density, TRAV = market access in travel time to nearest town of +50,000 inhabitants, LAND = total

cultivated land area, TLU = herd size, HH_SIZE = number of household members. Explanatory variables explain model parameters at significance p < 0.1

https://doi.org/10.1371/journal.pone.0208714.t004
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These results indicate that spatial variation was huge at a range shorter than supported by the

resolution of the environmental explanatory variables (<10 km).

In contrast, the highland banana and sorghum contributions revealed distinct large-scale

spatial patterns. Highland banana contribution was largest in Uganda’s Southwest, around

Lake Victoria, in the highland regions and in central Uganda (Fig 3G). Uncertainty in these

patterns was large in the central areas and in the mountain ranges (Fig 3F and 3H) as a result

of large local variation in the residuals (Fig 3D and 3E) and potentially also due to low observa-

tion density at some locations. Sorghum contribution was largest in the Northeast of Uganda

(Fig 5B). While uncertainty in the residuals of sorghum contribution was low for most of the

country, the upper 95% bound of the prediction interval of the residuals indicated that sor-

ghum contribution might be under-predicted in the Northeast, parts of the central area and of

the west and southwest of the country. The MIBR-EV models of highland banana and sor-

ghum contributions were the only models that had a pseudo R2 > 0.3, resulting in smaller

residuals than for the other variables. Cassava, maize and coffee contributions indicated weak

large-scale patterns (Fig 5C–5E), and uncertainty in these patterns was huge, attributed to the

large local variation of regression residuals indicated in the variogram models (nugget-sill

ratios� 0.64, exception coffee: 0.48) and occasionally low observation density. Similarly, poul-

try and cattle contributions indicated weak spatial patterns (very localized for cattle; relatively

uniform for poultry; Fig 4D–4E) with large uncertainties despite smaller nugget-sill ratios.

Discussion

Local variation of household welfare indicators masked large-scale patterns

Differences between households at short distance were huge across Uganda. This was indi-

cated by the overall low explanatory power of the regression models using environmental

explanatory variables (Tables 3 and 4) and the large nuggets in the variogram models of the

regression residuals (Table 5). Spatial predictability using environmental explanatory variables

was strongest for highland banana and sorghum contributions, while for most indicators the

large local variation masked large-scale patterns, which was apparent both in the regression

models and in the residuals (questions I and III). Household resource variables only added

explanatory power for the indicators of livestock and cattle contributions (question II).

Table 5. Parameter of the variogram models of the transformed regression residuals for each indicator.

Indicator FA Crop

contribution

Livestock

contribution

Off-farm

income

contribution

Banana

contribution

Sorghum

contribution

Maize

contribution

Cassava

contribution

Coffee

contribution

Beans

contribution

Cattle

contribution

Poultry

contribution

Variogram
model

Model shape matern� Model not
converging

matern� matern� spherical spherical spherical matern� matern� matern� matern� matern�

Nugget 1.32 0.76 0.81 0.53 0.52 0.67 0.72 0.50 0.63 0.55 0.62

Sill 1.61 0.98 0.91 0.98 0.91 1.04 1.02 1.06 0.88 1.03 1.06

Range (km) 87 27 70 87 175 124 43 40 19 43 57

Nugget-sill

ratio

0.82 0.78 0.89 0.54 0.57 0.64 0.70 0.48 0.72 0.54 0.59

(1- nugget-

sill ratio)�

100 (%)

18 22 11 46 43 36 30 52 28 46 41

lag boundaries at 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200; cut-off at 200 km

� kappa = 0.5

No fit for crop contribution

https://doi.org/10.1371/journal.pone.0208714.t005
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The spatial patterns of FA matched observations from other studies that identified patterns

of food security and poverty across Uganda [7, 8, 29, 40]. However, our results revealed that

local variation in FA is much larger than the variability across agroecologies. In a study across

East and West Africa, [6] similarly found large local differences in FA within locations in con-

trast to more gradual differences among locations. Their analysis revealed that household

resource characteristics such as farm size overrule agroecological characteristics in determin-

ing FA. Although land size was not the most important household variable in our analysis,

household resource characteristics (particularly herd size and household size) explained part

of the variation in FA. The remaining unexplained (most likely local) variation in the house-

hold data could be related to other household characteristics affecting food security, for exam-

ple education level and age of the household head, social capital (e.g. being part of knowledge

networks) or access to market information [41–43], which we did not consider in the analysis.

Key crops for which temperature and rainfall ranges seem to predominantly determine

their distribution (highland banana, sorghum) could be linked to FA patterns, while other

crops (maize, cassava, beans) were more ubiquitously present across diverse agroecological

zones. Sorghum was predominant in the farming systems of the northeast of Uganda, while

highland banana was important in the central, west and southwest of the country and largely

absent in the north, resembling patterns observed in the past [44]. Our observations match

findings by [29] on regional differences of major crops contributing to FA, while our results

also show that for all crops the local variation was large.

Similar conclusions can be drawn for livestock, cattle and poultry contributions. Despite

the existence of the ‘cattle corridor’ in Uganda [13, 14] and the known association of livestock

keeping (particularly poultry production) to urban centres [45], such patterns were not or

poorly observed in the livestock, cattle and poultry contributions. The overruling local varia-

tion in livestock contribution may have several reasons. One could be that the indicator does

not capture all the different contributions of livestock to a Ugandan rural household. In mixed

crop-livestock systems in sub-Saharan Africa livestock serves as draught power, provides

manure to the crops, is a regular source of food and income to the households and functions

as insurance in times of shocks [46]. Income from services such as draught power and manure

was not captured in the livestock contribution to FA. Another reason could be that livestock

data collection using surveys in sub-Saharan Africa is complicated and data are often unreli-

able given that these surveys are based on long recall periods, while the farmers usually lack

records and are reluctant to share information on wealth indicators like livestock [47]. Lastly,

although the number of cattle may be higher in the cattle corridor in Uganda, these consist

mainly of large herds that have numerous cattle but few owners. As such, the region may have

many cattle, but the majority of its households may not be strongly engaged in cattle keeping

themselves or depend on it for their food security.

Similarly, local differences in off-farm income contribution to FA were stronger than large-

scale patterns and this may be explained by the diverse ways in which they take shape. Off-

farm income sources can be of diverse types. Salary-based off-farm income may be more

important in peri-urban areas or in areas with more economic activities [48] and for people of

higher education. By contrast, informal off-farm income and remittances may be spread

Fig 4. Predictions and uncertainty maps of the food availability indicators FA, off-farm income, livestock, cattle and poultry

contributions. a) Predicted food availability (FA, in kcal cap-1 d-1) across Uganda. Left: Lower 95% bound of prediction interval (PI);

Middle: median FA; Right: upper 95% PI. b-e) Livelihood activities contributing to FA across Uganda. Left: Lower 95% PI (MIBR

prediction map + lower 95% PI of residuals; for y< 0, values are set to 0); Middle: MIBR prediction map + median residuals; for y>1,

values are set to 1; for y<0, values are set to 0); Right: Upper 95% PI (MIBR prediction map + upper 95% PI of residuals; for y> 1, values

are set to 1). White areas are protected areas (e.g. national parks) and water bodies.

https://doi.org/10.1371/journal.pone.0208714.g004
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Fig 5. Predictions and uncertainty maps of the food availability indicators beans, sorghum, cassava, maize and coffee contributions.

Left: Lower 95% PI (MIBR prediction map + lower 95% PI of residuals; for y< 0, values are set to 0); Middle: MIBR prediction map
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diffusely across the country resulting in weak spatial patterns. For example, migration of

household members for off-farm jobs is important for the income (as remittances) of Ugandan

households [49].

Five reasons explain large local variation of regression residuals

Besides above-mentioned non-spatial variation (I) at the household level (for example due to

education, age or access to information), four additional reasons can explain the large local

variation (nugget) that was identified in the regression residuals of the indicators: II) Missing
explanatory variables: We used a limited set of environmental explanatory variables, while

there may be more spatial characteristics that explain variation in FA and the contributing live-

lihood activities, for example market dynamics or regional governmental programmes pro-

moting agricultural commodities. Additional environmental explanatory variables could

contribute to improving the regression model performance and hence reducing the nugget

and sill of the regression residual variogram. III) Spatial mismatch: The exact locations of the

household data were unknown and the environmental explanatory variables that were sampled

per household were based on randomly off-set, clustered household locations, which grouped

several households on short distances that in reality might live kilometres apart. The clustering

of households and the sampling of environmental explanatory variables at the offset locations

introduced noise, which affected both the performance of the regression models using envi-

ronmental explanatory variables and the nugget of the variogram models. Performing the anal-

yses on the real locations of the households (and their fields) is expected to reduce the level of

local variation and improve information on large-scale patterns in response to environmental

explanatory variables. IV) Measurement errors: Information on FA and livelihood activities

was obtained from survey data, known to be subject to constraints and erroneous information

[47, 50, 51]. V) Model structural error: The model used functions to approximate trends, while

these may not reflect real structures. For example, using linear models on non-linear effects

might have introduced structural error. Sophisticated predictive techniques such as machine

learning [5] are compatible with our procedure and could improve the regression predictions.

Interventions must recognise the diversity in livelihood activities within

areas

Our procedure enables to systematically evaluate spatial patterns and the quality of maps of

farming systems and household welfare and adds to existing approaches in which local varia-

tion often remains hidden [7]. The latter can be misleading if only larger patterns are shown

without indicating how much of the total variation is explained by these patterns. Our results

reveal that local differences in welfare and welfare-related activities can be large, which has

implications for the planning of interventions. For example, our findings on the large local var-

iation in livestock contribution to FA indicate that in Uganda’s cattle corridor as well as in

other regions there is a large local diversity in livestock ownership, which needs to be consid-

ered in targeting livestock interventions. Our cattle map shows that dependency of the house-

holds on cattle for income and food security in the cattle corridor is not substantially different

to other areas in Uganda. Earlier work has shown that small livestock was more important in

contributing to food availability for the poorer households, whereas cattle was important for

the wealthier households [9]. When targeting the poor, interventions focusing on small

+ median residuals; for y>1, values are set to 1; for y<0, values are set to 0); Right: Upper 95% PI (MIBR prediction map + upper 95% PI of

residuals; for y> 1, values are set to 1). White areas are protected areas (e.g. national parks) and water bodies.

https://doi.org/10.1371/journal.pone.0208714.g005
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livestock therefore remain relevant, also within cattle areas. Similarly, despite revealing distri-

bution patterns that resemble those of other existing maps, the contributions of major crops

contain large local variation. For example, within Uganda’s banana-coffee system areas, small-

holders exist that have little or no banana or coffee in their system. Interventions that aim to

target the poor must thus recognise that diversity in livelihood activities for income generation

within any given area often overrides the variability of livelihood activities between distant

regions in the country.

Conclusions

We applied a stepwise procedure to 1927 farm households across Uganda to identify country-

wide patterns of indicators on FA and contributing livelihood activities using spatially explicit

environmental and socio-economic data and household resource characteristics as explanatory

variables. With few exceptions, predictions of the indicators were weak, highlighting the diffi-

culty in capturing variability at larger scale. Also household explanatory variables identified lit-

tle additional variation compared to environmental explanatory variables alone. Spatial

predictability was strongest for indicators for which environmental gradients determined their

distribution, such as highland banana contribution to the crop part of FA. In contrast, indica-

tors of crops that were more ubiquitously present across agroecological zones showed large

local variation, which often overruled large-scale patterns (e.g. cassava and maize contribu-

tions to the crop part of FA, and livestock and off-farm income contributions to FA).

Our procedure enables to systematically evaluate spatial patterns of farming systems and

household welfare (e.g. food security) and to quantify local and large-scale variation. Thereby,

it adds to existing approaches, which often only address large-scale patterns and, given the sub-

stantial local variation observed, may hide relevant heterogeneity. This has implications for

planning of interventions. Decision makers targeting interventions in an area such as the

Ugandan cattle corridor need to take into account that the importance of cattle for the liveli-

hoods of the households in these areas varies enormously. While the cattle corridor may har-

bour many cattle, these belong to few herd owners. Instead, for targeting the poor,

interventions on small livestock may be more relevant. Similarly, the importance of crops such

as banana or coffee for household welfare in areas where banana-coffee systems are predomi-

nant varies largely. Interventions that aim to target the poor must thus recognise the large

diversity in livelihood activities within any given area, which often overrides the variability

between regions. Our approach generates spatially continuous and quantitative information

on livelihood activities for food availability, including a quantification of uncertainty in these

patterns, and provides a basis for further analyses to identify vulnerability of different regions

and households to future changes by linking this approach to scenarios on climate change and

price variability.
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S1 Fig. Maps of key indicators using LSMS data from 2010/11 and 2011/12. Overall patterns

of the maps of key indicators for the LSMS data from 2010/11 and 2011/12 were similar with

largest differences for food availability (FA) and the cattle contribution.

(PDF)

S2 Fig. Difference maps comparing LSMS data from 2010/11 and 2011/12. Maps from

2011/12 are subtracted from maps from 2010/11. Positive results (green, yellow) indicate that

FA or the contribution of the variable in 2010/11 was larger than in 2011/12. Negative results

(white) indicate that FA or the contribution of the variable in 2010/11 was smaller than in
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in 2010/11 than in 2011/12.
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S3 Fig. Root mean squared error maps comparing LSMS data from 2010/11 and 2011/12.

Root mean squared error was calculated as:
p

((LSMS201011 − LSMS20112)2). It gives an indi-

cation about the spread between the two years. Maps indicate that differences between the two

years were locally large (green) for banana and cattle contributions and less for cassava contri-

bution and FA.

(PDF)

S4 Fig. Variogram models of the indicators.

(PDF)

S1 Table. Food availability and livelihood activities as dependent variables for the regres-

sion analyses.

(PDF)

S2 Table. Regression coefficients and significance of environmental explanatory variables

in multiple inflated beta regression model (MIBR-EV) for the dependent variables ‘crops’,

‘livestock’ and ‘off-farm income’ as livelihood activities contributing to food availability.

(PDF)

S3 Table. Regression coefficients and significance of environmental explanatory variables

multiple inflated beta regression model (MIBR-EV) for major crops contributing to the
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(PDF)
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(PDF)

S5 Table. Regression coefficients and significance of environmental and household level

explanatory variables in multiple inflated beta regression model (MIBR-EVHR) for the

dependent variables ‘crops’, ‘livestock’ and ‘off-farm income’ as livelihood activities con-

tributing to food availability.

(PDF)

S6 Table. Regression coefficients and significance of environmental and household level

explanatory variables multiple inflated beta regression model (MIBR-EVHR) for major

crops contributing to the livelihood activity ‘crops’.

(PDF)

S7 Table. Regression coefficients and significance of environmental and household level
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